
GPU-based Parallel Particle Swarm Optimization

You Zhou, and Ying Tan, Senior Member, IEEE

Abstract— A novel parallel approach to run standard particle
swarm optimization (SPSO) on Graphic Processing Unit (GPU)
is presented in this paper. By using the general-purpose com-
puting ability of GPU and based on the software platform of
Compute Unified Device Architecture (CUDA) from NVIDIA,
SPSO can be executed in parallel on GPU. Experiments are con-
ducted by running SPSO both on GPU and CPU, respectively,
to optimize four benchmark test functions. The running time
of the SPSO based on GPU (GPU-SPSO) is greatly shortened
compared to that of the SPSO on CPU (CPU-SPSO). Running
speed of GPU-SPSO can be more than 11 times as fast as that
of CPU-SPSO, with the same performance. compared to CPU-
SPSO, GPU-SPSO shows special speed advantages on large
swarm population applications and hign dimensional problems,
which can be widely used in real optimizing problems.

I. INTRODUCTION

Particle swarm optimization(PSO), developed by Eberhart

and Kennedy in 1995, is a stochastic global optimization

technique inspired by social behavior of bird flocking or fish

schooling [1]. In the PSO, each particle in the swarm adjusts

its position in the search space based on the best position it

has found so far as well as the position of the known best-

fit particle of the entire swarm, and finally converges to the

global best point of the whole search space.

Compared to other swarm based algorithms such as genetic

algorithm and ant colony algorithm, PSO has the advantage

of easy implementation, while maintaining strong abilities

of convergence and global search. In recent years, PSO has

been used increasingly as an effective technique for solving

complex and difficult optimization problems in practice. PSO

has been successfully applied to problems such as function

optimization, artificial neural network training, fuzzy system

control, blind source separation, machine learning and so on.

In spite of those advantages, PSO still needs a long time to

find solutions for large scale problems, such as problems with

large dimensions and problems which need a large swarm

population for searching in the solution space. The main

reason for this is that the optimizing process of PSO requires

a large number of fitness evaluations, which are usually done

in a sequential way on CPU, so the computation task can be

very heavy and thus running speed of PSO may be quite

slow.

In recent years, Graphics Processing Unit (GPU) which

has traditionally been a graphics-centric workshop, has

shifted its attention to the non-graphics and general-purpose

computing applications. Because of its parallel computing

mechanism and fast float-point operation, GPU has shown

Y. Zhou and Y. Tan (corresponding author) are with Key Laboratory of
Machine Perception and Intelligence (Peking University), Ministry of Edu-
cation, and with Department of Machine Intelligence, School of Electronics
Engineering and Computer Science, Peking University, Beijing 100871,
China (Phone: +86-10-62767611, E-mail: ytan@pku.edu.cn.)

great advantages in scientific computing fields, and achieved

many successful applications.

In order to perform general-purpose computing on GPU

more easily and conveniently, some platforms have been

developed, such as BrookGPU (Stanford University) [2],

CUDA (Compute Unified Device Architecture, NVIDIA

Corporation) [3]. These platforms have greatly simplified

programming on GPU.

In this paper, we present a novel method to run PSO

on GPU in parallel, based on CUDA, which is a new but

powerful platform for programming on GPU. With a good

optimization performance, the PSO implemented on GPU

can enlarge the swarm population and problem dimension

sizes, speed up its running greatly and provide users with

a feasible solution for complex optimizing problems in

reasonable time. As GPU chips can be found in any ordinary

PC currently, more and more people will be able to solve

huge problems in real-world applications by this parallel

algorithm.

The paper is organized as follows. In Section II, the related

work is presented in details. In Section III, we briefly in-

troduce backgrounds of GPU based computing. Algorithmic

implementations of our proposed approach are elaborated

in Section IV. A number of experiments are done on four

benchmark functions and analysis of results are reported in

Section V. Finally, we conclude the paper and give our future

works in Section VI.

II. RELATED WORK

A. Traditional Particle Swarm Optimization

For the sake of simplicity, we call the particle swarm op-

timization algorithm presented by Eberhart and Kennedy in

1995 [1] as traditional particle swarm optimization (TPSO).

In TPSO, each solution of the optimization problem is called

a particle in the search space. The search of the problem

space is done by a swarm with a specific number of particles.

