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Abstract In this paper, we investigate how to extract the lowest frequency features from an image. A novel

Laplacian smoothing transform (LST) is proposed to transform an image into a sequence, by which low frequency

features of an image can be easily extracted for a discriminant learning method for face recognition. Generally,

the LST is able to be an efficient dimensionality reduction method for face recognition problems. Extensive

experimental results show that the LST method performs better than other pre-processing methods, such as

discrete cosine transform (DCT), principal component analysis (PCA) and discrete wavelet transform (DWT),

on ORL, Yale and PIE face databases. Under the leave one out strategy, the best performance on the ORL and

Yale face databases is 99.75% and 99.4%; however, in this paper, we improve both to 100% with a fast linear

feature extraction method for the first time.
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1 Introduction

In recent years, numerous algorithms have been proposed for face recognition [1, 2]. However, it is still a
difficult task for a machine to recognize human faces accurately, especially under variable circumstances
such as variations in illumination, pose, facial expression, etc. [3].

Subspace learning based face recognition methods have attracted much interest. The most widely used
subspace learning approach is principal component analysis (PCA). Turk and Pentland [4, 5] used PCA
to describe face images in terms of a set of basis functions, or “eigenfaces”. However, PCA cannot catch
the discriminant information of the samples efficiently. Usually, it was employed to preprocess the raw
images for discriminant learning methods. Another well-known approach is the Fisherface in which linear
discriminant analysis (LDA) [6] is employed after the PCA is used, by removing the first three principal
components [7].

After 2000, manifold based methods are proposed to preserve the local information and obtain a
new linear subspace. Some popular ones include locality preserving projection (LPP) [8], neighborhood
preserving embedding (NPE) [9], marginal fisher analysis (MFA) [10] and local discriminant embed-
ding (LDE) [11], etc. The LPP and NPE are the projection extension of the local linear embedding
(LLE) [12] and Laplacian eigenmaps [13], respectively.
∗Corresponding author (email: ytan@pku.edu.cn)
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However, the statistical methods and the manifold methods suffer from at least two disadvantages:
• The computational requirements of these approaches are greatly related to the dimensionality of

original data and the number of training samples. We have to cropped the original images into small size
before training by these techniques, which means much useful information might lost.

• These approaches just regard each pixel on an image to be independent, while a pixel on an image
is usually highly related with its neighbors.

In last decade, the discrete cosine transform (DCT) was employed to transform an image into its
frequency domain [14–17] for face recognition. It has several advantages over the PCA. First, the DCT
is data independent. Second, it can be implemented by a fast algorithm. More recently, many studies
shown that the statistical methods, such as LDA, on the DCT frequency domain would improve the
recognition rates [18]. Er [19] implemented a high-speed RBF networks in which the LDA is employed
on the frequency domain, by removing the first three DCT coefficients [19]. Similar as DCT, the discrete
wavelet transform (DWT), as a image compact method, was also introduced for face recognition[20, 21].

Both the DCT and the DWT aim to extract the low frequency smooth features of an image to improve
the recognition performances. Wang et al. [22] presented an image Euclidean distance (IMED) and
indicated that smoothing noiseless images can increase the recognition rate. Cai et al. [23] introduced a
spatially smooth subspace learning (SSSL) model using a Laplacian penalty to constrain the coefficients to
be spatially smooth. By using the SSSL, the recognition rates can be improved. However, the IMED and
SSSL methods need to crop the original images into small size to reduce the computational complexity.

In this paper, instead of the Laplacian smoothing penalty, a new dimensionality reduction of an image,
Laplacian smoothing transform (LST), is deduced from a Laplacian matrix which is derived from the
Laplacian smoothing penalty. Unlike the currently frequency transform approaches, such as DCT and
DWT, the LST is deduced in an optimal way.

The rest of this paper is organized as follows. In section 2, the related work of Laplacian smoothing is
presented. In section 3, the proposed Laplacian smoothing transform is deduced. Section 4 presents the
experimental results for face recognition. Finally, a conclusion is given in section 5.

