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Abstract A malware detection model based on a negative selection algorithm with penalty factor (NSAPF)

is proposed in this paper. This model extracts a malware instruction library (MIL), containing instructions

that tend to appear in malware, through deep instruction analysis with respect to instruction frequency and

file frequency. From the MIL, the proposed model creates a malware candidate signature library (MCSL) and

a benign program malware-like signature library (BPMSL) by splitting programs orderly into various short bit

strings. Depending on whether a signature matches “self”, the NSAPF further divides the MCSL into two

malware detection signature libraries (MDSL1 and MDSL2), and uses these as a two-dimensional reference for

detecting suspicious programs. The model classifies suspicious programs as malware and benign programs by

matching values of the suspicious programs with MDSL1 and MDSL2. Introduction of a penalty factor C in

the negative selection algorithm enables this model to overcome the drawback of traditional negative selection

algorithms in defining the harmfulness of “self” and “nonself”, and focus on the harmfulness of the code, thus

greatly improving the effectiveness of the model and also enabling the model to satisfy the different requirements

of users in terms of true positive and false positive rates. Experimental results confirm that the proposed model

achieves a better true positive rate on completely unknown malware and a better generalization ability while

keeping a low false positive rate. The model can balance and adjust the true positive and false positive rates by

adjusting the penalty factor C to achieve better performance.
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1 Introduction

With the rapid development of computer technology, new anti-malware technologies are required because
malware is becoming more complex with a faster propagation speed and a stronger ability for latency,
destruction, and infection.

Many companies have released anti-malware software, most of which is based on signatures and can
detect known malware very quickly. However, the software often fails to detect new variations and
∗Corresponding author (email: ytan@pku.edu.cn)
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unknown malware. Based on metamorphic and polymorphous techniques, even a layman is able to
develop new variations of known malware easily using malware automaton. Thus, traditional malware
detection methods based on signatures are no longer suitable for new environments; as well, heuristics
have started to emerge.

Data mining algorithms try to mine frequent patterns or association rules to detect malware using
classic classifiers. This has led to some success. However, data mining loses the semantic information of
the code and cannot easily recognize unknown malware.

For the past few years, applying immune mechanisms to computer security has developed into a new
field, attracting many researchers. Forrest et al. [1] applied immune theory to computer abnormality
detection for the first time in 1994. Since then, many researchers have proposed various different malware
detection models and achieved some success.

The negative selection algorithm (NSA) is one of the most important algorithms in artificial immune
systems (AIS). After deleting detectors that match “self”, the NSA obtains a detector set, in which none
of the items matches “self”, and which is then used to detect malware. A traditional NSA assumes that
all “self” is harmless and all “nonself” is harmful. However, in organisms this is not always the case.
Taking cancer cells as an example, not all “self” is harmless; and similarly, not all “nonself” is harmful,
for example, food. A computer security system, therefore, only has to identify dangerous malware instead
of reacting to all “nonself”.

Unlike danger theory, the proposed model detects malware through dangerous signatures extracted
from programs. Instead of deleting “nonself” that matches “self”, the negative selection algorithm with
penalty factor (NSAPF) penalizes the “nonself” using penalty factor C and keeps these items in a library.
In this way, the effectiveness of the proposed model is improved using the dangerous signatures that would
have been discarded in the traditional NSA.

This paper is organized as follows. In section 2, various related work is introduced. Our model and
experimental results are presented in detail in sections 3 and 4, respectively. In section 5, conclusions
and future work are discussed.

2 Related works

Henchiri and Japkowicz [2] adopted a data mining approach to extract frequent patterns (FPs) for
detecting malware. Based on intra-family support and inter-family support, they filtered FPs twice,
trying to obtain more general FPs. They verified the effectiveness of their model using 5-fold cross
validation showing some good results. Nevertheless, FPs are merely fixed-length bit strings with no
definite meaning and cannot represent real malware signatures.

Tabish et al. [3] proposed a malware detection model using statistical analysis of the byte-level file
content. This model is not based on signatures. It neither memorizes specific strings appearing in the
file content nor depends on prior knowledge of file types. Although better results can be obtained in this
way, there is a high false positive rate, because this method only uses statistics on the training set.