During each of the iteration, the position and velocity of

every particle are updated according to its current best

position (PpBd(t)) and the best position of the entire swarm

(PgBd(t)). The position and velocity updating in TPSO can

be formulated as follows:

Vid(t + 1) =wVid(t) + c1r1(PpBd(t) − Xid(t))
+ c2r2(PgBd(t) − Xid(t)) (1)

Xid(t + 1) =Xid(t) + Vid(t) (2)

where i = 1, 2, ...N , N is the number of particles in the

swarm namely the population. d = 1, 2, ...D, D is the

dimension of solution space. In Equation (1) and (2), the

1493978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

Authorized licensed use limited to: Peking University. Downloaded on November 3, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

learning factors c1 and c2 are nonnegative constants, r1 and

r2 are random numbers uniformly distributed in the interval

[0, 1], Vid ∈ [−Vmax, Vmax], where Vmax is a designated

maximum velocity which is a constant preset according to

the objective optimization function. If the velocity on one

dimension exceeds the maximum, it will be set to Vmax. This

parameter controls the convergence rate of the PSO and can

prevent the method from growing too fast. The parameter

w is the inertia weight used to balance the global and local

search abilities, which is a constant in the interval [0, 1].

B. Standard Particle Swarm Optimization

In these two decades, many researchers have taken great

effort to improve the performance of TPSO by exploring the

concepts, issues, and applications of the algorithm, and many

variants have also been developed. In spite of this attention,

there has as yet been no standard definition representing

exactly what is involved in modern implementations of the

technique.

In 2007, Daniel Bratton and James Kennedy designed

a Standard Particle Swarm Optimization (SPSO) which is

a straightforward extension of the original algorithm while

taking into account more recent developments that can be

expected to improve performance on standard measures [4].

This standard algorithm is intended for use both as a baseline

for performance testing of improvements to the technique,

as well as to represent PSO to the wider optimization

community.

SPSO is different from TPSO mainly in the following

aspects [4]:

1) Swarm Communication Topology: TPSO uses a global

topology showed in Fig. 1(a). In this topology, the best

particle, which is responsible for the velocity updating of all

the particles, is chosen from the whole swarm population.

While in SPSO there is no global best, every particle only

uses a local best particle for velocity updating, which is

chosen from its left,right neighbors and itself. We call this

a local topology, as shown in Fig. 1(b). (Assuming that the

swarm has a population of 12).

Fig. 1. TPSO and SPSO Topologies

2) Inertia Weight and Constriction: In TPSO, an inertia

weight parameter was designed to adjust the influence of the

previous particle velocities on the optimization process. By

adjusting the value of w, the swarm has a greater tendency

to eventually constrict itself down to the area containing the

best fitness and explore that area in detail. Similar to the

parameter w, SPSO introduced a new parameter χ known

as the constriction factor, which is derived from the existing

constants in the velocity update equation:

χ =
2

|2 − ϕ −
√

ϕ2 − 4ϕ|
ϕ =c1 + c2

and the velocity updating formula in SPSO is:

Vid(t + 1) =χ(Vid(t) + c1r1(PpBd(t) − Xid(t))
+ c2r2(PgBd(t) − Xid(t))) (3)

where PgBd is no longer global best but the local best.

Statistical tests have shown that compared to TPSO, SPSO

can return better results, while retaining the simplicity of

TPSO. The introduction of SPSO can give researchers a com-

mon grounding to work from. SPSO can be used as a means

of comparison for future developments and improvements of

PSO, and thus prevent unnecessary effort being expended on

“reinventing the wheel” on rigorously tested enhancements

that are being used at the forefront of the field.

III. INTRODUCTION TO GPU BASED COMPUTING

GPU has already been successfully used in some compu-

tation fields such as computer vision problems [5], Voronoi

diagrams [6] and neural network computation [7] and so on.

GPU is entering the main stream of computing [8].

A. Advantages of GPU on Computing

GPU was at first designed especially for the purpose of

image and graphic processing on computers, where compute-

intensive and highly parallel computing is required. Com-

pared to CPU, GPU shows many advantages [3]. Firstly, GPU

computes faster than CPU. GPU devotes more transistors to

data processing rather than data caching and flow control,

which enables it to do much more float-point operations

per second than CPU. Secondly, GPU is more suitable

for data-parallel computations. It is especially well-suited

to solve problems that can be expressed as data-parallel

computations with high arithmetic intensity - the ratio of

arithmetic operations to memory operations.

B. Programming Model for GPU

The programming model for GPU is illustrated by Fig. 2.

A shader program operates on a single input element stored

in the input registers, then it writes the execution result

into the output registers. This process is done in parallel by

applying the same operations to all the data.