2 Laplacian smoothing penalty

2.1 Laplacian smoothing

Let f be a function defined on a region of interest, Ω ⊂ �d. The Laplacian operator L is defined as
follows:

Lf(t) =
d∑

j=1

∂2f

∂t2j
. (1)

The Laplacian penalty functional, denoted by J , is defined as

J (f) =
∫

Ω

[Lf ]2dt. (2)

Intuitively, J (f) measures the smoothness of the function f over the region Ω. In this paper, our primary
interest is image, which is the region Ω.

It is worth while to point out that the LST is totally different from Laplacian Eigenmaps and LPP,
since LST focuses on pixels in an image while the later two focus on the sample points in sample space.

2.2 Discrete Laplacian smoothing

For conventional use, we first define how to represent a image matrix in a column vector.

Remark. A vector v with length MN can be written as v(x ∗ N + y), where x = 0, 1, . . . , M − 1,
y = 0, 1, . . . , N − 1. Furthermore, we can alternately write

v(�x, y�) = v(x ∗ N + y), (3)
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where the operator �·, ·� is defined as
�x, y� = x ∗ N + y. (4)

In such a way, a digital image f(x, y) can be easily regarded as a column vector f(�x, y�).
An MN ×MN matrix LMN can be written as L(x ∗N + y, x′ ∗N + y′), where x, x′ = 0, 1, . . . , M − 1,

y, y′ = 0, 1, . . . , N − 1. As a result, we can alternately write

L(�x, y�, �x′, y′�) = L(x ∗ N + y, x′ ∗ N + y′). (5)

Thus discretized Laplacian regularization functional of an image f(x, y) can be revised as

J (f) =
M−2∑

x=0

N−1∑

y=0

[f(�x + 1, y�)− f(�x, y�)]2 +
M−1∑

x=0

N−2∑

y=0

[f(�x, y + 1�) − f(�x, y�)]2. (6)

It is clear that eq. (6) is a quadratic form of f . With some simple algebraic formulations, we have

J (f) = fT LMNf, (7)

where LMN = D −W is an MN × MN matrix, called Laplacian matrix of an M × N image and

W(�x, y�, �x′, y′�) =

{
1, if |x − x′| + |y − y′| = 1,

0, if |x − x′| + |y − y′| �= 1.
(8)

D is a diagonal matrix whose entries are column (or row, since W is symmetric) sums of W ,

D(�x, y�, �x, y�) =
∑

�x,y�
W(�x, y�, �x′, y′�). (9)

If |x−x′|+ |y−y′| = 1, then points (x, y) and (x′, y′) are neighbors. Figure 1 shows a 4-neighbor structure
used in this paper. The following is an example of Laplacian matrix L3,2.

L3,2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 −1 0 0

−1 3 −1 0 −1 0

0 −1 2 0 0 −1

−1 0 0 2 −1 0

0 −1 0 −1 3 −1

0 0 −1 0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We have some properties of the Laplacian matrix LMN , as follows:
• LMN is a sparse matrix with 5MN − 2M − 2N non zero elements.
• According to eqs. (6) and (7), LMN is semi-positive matrix with a zero minimal eigenvalue, and its

rank is MN − 1.
• The eigenvector e0 of LMN corresponding to the zero minimum eigenvalue is with all equal elements.

2.3 Spatially smooth subspace learning (SSSL)

The SSSL method introduces a regularized subspace learning model using a Laplacian penalty to constrain
the coefficients to be spatially smooth. Suppose we have m face images with size of M ×N . Let {fi}m

i=1

denote their vector representations and F = [f1, . . . , fm]. Let W be a symmetric m×m matrix with Wij

having the weight of the edge joining vertices fi and fj. D is a diagonal matrix whose entries are column
(or row, since W is symmetric) sums of W , Dii =

∑
j Wij .

Given a pre-defined graph structure with weight matrix W , the SSSL approach is to maximize

aTFWFTa

(1 − α)aTFDFTa + αJ (a)
, (10)

where parameter 0 � α � 1 controls the smoothness of the estimator.
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Figure 1 4-neighbor structure. An inner point (i, j) has 4 neighbors, an edge point has 3 neighbors, a corner point has 2

neighbors.