Researchers have proposed different kinds of heuristic approaches to detect malware with some success
[4–7].

With the development of immunology, immune mechanisms have begun to be applied in computer
security. Forrest et al. first proposed an NSA to detect abnormal modification on protected data [1]
and later applied it to UNIX process detection [8]. Since then, more and more researchers have devoted
themselves to the study of computer immune systems based on immune mechanisms and many immune
based computer malware detection models have been proposed [9–13].

Li [14] proposed a dynamic detection model for computer viruses based on an immune system. Through
dynamic evolution of “self”, an antibody gene library, and detectors, this model reduces the size of the
“self” set, raises the generating efficiency of detectors, and resolves the problem of detector training time
being exponential with respect to the size of “self”.

Wang et al. [15] have sought to use the relativity of different features in a virus sample to identify
unknown viruses. They succeeded in constructing a hierarchical artificial immune model (HAIM). How-
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Figure 1 Flowchart for MSEM.

ever, the problem of repeated storage of the same features and huge training time still need further study.

3 Proposed malware detection model

3.1 Overview

The proposed model consists of a malware signature extraction module (MSEM) and a suspicious program
detection module (SPDM). A flowchart for the MSEM is shown in Figure 1.

In the MSEM, a malware candidate signature library (MCSL) and a benign program malware-like
signature library (BPMSL) are extracted, respectively, from the malware and benign programs of the
training set after generating the malware instruction library (MIL). Taking the MCSL as “nonself” and
the BPMSL as “self”, an NSAPF is introduced to extract the malware detection signature library (MDSL)
consisting of MDSL1 and MDSL2. More detailed information is given below.

In the SPDM, signatures of suspicious programs are extracted using the MIL. Then r-contiguous bit
matching is computed between the signatures of the suspicious program and the MDSL. If the matching
value exceeds the given program classification threshold, we classify the programs as malware; otherwise
it is considered a benign program.

3.2 Malware signature extraction module

3.2.1 MIL

In this paper, we represent instructions as bit strings with 2 bytes (In the process of signature extrac-
tion, several instructions form one signature, so the length of the instruction does not affect the results
greatly). We traverse all the programs in the training set to obtain the frequency statistical information
of instruction i in both the malware and benign programs, denoted by Ii

n and Ii
s, respectively. Meanwhile,

the numbers of malware and benign programs that contain instructions i are computed and denoted by
F i

n and F i
s , respectively. Graphs of some real experimental data are shown in Figures 2 and 3, where

every point denotes an instruction.
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Figure 2 Instruction distribution in malware. Figure 3 Instruction distribution in benign programs.

As illustrated in Figures 2 and 3, the instruction distributions in malware and benign programs differ
significantly. If we wish to extract instructions with higher tendencies to malware, we have to select
instructions in region B of Figure 2 and region C of Figure 3, and combine the two regions into one
through eq. (1). Ii and F i denote the tendencies of instruction i to malware on instruction frequency
and file frequency, respectively. Taking Ii as the x-axis and F i as the y-axis, the resulting graph is shown
in Figure 4.

Ii =
Ii
n/In

Ii
n/In + Ii

s/Is
, F i =

F i
n/Fn

F i
n/Fn + F i

s/Fs
, (1)

where In and Is denote, respectively, the number of instructions in malware and benign programs in the
training set, and Fn and Fs denote the number of the malware and benign programs in the training set.

This paper uses eq. (2) to take both Ii and F i into consideration.

T i =
√

(Ii)2 + (F i)2. (2)

When the tendency of instruction i to malware T i exceeds the malware instruction threshold T1, we
consider instruction i as tending to appear in malware. All these instructions make up the MIL. In other
words, all instructions excluded by the curve in Figure 4 are included in the MIL.

3.2.2 MCSL

In this section, a sliding window is used to split the malware bit string to obtain the MCSL. We set the
window size of the sliding window to 2 bytes, and the sliding window moves forward 1 byte at a time.
Each program is considered to be a bit string and is traversed by the sliding window as shown in Figure
5.