C. Compute Unified Device Architecture (CUDA)

NVIDIA CUDA technology is a C language environment

that enables programmers and developers to write software

to solve complex computational problems by tapping into the

many-core parallel processing power of GPUs. It is a new

hardware and software architecture for issuing and managing

computations on the GPU as a data-parallel computing device

without the need of mapping them to a graphics API.

Some applications have already been developed based on

CUDA, for example, matrix multiplication, parallel prefix

1494 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Peking University. Downloaded on November 3, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

Fig. 2. Programming Model for GPU

sum of large arrays, image denoising, sobel edge detection

filter and so on. In this paper, we intend to implement SPSO

on GPU in parallel to accelerate the running speed of it.

For details about programming through CUDA, interested

readers can refer to the website of NVIDIA CUDA ZONE.

The core concepts in programming through CUDA are

thread batching and memory model [9].

1) Thread Batching: When programming through CUDA,

the GPU is viewed as a compute device capable of executing

a very high number of threads in parallel. A function in

CUDA is called as a Kernel, which is executed by a batch

of threads. The batch of threads is organized as a grid of

thread blocks. A thread block is a batch of threads that

can cooperate together by efficiently sharing data through

some fast shared memory and synchronizing their execution

to coordinate memory accesses.

Each thread is identified by its thread ID. To help with

complex addressing based on the thread ID, an application

can also specify a block as a 2 or 3-dimensional array

of arbitrary size and identify each thread using a 2 or 3-

component index instead. For a two dimensional block of

size Dx×Dy , the thread ID of index (x,y) is y ∗ Dx + x.

The thread batching can be illustrated by Fig. 3.

Fig. 3. Thread Batching of a Kernel in CUDA

2) Memory Model: The memory model of CUDA is

tightly related to its thread bathing mechanism. There are

several kinds of memory spaces on the device:

• Read-write per-thread registers

• Read-write per-thread local memory

• Read-write per-block shared memory

• Read-write per-grid global memory

• Read-only per-grid constant memory

• Read-only per-grid texture memory

The memory model can be illustrated by Fig. 4. Registers

and local memory can only be accessed by threads, the

shared memory is only accessible within a block, and global

memory is available to all the threads in a grid. In this paper,

we mainly use the shared memory and global memory for

our implementation.

Fig. 4. Memory Model of CUDA

IV. IMPLEMENTATION OF SPSO ON GPU

SPSO is as simple as TPSO, but with a better performance.

So we would implement SPSO rather than TPSO on GPU.

Our purpose is to accelerate the running speed of SPSO

on GPU (GPU-SPSO), during the search for the global

best in an optimization problem. Meanwhile, performances

of GPU-SPSO should not be deteriorated. Furthermore, by

making full use of the parallel computing ability of GPU,

we expect GPU-SPSO can solve optimization problems with

high dimension and large swarm population.

A. Data Organization

In this paper, position and velocity information of all the

particles is stored on the global memory of GPU chips.

As the global memory only allows the allocation of one

dimensional arrays, so only one-dimensional arrays are used

here for storing data, including the position, velocity and

fitness values of all the particles.

Let us assume that the dimension of the problem is D,

and the swarm population is N . An array X of length D ∗
N is used here to represent this swarm by storing all the

position values. But the array should be logically seen as

a two-dimensional array Y . An element with the index of

(i, j) in Y corresponds to the element in X with the index

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1495

Authorized licensed use limited to: Peking University. Downloaded on November 3, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

of (i∗N+j). This address mapping method can be formulized

as:

Y (i, j) = X(i ∗ N + j) (4)

where the element Y (i, j) stands for the datum for the i-th
dimension of the j-th particle in the swarm.

B. Variable Definition and Initialization

Suppose the fitness value function of the problem is f(X)
in the domain [−r, r]. The dimension of the problem is D and

swarm population is N . The variable definitions are given as

follows: (each array is one-dimensional)

• Particle position array: X
• Particle velocity array: Y
• Personal best position: PX
• Local best position: GX
• Fitness value of particles: F
• Personal best fitness value: PF
• Local best fitness value: GF

where the sizes of X ,Y ,PX and GX are all D∗N ; the sizes

of F ,PF ,and GF are all N .

C. Random Number Generation

During the process of optimization, SPSO needs lots

of random numbers for velocity updating. The absence of

high precision integer arithmetic in current generation GPUs

makes random numbers generating on GPU very tricky

though it is still possible [10]. In order to focus on the

implementation of SPSO, we would rather generate random

numbers on CPU and transport them to GPU. However the

data transportation between GPU and CPU is quite time

consuming. If we generate random numbers on CPU and

transfer them to GPU during each iteration of SPSO, it

will greatly slow down the algorithm’s running speed due to

mountains of data to be transported. So data transportation

between CPU and GPU should be avoided as much as

possible.