For details about the SSSL, please refer to [23]. The experimental results demonstrated that the SSSL
method can significantly improve the recognition rate on the ORL, Yale and PIE databases. However, it
still suffers from the problem of computational complexity.

2.4 The isotropic smoothing function

A method called isotropic smoothing [24, 25] aims to obtain an illumination function h(x, y) that is
similar to the original image f(x, y), but contains a smoothing constraint. The objective function can be
constructed by minimizing the following cost function:

Ψ(h) = ‖h − f‖2 + cJ (h), (11)

where parameter c > 0 controls the relative importance of the smoothness constraint. This equation
should be solved using multi-grid methods [26].

3 Laplacian smoothing transform of an image

In this section, the proposed Laplacian smoothing transform (LST) is introduced. The partial Laplacian
smoothing transform (PLST) is presented for dimensionality reduction of an image. We also show that
the LST can be easily combined with the discriminant learning methods.

3.1 Laplacian smoothing transform (LST)

Lemma 1. Laplacian matrix LMN is defined in subsection 2.2. MN eigenvalues of LMN are

0 = λ0 < λ1 � λ2 � · · · � λMN−1, (12)

whose corresponding eigenvectors are

e0, e1, e2, . . . , eMN−1. (13)

Then,
J (ei) � J (ej), ∀i < j. (14)

Proof. According to eq. (7), one can obtain

J (ei) = eT
i LMNei = λi, (15)

J (ej) = eT
j LMNej = λj . (16)

Since i < j, then λi � λj , hence J (ei) � J (ej).
An eigenvector of the Laplacian matrix LMN , e.g., e(�x, y�), can be regarded as an M × N matrix

e(x, y). Figure 2 shows the first 20 eigenvectors of the Laplacian matrix L32,32.
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Figure 2 Eigenvectors corresponding to the first 20 minimal eigenvalues of the Laplacian matrix L32,32.

From Lemma 1, we know that the eigenvector according to smaller eigenvalue of the Laplacian matrix
LMN is smoother, since J (·) can measure the smoothness of an image. Therefore, we can decompose an
image f(x, y) into its frequency domain by projecting an image onto the eigenvectors of the Laplacian
matrix:

Definition 1 (Laplacian smoothing transform (LST)). Let the MN × MN matrix Γ = (e0, e1, e2, . . . ,

eMN−1), where {ek}MN−1
k=0 are eigenvectors of the Laplacian matrix LMN as in eq. (13). Then, Laplacian

smoothing transform (LST) of an M × N image f(�x, y�) can be defined as

LST (f) = ΓTf, (17)

where symbol ‘T’ denotes the transpose of a matrix.

Definition 2 (ILST). Assume the column vector g is the Laplacian smoothing transform of the image
f , i.e., g = LST (f). Then the inverse Laplacian smoothing transform (ILST) of g is given by

f∗ = ILST (g) = Γg. (18)

It is obvious to have f∗ = ΓΓTf = f . According to eqs. (17) and (18), we can transform any image
f into its LST frequency domain easily and accurately and vice versa.

However, if the image size M × N changes we should compute different basis for the new image.
Therefore, the LST is more efficient for the images with same size.

3.2 Partial Laplacian smoothing transform (PLST)

As a matter of fact, the human visual system is more sensitive to variations in the low-frequency band.
The detailed discussions between frequency and recognition can be found in [19]. In order to obtain low-
frequency features of an M×N image f(�x, y�), we just select the first k elements of g, where g = LST (f)
as in eq. (17), which can be directly calculated in the following steps:

1. Construct the Laplacian matrix LMN ;
2. Compute k minimal eigenvalues and their corresponding eigenvectors {ei}k−1

i=0 ;
3. Let Γk = (e0, e1, . . . , ek−1), then

g = ΓT
k f (19)

is the feature vector of k low-frequency LST coefficients of image f .

Definition 3 (Low pass filter). According to eqs. (18) and (19), we can partially reconstruct f with
low frequency features by

f∗ = Γkg = ΓkΓT
k f, (20)

where ΓkΓT
k is called as a low pass filter of f .

Figure 3 shows an example of the low pass filter of the LST.