When the sliding window, in the process of traversing the bit string, encounters the first instruction that
belongs to the MIL, it begins to generate a signature. If instructions in two adjacent sliding windows
do not belong to the MIL, the next signature cannot be part of the current signature and thus, the
current signature is terminated. The sliding window keeps moving forward, and on encountering another
instruction belonging to the MIL, it begins to generate the next signature. This process is repeated until
the entire bit string has been traversed.

If the number of instructions contained in a signature belonging to the MIL exceeds threshold R, the
signature is deemed to contain enough dangerous information to represent malware and it is considered
a malware candidate signature. Here R = 3. Because the length of a candidate signature auto adjusts
according to the program bit string and the MIL, R does not affect greatly on the model’s accuracy.

By traversing malware and benign programs in the training set, the proposed model can extract the
MCSL and BPMSL.
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Figure 4 Instruction tendencies. Figure 5 Schematic diagram of the sliding window traversing
a program bit string.

3.2.3 NSAPF and MDSL

This paper considers the MCSL as “nonself” and the BPMSL as “self” and generates an MDSL using
NSAPF.

The traditional NSA deletes detectors matching “self” directly and obtains a detector set in which no
signatures match “self”. This paper takes the view that the traditional NSA is not completely suited to
malware detection. Consider formatting a disk as an example. This operation is dangerous; programs
implementing this operation are considerably “dangerous”. If a program implementing this operation
neither reads any command line parameters nor asks the user to confirm, it could be malware. This
type of dangerous signature provides some useful information. In fact, the operation of formatting a disk
can be included in both malware and benign programs. Deleting such dangerous code snippets from the
MCSL, as is done by the traditional NSA, destroys useful information, which is obviously a disadvantage
for the malware detection model.

Theoretically, every program, regardless of whether it is a benign program or malware, can use almost
any of the instructions and functions in a computer system. Moreover, almost all the functions used
in malware are also used by specific benign programs, for example, formatting a disk, modifying the
registry. If a “perfect” “self” set is given, the traditional NSA would be ineffective due to delete too
many detectors.

The NSAPF saves “nonself” signatures that do not match “self” in the MDSL1 and “nonself” signatures
matching “self” in the MDSL2. Together the MDSL1 and MDSL2 make up the MDSL.

Signatures in the MDSL1 are characteristic signatures of “nonself”, whereas signatures in the MDSL2
are dangerous ones belonging to both “self” and “nonself”, and which should be penalized by penalty
factor C after ascertaining, through probabilistic methods, to what extent they represent malware.

3.3 Suspicious program detection module

3.3.1 Signature matching

It is easy to extract signatures of suspicious programs by adopting the approach used in the process of
generating the MCSL. The matching value between a signature of a suspicious program and the malware
detection signature is proportional to the matching length and weights of the two signatures.

Eq. (3) gives the matching value between signatures of suspicious programs and signatures in the
MDSL1.

M1 =

{
0, l < R,

(l − R + 1) × w1 × w2, l � R,
(3)

where l is the number of matching instructions in the two signatures, R is the minimal number of matching
instructions for two signatures to match each other and it has the same value as the matching length
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threshold R, which is set to 3 in this paper, and w1 and w2 are the weights of the two signatures expressed
as the number of signatures appearing in the files.

Eq. (4) gives the matching value between signatures of suspicious programs and signatures in the
MDSL2.

M2 =

{
0, l < R,

[(l − R + 1) × w1 × w2 × p] × (1 − C), l � R,
(4)

where p = w2/(w2 + w3) (w2 is the weight of the signature in the MDSL2 and w3 is the weight of the
signature in the BPMSL previously matching the signature before) denotes the probability of representing
malware of the signature in the MDSL2, and C is the penalty factor with its interval [0,1].

As penalty factor C increases, signatures in the MDSL2 are penalized more severely and the extent to
which they represent malware decreases. When C = 1, the NSAPF degenerates to the traditional NSA.

3.3.2 Matching between suspicious programs and the MDSL

The matching value between a suspicious program and the MDSL is calculated using eq. (5).