We solve this problem like this: M (M >> D∗N) random

numbers are generated on CPU before running SPSO. Then

they are transported to GPU once for ado and stored in an

array R on the global memory. When the velocity updating

is carried through, we just pass two random integer numbers

P1,P2 ∈ [0,M -D ∗ N] from CPU to GPU, then 2*D*N
numbers can be drawn from array R starting at R(P1) and

R(P2), respectively, instead of transporting 2∗D∗N numbers

from CPU to GPU. The running speed can be obviously

improved by using this technique.

D. Algorithmatic Flow for GPU-SPSO

The algorithm flows for GPU-SPSO is illustrated by

Algorithm 1. Here Iter stands for the maximum number

of iterations that GPU-SPSO runs, which serves as the stop

condition for the optimization process.

Algorithm 1 Algorithmatic Flow for GPU-SPSO

Initialize the positions and velocities of all particles.

Transfer data from CPU to GPU.

// sub-processes in “for” are done in parallel

for i=1 to Iter do
Compute fitness values of all particles

Update pBest of each particle

Update gBest of each particle

Update velocity and position of each particle

end for
Transfer data back to CPU and output.

E. Parallelization Design

The difference between a CPU function and a GPU kernel
is that execution of the kernel should be parallelized. So

we must design the parallelization methods for all the sub-

processes of optimizing by SPSO.
1) Compute Fitness Values of Particles: The computing

of fitness values is the most important computation task in

the whole search process, where high density of arithmetical

computation is required. It should be carefully designed for

parallelization so as to improve the overall performance (we

consider mainly running speed) of GPU-SPSO.

The algorithm for fitness values computing of all the

particles is shown in Algorithm 2.

Algorithm 2 Compute Fitness Values

Initialize, set the ’block size’ and ’grid size’, with the

number of threads equaling to the number of particles N .

for each dimension i do
Map all threads to the N position values one-to-one

Load N data from global to shared memory

Apply arithmetical operations to all N data in parallel

Store the result of dimension i with f(Xi)
end for

Combine f(Xi) (i = 1, 2...D) to get the final fitness values

f(X) of all particles, store them in array F .

From Algorithm 2, we can see that the iteration is only

applied to dimension index i = 1, 2..., D, while on CPU, it

should also be applied to the particle index j = 1, 2, ...N .

The reason is that the arithmetical operation to all the N data

in dimension i is done in parallel (synchronously) on GPU.

Mapping all the threads to the N data in a 1-D array should

follow two steps:

• Set the block size to S1×S2 and grid size T1×T2. So

the total number of threads in the grid is S1∗S2∗T1∗T2.

It must be guaranteed that S1 ∗S2 ∗T1 ∗T2=N , only in

this case can all the data of N particles be loaded and

processed synchronously.

• Assuming that the thread with the index (Tx, Ty) in the

block whose index is (Bx, By), is mapped to the Ith

1496 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Peking University. Downloaded on November 3, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

datum in a 1-D array, then the relationship between the

indexes and I is:

I = (By ∗ T2 + Bx) ∗ S1 ∗ S2 + Ty ∗ S2 + Tx (5)

In this way, all the threads in a Kernel are mapped to

N data one to one. Then an operation to one thread will

cause all the N threads to do exactly the same operation

synchronously. This is the core mechanism for explaining

why GPU can accelerate the computing speed greatly.

2) Update pBest and gBest: After the fitness values are

updated, each particle may come to a better place than ever

before and new local best particles may be found. So pBest
and gBest (refer to Equation. 1) must be updated according

to the current status of the particle swarm. The updating of

pBest (namely PX and PF) can be done by Algorithm 3.

Algorithm 3 Update pBest

Map all the threads to N particles one-to-one.

Transfer all the N data from global to shared memory.

//Do operations to thread i (i = 1, ..., N) synchronously:

if F (i) is better than PF (i) then
PF (i)= F (i)
for each dimension d do

Store the position X(d ∗ N + i) to PX(d ∗ N + i)
end for

end if

The updating of gBest (namely GX and GF) is similar

to that of pBest. Compare a particle’s previous gBest to

the current pBest of the right neighbor, left neighbor and its

own, respectively, then choose the fittest as the new gBest
for that particle.