3.3 Solution of the isotropic smoothing function

Lemma 2. {ek}MN−1
k=0 and scalars {λk}MN−1

k=0 are the eigenvectors and eigenvalues, respectively, of the
Laplacian matrix LMN . Given an M × N image f(�x, y�), which can be expanded as

f =
MN−1∑

k=0

akek. (21)
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Figure 3 An example of the low past filter of the LST. The left is an original image with size of 112 × 92. The other

three are the images reconstructed with k = 100, 400 and 1000 coefficients of LST.

If h(�x, y�) is the solution of eq. (11), then

h =
MN−1∑

k=0

1
1 + cλk

akek. (22)

The proof of Lemma 2 can be found in Appendix A. Therefore, the isotropic smoothing function can
be directly solved by our proposed LST as in eq. (22).

Since
λ0 < λ1 � · · · � λMN−1, (23)

one can obtain
1

1 + cλ0
>

1
1 + cλ1

� · · · � 1
1 + cλMN−1

. (24)

From eqs. (21) and (22), we can see that this isotropic smoothing method gives the low-frequency features
of the original image with greater multiplier to obtain a smoother function. Alternately, the LST in this
paper cuts off the high frequency features directly. Therefore, the LST not only discards high frequency
noises but also reduce the computational complexity.

3.4 Combining with learning algorithms

Given m images F = (f1, f2, . . . , fm), each with size of M × N , we first compute Γk as in eq. (19), each
sample fi can be transformed to its subspace gi = ΓT

k fi, F is then represented by G = ΓT
k F = [g1, . . . , gm].

Different from the SSSL approach as in subsection 2.3, the maximization problem is to find

u∗ = arg max
uTGWGTu

uTGDGTu
. (25)

Let Ul = (u1, u2, . . . , ul), where ui is the ith eigenvector of the problem. Matrix Ul is with size of k × l.
Then, the transformation matrix is V = ΓkUl with size of MN × l. Given a new image f with size of
M × N , the final discriminant feature of f is V Tf .

Figure 4 shows the one-step and two-step linear dimensionality reduction framework.

Lemma 3. Suppose v is a column vector from matrix V , then J (v) � λk, where λk is the kth minimal
eigenvalue of the Laplacian matrix, defined in eq. (12).

Proof of Lemma 3 is given in Appendix B. Ten basis images (v1, . . . , v10) computed by “LST+LDA”
are shown in Figure 5. It can be seen from Lemma 3 that each axis v is spatially smooth and it can be
robust to variations of poses and expressions of faces.

3.5 Computational complexity

For the LST, the computational complexity mostly lies in the computational amount of the k minimal
eigenvectors and corresponding eigenvectors of the Laplacian matrix LMN . Fortunately, LMN is a sparse
matrix, it can be computed fast as LLE and Laplacian eigenmaps. On the other hand, it only needs to
be calculated only once for training. For example, to calculate first 200 minimal eigenvalues of L100,100,
only 10 s is needed.
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Figure 4 Dimensionality reduction framework.

Figure 5 First ten basis images v computed by the two step method “LST+LDA” on the Yale database.

All the LDA, NPE, LPP, MFA, SSSL methods suffer from the problem of computational complexity.
If the images are with size of M × N , these methods need to compute the eigenvalues of an MN × MN

full matrix. Even the images are not very large, such as 64 × 64, it costs more than 2 h to compute the
eigenvalues of a full matrix with size of 4096 × 4096. Therefore, it is not practical to implement these
methods on the original images directly (see One Step D.R. in Figure 4).

In order to accelerate the computing, we should reduce the dimensionality of the images before. A
direct way is to cut or compact the images into small size. But, much useful information would be lost
during this pre-processing. Alternately, we can employ some dimensionality reduction methods for pre-
processing, such as DCT, DWT, PCA, LST, etc. While the image samples are reduced to much smaller
size, the LDA, NPE, LPP, MFA methods can be computed much faster (see Two-Step D.R. in Figure 4).