3) Update Velocity and Position: After the personal best

and local best positions of all the particles have been updated,

the velocities and positions should also be updated according

to Equation. 3 and Equation. 2, respectively, by making

use of the new information provided by pBest and gBest.
This process is done dimension by dimension. In the same

dimension d (d = 1, ..., D), the velocities of all the particles

are updated in parallel, using the same technique mentioned

in the previous algorithms. What should be paid special

attention to is that two random integers P1 and P2 should

be provided for fetching random numbers from array R.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental platform for this paper is based on Intel

Core 2 Duo 2.20GHz CPU, 2.0GRAM, NVIDIA GeForce

8600GT, and Windows XP.

In this paper, performance comparisons between GPU-

SPSO and CPU-SPSO is made based on four classical

benchmark test functions as listed in TABLE I.

The variables of f1,f2,andf3 are independent but variables

of f4 are dependent, namely there are related variables such

as the i-th and (i + 1)-th variable. The optimal solution of

all the four functions are 0.

TABLE I

BENCHMARK TEST FUNCTIONS

Name Equation Bounds

f1

D∑

i=1
X2

i (−100, 100)D

f2

D∑

i=1
[x2

i − 10 ∗ cos(2πxi) + 10] (−10, 10)D

f3
1

4000

D∑

i=1
X2

i −
D∏

i=1
cos(xi/

√
i) + 1 (−600, 600)D

f4

D−1∑

i=1
(100(xi+1 − x2

i)2 + (xi − 1)2) (−10, 10)D

SPSO is run both on GPU and CPU in this paper. We call

them as GPU-SPSO and CPU-SPSO, respectively. Now we

define Speedup as the times that GPU-SPSO runs faster than

CPU-SPSO.

γ =
TCPU

TGPU
(6)

where γ is Speedup, TCPU and TGPU is, respectively, the

time that CPU-SPSO and GPU-SPSO need to optimize a

function during a specific number of iterations.

In the following paragraphs, Iter stands for the number

of iterations that SPSO runs, D is dimension, N is swarm

population; CPU-Time and GPU-Time stand for the time

consumed for running SPSO on CPU and GPU, respectively,

with second as unit of time. CPU-Value and GPU-Value
stand for the mean final optimized function values of the 10

runs on CPU and GPU, respectively.

The experimental results and analysis are given as follows.

A. Running Time and Speedup Versus Swarm Population

We run both GPU-SPSO and CPU-SPSO on f1,f2 andf3

for 10 times independently, and the results are shown in

TABLE II, III, IV. (D=50, Iter=2000)

TABLE II

RESULTS OF CPU-SPSO AND GPU-SPSO ON f1 (D=50)

N
CPU- GPU-

Speedup
CPU- GPU-

Time(s) Time(s) Value Value

400 47.9893 12.8183 3.7438 4.66E-8 4.90E-8

1200 153.4973 33.0714 4.6414 3.63E-8 3.21E-8

2000 250.3312 55.1357 4.5402 3.02E-8 2.85E-8

2800 362.737 72.775 4.9843 2.80E-8 2.93E-8

TABLE III

RESULTS OF CPU-SPSO AND GPU-SPSO ON f2 (D=50)

N
CPU- GPU-

Speedup
CPU- GPU-

Time(s) Time(s) Value Value

400 86.6102 14.4711 5.9850 135 133.4977

1200 261.9971 35.132 7.4575 107 109.1144

2000 449.6615 59.6859 7.5338 102 106.1681

2800 642.576 79.1055 8.1230 96 101.6261

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1497

Authorized licensed use limited to: Peking University. Downloaded on November 3, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

TABLE IV

RESULTS OF CPU-SPSO AND GPU-SPSO ON f3 (D=50)

N
CPU- GPU-

Speedup
CPU- GPU-

Time(s) Time(s) Value Value

400 96.3025 14.3078 6.4737 8.87E-10 5.96E-09

1200 282.2462 34.4804 8.1857 5.57E-10 0

2000 481.5713 57.6654 8.3511 6.75E-10 0

2800 677.2406 74.8407 9.0490 4.02E-10 0

After analyzing the data given in TABLE II, III, IV, we

can make some conclusions below.

1) Optimization Performance Comparison: GPU-SPSO

uses a random number “pool” for updating velocity instead of

instant random numbers generation. It may affect the results

to some extent. However, seen from the tables, on all the

three functions, GPU-SPSO and CPU-SPSO can give optimal

results in the same magnitude, namely the GPU-SPSO can

almost reach the same results precision as CPU-SPSO (even

better, for example f3). So we can say that GPU-SPSO is

reliable and efficient in total.

2) Population Size Setup: When the population size grows

(from 400 to 2800), the optima of a function to be found are

in the same magnitude, no obvious precision improvement

can be seen. So we can say that a large swarm population is

not always necessary. But exceptions may still exist where

large swarm population is required in order to obtain better

optimization results especially in real-world optimization

problems.

3) Running Time: As shown in Fig. 5, The running time

of GPU-SPSO and CPU-SPSO is proportional to the swarm

population, namely the time increase linearly with swarm

population, keeping the other parameters constant.

From f1, f2 to f3, the complexity of computation in-

creases. f1 contains only square arithmetic, f2 contains

square and cosine arithmetic, while f3 contains not only

square and cosine but also square root arithmetic. In the

case of same population size, it takes much more time for

CPU-SPSO to optimize the function with more complex

arithmetic than the one with less complex arithmetic, during

the same number of iterations. However, this is no longer

true for GPU-SPSO. Notice that the three lines which stand

for time consumed by the GPU-SPSO when optimizing f1,

f2, f3overlap each other in Fig. 5, namely the time remains

almost the same for a GPU-SPSO swarm with a specific

population to optimize them, during the same number of

iterations. So more complex arithmetic a function has, more

speed advantages can GPU-SPSO gain compared to CPU-

SPSO when optimizing it.

4) Speedup: As seen from Fig. 6, the speedup of the same

function increases with the population size, but it is limited to

a specific constant. Furthermore, the line of a function with

more complex arithmetics lies above the line of the functions

with less complex arithmetics (f3 above f2, f2 above f1),

that is to say the function with more complex arithmetic has

a higher speedup.

400 1200 2000 2800
0

100

200

300

400

500

600

700

Swarm Population

T
im

e
E

la
ps

ed
(s

)

Running Time of CPU−SPSO and GPU−SPSO on f
1
, f

2
, f

3
 (D=50)

CPU,f
1

CPU,f
2

CPU,f
3

GPU,f
1

GPU,f
2

GPU,f
3

three time lines overlap each other

Fig. 5. Running Time and Swarm Population

400 1200 2000 2800
0

2

4

6

8

10

Swarm Population

S
pe

ed
up

γ

Speedup (T
CPU

/T
GPU

) on f
1
, f

2
, f

3
 (D=50)

f
1

f
2

f
3

Fig. 6. Speedup and Swarm Population

B. Running Time and Speedup versus Dimension

Now we fix the swarm population to a constant number

and vary the dimension. Analysis about the relationship

between running time (as well as speedup) and dimension

is done here. We run both GPU-SPSO and CPU-SPSO on

f1,f2 and f3 for 10 times, and the results are shown in

TABLE V, VI, VII (N=400, Iter=2000).

TABLE V

RESULTS OF CPU-SPSO AND GPU-SPSO ON f1 (N=400)

D
CPU- GPU-

Speedup
CPU- GPU-

Time(s) Time(s) Value Value

50 118.4688 31.2999 3.785 0 0

100 237.616 60.556 3.9239 2.72E-10 2.80E-10

150 356.7932 89.5998 3.9821 5.18E-05 5.18E-05

200 483.0046 119.9542 4.0266 0.0232 0.0235

From TABLE V, VI, VII, we can conclude that:

1) Running Time: As seen from Fig. 7, the running

time of GPU-SPSO and CPU-SPSO increases linearly with

dimension, keeping the other parameters constant. Functions

(f2 and f3) with more complex arithmetic need more time

than the function (f1) with much less complex arithmetic

to be optimized by CPU-SPSO, while the time needed is

almost the same when optimized by GPU-SPSO, with the

same problem dimension. Just as mentioned in Section V-

A.3.

1498 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Peking University. Downloaded on November 3, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

TABLE VI

RESULTS OF CPU-SPSO AND GPU-SPSO ON f2 (N=400)

D
CPU- GPU-

Speedup
CPU- GPU-

Time(s) Time(s) Value Value

50 274.1156 35.444 7.7338 122.3175 117.047

100 493.2735 67.8662 7.2683 4.45E+02 448.3257

150 753.7683 101.4741 7.4282 8.14E+02 8.77E+02

200 996.2754 133.2195 7.4845 1.36E+03 1.43E+03

TABLE VII

RESULTS OF CPU-SPSO AND GPU-SPSO ON f3 (N=400)

D
CPU- GPU-

Speedup
CPU- GPU-

Time(s) Time(s) Value Value

50 242.1754 33.2244 7.2891 0 0

100 466.4977 66.8614 6.9771 1.14E-11 0

150 724.5183 98.9491 7.3221 4.76E-06 2.33E-05

200 1020.6 130.8583 7.7989 0.0018 0.0062

2) Speedup: It can be seen from Fig. 8 that the speedup

remains almost the same when the dimension grows. The

reason is that the parallelization is applied only to the

population size in GPU-SPSO, but not to the dimension.