4 Experiments and discussions

4.1 Experimental setup

In order to evaluate the proposed face recognition system, our experiments are conducted on four bench-
mark face databases: 1) The Olivetti Research Laboratory (ORL) database [27]; 2) the Yale database
[7]; 3) the PIE database [28]; 4) the Feret database. Properties of the first three data sets are given in
Tables 1 and 2. Each face image vector was normalized to unit before use.

In order to fairly evaluate different feature extraction methods, the nearest neighbor classifier is used
for classification task. To obtain the nearest neighbor, the Euclidean distance measure is used. Our
experimental platform is a Pentium IV 1.73G personal computer under windows xp operational system
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Table 1 Properties of data sets

Datasets Samples Classes Size Sample figure

ORL 400 40 112×92 Figure 6

Yale 165 15 200×160 Figure 7

PIE 11154 68 64×64 Figure 8

Table 2 Properties of the dimensional reduction methods

Methods Objective Data relevance speed

DWT frequency transform data independent fast

DCT frequency transform data independent fast

LST frequency transform data independent fast

PCA statistical unsupervised medium

LDA statistical learning supervised slow

LPP manifold learning supervised slow

NPE

MFA manifold learning supervised slow

Figure 6 Two subjects of the ORL database. For some subjects, the images were taken at different times. The images

were taken with a tolerance for some tilting and rotation of the face of up to 20 degrees.

Figure 7 Two subjects of Yale face database. There are 11 images per subject, one per different facial expression or

configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light, sad, sleepy, surprised, and wink.

Figure 8 Two subjects of PIE face database. All the images under different illuminations and expressions.

and Matlab 7.4. The codes in matlab and an example of LST is available at footnote 1).
Experimental remark:
• DWT: The Haar basis is chosen in this paper.
• DCT: The Zig-zag manner is used to convert DCT coefficient matrix into a one-dimensional vector

[16].
• LPP, NPE: The original LPP and NPE are unsupervised, but the revised supervised versions are

used in this paper. For details, please refer to this link2).

1) http://www.mathworks.com/matlabcentral/fileexchange/23251
2) http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html
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Figure 9 Error rates of selecting different numbers of low-frequency coefficients of LST under the Leave one out strategy.

Figure 10 Comparison on ORL (a) and Yale (b) face databases. The first group of “Baseline” evaluates the four

preprocessing methods with no further learning method. The next four groups show the performances of two-step methods.

4.2 Number of LST coefficients

Figure 9 shows the error rates of selecting different numbers of low-frequency LST coefficients on the
ORL database, respectively. The best result is obtained if 40 low frequency LST coefficients are selected.
When we select more than 50 coefficients, the error rate goes up significantly. The result indicates that
the high frequency features are not useful for face recognition and only cost much time for computation.
Therefore, LST can help to reduce the computational complexity and improve performances by cutting
high frequency features.

4.3 Comparisons on ORL and Yale face databases using the leave-one-out strategy

For the ORL and the Yale databases, our system is first tested by using the “leave-one-out” strategy
which means that 400 experiments and 165 experiments are constructed, respectively, for the ORL and
Yale databases. For each experiment, one image is removed from the data set and all the remaining
images are used for training. The error rate of this strategy is given as the average error rate of all
experiments. Comparisons on the ORL database and the Yale database are shown in Figure 10(a) and
(b), respectively. The experimental results of the four preprocessing on ORL and Yale databases are
shown in the first group of each figure. And the four preprocessing methods with four further learning
methods are shown in the next four groups. The proposed LST method yield best results among those
preprocessing approaches on both databases.

Many experimental results have been reported on ORL and Yale face databases. On ORL database,
the best result before is 99.75%, by using kernel LDE [11]. On Yale database, the best result before is



2424 GU SuiCheng, et al. Sci China Inf Sci December 2010 Vol. 53 No. 12

Table 3 Comparison on ORL and Yale database (mean±std-dev%)a)