Still, the function with more complex arithmetic has a higher

speedup.

C. Other Characteristics of GPU-SPSO

1) Maximum Speedup: In some applications, large swarm

population is needed during the optimization process. In this

case, GPU-SPSO can greatly benefit the optimization by

improving the running speed dramatically. Now we will carry

through an experiment to find out the maximum speedup

that GPU-SPSO can reach. We run GPU-SPSO and CPU-

SPSO on f3, respectively. Set D=50, Iter=10000, and both

GPU-SPSO and CPU-SPSO are run only once (As the time

needed for each run is almost the same). The result is shown

in TABLE VIII. Global best solutions are obtained in both

cases.

As shown in TABLE VIII that GPU-SPSO can reach

a maximum speedup of greater than 11 when the swarm

population size is 20000, running on f3. And on the functions

more complex than f3, speedup may be even greater.

2) High Dimension Application: In some real world appli-

cations such as face recognition and fingerprint recognition,

the problem dimension may be very high. Running PSO on

CPU to optimize high dimensional problems is very slow,

but the speed can be greatly accelerated if run it on GPU.

TABLE VIII

GPU-SPSO AND CPU-SPSO ON f3 (D=50)

N CPU-Time(s) GPU-Time(s) Speedup
10000 1269.7554 113.1295 11.224
20000 2537.7515 221.9755 11.4326

50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

Dimension

T
im

e
E

la
ps

ed
(s

)

Running Time of CPU−SPSO and GPU−SPSO on f
1
, f

2
, f

3
 (N=400)

CPU,f
1

CPU,f
2

CPU,f
3

GPU,f
1

GPU,f
2

GPU,f
3

three time lines overlap each other

Fig. 7. Running Time and Dimension

50 100 150 200
0

2

4

6

8

10

Dimension

S
pe

ed
up

γ

Speedup (T
CPU

/T
GPU

) on f
1
, f

2
, f

3
 (N=400)

f
1

f
2

f
3

Fig. 8. Speedup and Dimension

Now we run both GPU-SPSO and CPU-SPSO on f3 once,

respectively (N=400, Iter=5000). The results are given in

TABLE IX.

From TABLE IX, we can find that even when the dimen-

sion is as large as 3000, GPU-SPSO can run more than 6.5

times faster than GPU-SPSO.

3) Functions with Dependent Variables: As mentioned

above, f4 is one of the functions which have dependent

variables. We run both GPU-SPSO and CPU-SPSO on f4

for 10 times, and the results are shown in TABLE X. Seen

from TABLE X, we can conclude GPU-SPSO can work quite

well with functions with dependent variables, and reach a

noticeable speedup.

D. Comparison with Related Works

The PSO algorithm was also implemented on GPU in

an other way by making use of the texture-rendering of

GPU [11]. We may call it Texture-PSO. This method used

the textures on GPU chips to store particle information, and

the fitness evaluation, velocity and position updating were

TABLE IX

GPU-SPSO AND CPU-SPSO ON f3 (N=400)

D CPU-Time(s) GPU-Time(s) Speedup
2500 1220.4361 92.1728 6.5272
3000 1461.7988 223.8946 6.5290

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1499

Authorized licensed use limited to: Peking University. Downloaded on November 3, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

TABLE X

GPU-SPSO AND CPU-SPSO ON f4 (D=50,Iter=10000)

N
CPU- GPU-

Speedup
CPU- GPU-

Time Time Value Value

400 292.4788 65.7535 4.4481 5.3283 1.7313

1200 893.9783 168.5218 5.3048 1.3125 1.7196

2000 1.49E+03 280.8636 5.3076 0.1627 0.2029

2800 2.11E+03 370.2878 5.6915 0.2687 0.3046

done by means of texture rendering. But Texture-PSO has

several disadvantages below which makes it almost useless

when doing real-world optimization.

• The dimension must be set to a specific number, and

it can not be changed unless redesigning the data

structures.

• When the swarm population is small, for example

smaller than 400, the running time of the Texture-PSO

may be even longer than corresponding PSO that runs

on CPU.

• The functions which can be optimized by Texture-PSO

must have completely independent variables as a result

of the architecture of GPU textures. So functions like

f4 can not be optimized by the Texture-PSO.

Instead of using the textures on GPU, we use the global

memory to implement GPU-SPSO in this paper. Global

memory is more like memory on CPU than textures do.