ORL G2/P8 G3/P7 G4/G6 G5/P5

Baseline 33.1±3.4 23.4±2.3 17.9±2.2 13.7±2.4

DWT+LDA 18.7±3.1 10.7±1.9 6.5±1.7 4.6±1.4

PCA+LDA 24.5±3.3 13.9±1.9 8.4±1.9 5.7±1.4

DCT+LDA 16.7±3.2 9.6±2.3 5.6±1.8 3.5±1.4

S-LDA [23] 14.8±2.2 7.7±1.7 4.2±1.3 2.8±1.3

LST+LDA 15.5±2.9 7.9±1.8 5.0±1.6 3.1±1.2

Yale G2/P9 G3/P8 G4/P7 G5/P6

Baseline 56.6±3.9 50.6±4.2 47.4±3.9 43.8±3.1

DWT+LDA 29.6±4.2 19.7±3.6 11.2±2.5 9.4±2.3

PCA+LDA 42.5±4.7 31.3±3.7 25.5±4.6 21.6±3.4

DCT+LDA 25.4±3.8 17.6±3.4 9.8±2.3 8.6±2.2

S-LDA 37.5±4.9 25.6±4.6 19.7±3.3 14.9±3.2

LST+LDA 16.0±3.6 9.8±2.8 6.1±2.3 3.9±1.1

a) G=gallery, P=probe. G5/P5 means, for each individual, 5 samples are used for train and other 5 samples are used

for test. Baseline: using original images for classification.

Table 4 Comparison on the PIE database (mean±std-dev%)

Methods G5/P165 G10/P160 G20/P150 G50/P120 G70/P100 G90/P80 G130/P40

Baseline 69.9±0.8 55.6±0.9 38.2±0.7 16.3±0.5 10.6±0.4 7.2±0.4 3.9±0.3

DWT+LDA 40.6±1.3 24.8±0.8 14.1±0.6 6.1±0.3 4.4±0.3 3.4±0.2 2.5±0.3

PCA+LDA 37.7±1.2 22.3±0.8 12.5±0.5 5.4±0.2 4.1±0.3 3.3±0.2 2.5±0.2

DCT+LDA 30.7±1.2 17.2±0.8 9.7±0.6 4.2±0.2 3.4±0.3 2.7±0.2 2.1±0.2

LST+LDA 28.1±1.0 13.7±0.6 6.8±0.4 3.1±0.2 2.3±0.2 1.9±0.1 1.6±0.2

Table 5 Four probe subsets and their evaluation task

Probe subsets Evaluation task Number of images

Dup1 Aging of subjects 722

Dup2 Aging of subjects 234

fafb Facial expression 1195

fafc Illumination 194

Figure 11 Facial images from the fafc subset.

99.4%, by using Fisherface [7]. On both ORL and Yale face databases, we obtain 100% recognition rates
by using “LST+LDA” method. Also, the LST+LDA method is much faster than the kernel LDE and
fisherface.

4.4 Comparisons on the ORL, Yale and PIE databases over 50 random splits

Since the LDA yields the best result in our first two experiments, we only implement the LDA learning
algorithm with the four preprocessing methods, such as DWT, PCA, DCT and LST. Tables 3 and 4
show the results of different numbers of training samples. For each Gp/Pq, we average the results over
50 random splits and report the mean as well as the standard deviation. Our proposed LST method
obtain the best results on all the three databases among the four preprocessing methods. Only on the
ORL database, the S-LDA method outperforms the LST+LDA method slightly. However, the advantage
is trivial. On the other hand, the LST+LDA method is much faster than the S-LDA method.



GU SuiCheng, et al. Sci China Inf Sci December 2010 Vol. 53 No. 12 2425

Figure 12 Cumulative match curves of LST+LDA, DCT+LDA and PCA on the FERET database.

4.5 Testing on FERET database

The proposed LST method is also tested on the FERET database which contains more subjects with
different variations. The gallery, which has 1196 images, is used for train. Four probe subsets are used for
test (see Table 5). Five subjects from the “fafc” probe are shown in Figure 11. We employ the Colorado
State University (CSU) Face Identification Evaluation System to evaluate the proposed feature extraction
method [29]. We compare our method with the DCT and the PCA methods in the following way.

1. For the “LST+LDA” approach, 100 LST coefficients are obtained. By discarding the first one, 99
coefficients are used and the dimensionality of the feature vectors is 70 after the LDA is applied.

2. For the “DCT+LDA” approach, 100 DCT coefficients are obtained. By discarding the first three
(this strategy is suggested in [17]), 97 coefficients are used and the dimensionality of the feature vectors
is 70 after the LDA is applied.