So GPU-SPSO has overcome all the three disadvantages

mentioned above:

• The dimension serves as a changeable parameter and it

can be set to any reasonable numbers. High dimensional

problems are also solvable with our GPU-SPSO.

• When the swarm population is small, for example

smaller than 400, the speedup can still be bigger than

4 or 5.

• The functions with dependent variables such as f4 can

also be optimized by GPU-SPSO.

VI. CONCLUSIONS

In this paper, a novel way to implement SPSO on GPU

is presented (GPU-SPSO), based on the software platform

of CUDA from NVIDIA Corporation. GPU-SPSO has the

following features:

• The running time of GPU-SPSO is greatly shortened

over CPU-SPSO, while maintaining similar perfor-

mance. And the speedup can be more than 11 on

f3 and other functions with more complex arithmetic.

On GPU chips that have much more multi-processors

than Geforce 8600GT used in this paper, for example

Geforce 8800 series, the GPU-SPSO is expected to run

tens of times faster than CPU-SPSO.

• The running time and swarm population size take a

linear relationship. This is also true for running time and

dimension. And it takes almost the same time for GPU-

SPSO to optimize functions with different arithmetic

complexity, while CPU-SPSO takes much more time

to optimize functions with more complex arithmetic,

with the same swarm population, dimension and number

of iterations. Furthermore, function with more complex

arithmetic has a higher speedup.

• The swarm population can be very large, and the larger

the population is, the faster GPU-SPSO runs than CPU-

SPSO. So GPU-SPSO can especially benefit optimizing

with large swarm population.

• High dimensional problems and functions with depen-

dent variables can also be optimized by GPU-SPSO,

and noticeable speedup can be reached.

• Because most display card in current common PC has

GPU chips, more researchers can make use of our

parallel GPU-SPSO to solve their practical problems.

Because of these characteristics of GPU-SPSO, it can be

applied to a large scope of practical optimization problems.

Our future research will focus on implementing genetic

algorithm and other swarm intelligence algorithms in terms

of similar methods presented in the paper. We will also try

to put our GPU-SPSO onto real-world applications.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-

dation of China (NSFC), under grant number 60875080

and 60673020, and partially financially supported by the

Research Fund for the Doctoral Program of Higher Education

(RFDP) in China. This work is also in part supported

by the National High Technology Research and Develop-

ment Program of China (863 Program), with grant number

2007AA01Z453.

REFERENCES

[1] J. Kennedy, R. Eberhart, “Particle Swarm Optimization” IEEE Inter-
national Conference on Neural Networks, Perth, WA, Australia, Nov.
1995, pp.1942-1948.

[2] I. Buck et. al, “Brook for GPUs: Stream Computing on Graphics
Hardware” ACM, 2004, pp.777-786.

[3] NVIDIA, NVIDIA CUDA Programming Guide1.1, Chapter 1: Introduc-
tion to CUDA, 2007.

[4] D. Bratton, J. Kennedy, “Defining a Standard for Particle Swarm
Optimization” IEEE Swarm Intelligence Symposium, April 2007,
pp.120-127.

[5] R. Yang, G. Welch, “Fast Image Segmentation and Smoothing Using
Commodity Graphics Hardware” Journal of Graphics Tools, special
issue on Hardware-Accelerated Rendering Techniques, 2003, pp.91-100.

[6] K.E.H. et. al, “Fast Computation of Generalized Voronoi Diagrams
Using Graphics Hardware” Proceeding of SIGGRAPH, 1999, pp.277-
286.

[7] Z.W. Luo, H.Z. Liu and X.C. Wu, “Artificial Neural Network Com-
putation on Graphic Process Unit” Proceedings of International Joint
Conference on Neural Networks, Montreal, Canada, 2005.

[8] M. Macedonia, “The GPU Enters Computing’s Mainstream” Entertain-
ment Computing,October 2003, pp.106-108.

[9] NVIDIA, NVIDIA CUDA Programming Guide1.1, Chapter 2: Program-
ming Model, 2007.

[10] W. B. Langdon, “A Fast High Quality Pseudo Random Number
Generator for Graphics Processing Units” IEEE World Congress on
Evolutionary Computation, 2008. pp.459-465.

[11] J.M. Li, et. al, “A parallel particle swarm optimization algorithm based
on fine grained model with GPU accelerating” Journal of Harbin
Institute of Technology, (In Chinese), Dec. 2006, pp.2162-2166.

1500 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Peking University. Downloaded on November 3, 2009 at 02:37 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