3. For the PCA approach, because the gallery has one image from each class, PCA+LDA would be
the same as the baseline PCA, so we just use the baseline PCA to obtain 70 coefficients.

To generate the cumulative match curve, the Euclidean distance measure is used. It should be noted
that, for the “fafc” probe, we do five experiments, by discarding first 0, 1, 2, 3, 4 of the 70 remained coef-
ficients, respectively, for each of the three methods. For each method, the curve in Figure 12(fafc) shows
the best of the five experiments. It can be seen from Figure 12 that the proposed method “LST+LDA”
outperforms both the “DCT+LDA” and PCA methods.

4.6 Discussions

The two-step subspace learning methods can not only help to reduce the computational complexity but
also help to improve the recognition performance. The one step subspace learning methods (LDA, NPE,
MFA) only consider the image as a point in the sample space while the images are high related itself.

Consider the four preprocessing methods, PCA, DWT, DCT, LST. The PCA also consider an image
as a point in the original space. The DWT and DCT are used for image compaction with given basis.
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The LST is induced in an optimal way by the Laplacian smooth matrix. Also, the experimental results
show that the LST method is the best one of the four preprocessing methods.

Even though the Manifold methods, such as LPP, NPE, MFA, are newer techniques than LDA, they
did not obtain better results than LDA. On the other hand, since the manifold methods have many
parameters to tune, they are not easy to be implemented in practice. Table 2 shows the properties of the
dimensional reduction methods.

5 Conclusions

In this paper, a new method, Laplacian smoothing transform (LST), is proposed for dimensionality
reduction of an image. The LST transforms an image into a one-dimensional sequence (frequency domain).
Unlike the PCA, the proposed LST is data independent, thus it can be easily dealt with the new input
images. Unlike the Laplacian smoothing penalty methods, such as SSSL, LST can cut the high frequency
features directly and thus be much faster. Unlike the image compression approaches such as DWT and
DCT, LST is deduced in an optimal way, thus it can obtain the lowest frequency features.

By using the a pre-processing method, such as LST, the computational complexity of the discriminant
learning methods can be greatly reduced and the recognition rates can be greatly improved. The LST can
obtain the higher recognition rates than the other preprocessing methods, such as DCT, DWT and PCA
on ORL, Yale, PIE and FERET databases. Especially, on ORL and Yale face databases, just combining
the proposed LST with LDA, we obtained the perfect 100% recognition rates of the leave-one-out strategy
for the first, though the two databases have been studied for many years by a number of approaches.
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Appendix A

Proof of Lemma 2 in section 3.3

Proof. Suppose h(�x, y�) can be expanded by LST as

h(�x, y�) =
MN−1∑

k=0

bkek, (A1)

where bk are the LST coefficients of h, then

‖h − f‖2 =

MN−1∑

k=0

(ak − bk)2, (A2)

According to eq. (7), we have

J (h) = hTLMNh =

( MN−1∑

k=0

bkek

)T

LMN

( MN−1∑

k=0

bkek

)
=

MN−1∑

k=0

b2
kλk. (A3)

Substitute eqs. (A2) and (A3) into eq. (11), we can obtain

Ψ(h) =

MN−1∑

k=0

(ak − bk)2 + c

MN−1∑

k=0

b2
kλk, (A4)

hence the first derivative of Ψ(h) with respect to bk is

∂Ψ(h)

∂bk
= 2(bk − ak) + 2cbkλk = 0, (A5)

therefore

bk =
ak

1 + cλk
. (A6)
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Appedix B

Proof of Lemma 3 in section 3.4

Proof. We have V = (v1, v2, . . . , vl) = ΓkU , hence the ith column of V is

vi = Γkui. (B1)

Then

J(vi) = uT
i ΓkLMNΓkui. (B2)

Since ΓkLMNΓk = diag{λ1, λ2, . . . , λk}, let ui(j) denotes the jth element of ui, we have

J(vi) =
k∑

j=1

λjui(j)
2 �

k∑

j=1

λkui(j)
2 = λk. (B3)
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