M =
MMDSL1 + (1 − C) × MMDSL2

[LMDSL1 + (1 − C) × LMDSL2] ×
∑

w
, (5)

where MMDSL1 and (1−C)×MMDSL2 denote the total sum of the matching values of all the signatures
in a suspicious program with signatures in the MDSL1 and MDSL2, respectively. LMDSL1 and (1−C)×
LMDSL2 are the maximal matching values provided by the MDSL1 and MDSL2, respectively. C is the
penalty factor, and

∑
w is the sum of the weights of all signatures in a suspicious program.

If the M value of a suspicious program is greater than the program classification threshold T2, the
associated program is classified as malware, otherwise it is deemed to be a benign program.

3.3.3 Analysis of the penalty factor

LMDSL1 and LMDSL2 are constants for a specific training set. For a specific suspicious program, MMDSL1

and MMDSL2 are also constants. At this time, eq.(5) is a function with independent variable penalty
factor C and dependent variable matching value M . If the derivation of eq. (5) is greater than 0, we
obtain eq. (6).

LMDSL1/LMDSL2 < MMDSL1/MMDSL2. (6)

In cases where eq. (6) is correct, M is monotonically increasing together with increasing C. When
C = 1, (1 − C) × MMDSL2 and (1 − C) × LMDSL2 both are 0. The NSAPF is now equivalent to the
traditional NSA. Let C = 1 be the comparable benchmark.

When C = 1, recognizable malware usually has a greater MMDSL1 and benign programs have a smaller
MMDSL1. By decreasing C, the M values of malware and benign programs would tend to decrease
and increase, respectively, making it difficult to recognize such programs. When C = 1, unrecognizable
malware and benign programs have a smaller MMDSL1 and greater MMDSL1, respectively. By decreasing
C, the M values of malware and benign programs tend to increase and decrease, respectively. Thus,
decreasing C is beneficial for classifying such programs.

An optimal penalty factor C is obtained on the training set and this is helpful to improve the model’s
performance. Furthermore, two constraints are necessary for penalty factor C to play a positive role: (1)
MDSL2 contains enough signatures; (2) the percent of signatures in the MDSL2 relative to the MDSL
must be large enough. If and only if these two constraints are satisfied, the MDSL2 can change the
matching values of suspicious programs with the MDSL and recognize unknown malware.

4 Experiments and analysis

4.1 Experimental datasets

Experiments in this paper were conducted using the three datasets, which could be downloaded from the
following website: http://www.cil.pku.edu.cn/resources/.
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Table 1 Henchiri dataset

Filetype Qty. Avg. Size Min. Size Max. Size

B∗ EXE 1414 107 16 501

Virus 2880 6.2 22 93.4

M∗ Trojan 88 9.4 49 72.5

Constructor 6 10 528 33.6

Other 20 11.6 456 88.5

Table 2 CILPKU08 dataset

Filetype Qty. Avg. Size Min. Size Max. Size

B∗ EXE 915 138.5 817 997

Virus 3465 4.8 23 59.5

M∗ Trojan 39 4.4 49 5.93

Other 43 6.8 48 31.2

Table 3 Benign programs in VX Heavens dataset

Filetype Qty. Avg. Size Min. Size Max. Size

DOC 300 103 11000 1587

EXE 300 82.7 6000 498

JPG 300 43.7 447 416

MP3 300 61.5 735 6586

PDF 300 113.3 46 16657

ZIP 300 100 546 2941

4.1.1 Henchiri dataset

The Henchiri dataset consists of 2994 malware and 1414 benign programs. The malware were provided
by Henchiri and Japkowicz [2], while the benign programs consist of executable (EXE) system files
from Windows XP and EXE files from a series of applications. These files cover EXE files of mainstream
operating systems and applications, and are the main targets for attack by malware. Detailed information
on the Henchiri dataset is given in Table 1.

Here M∗ and B∗ indicate malware and benign programs, respectively. The units of both the average
size and the maximum size is KB, while the unit of minimum size is byte (these units are also applicable
to other tables in this paper).

4.1.2 CILPKU08 dataset

We previously used the CILPKU08 dataset in [15]. The process of collecting benign programs is the same
as in section 4.1.1. The details of this dataset are presented in Table 2.

4.1.3 VX Heavens dataset

The benign programs in the VX Heavens dataset are general programs collected from Windows XP
and are listed in Table 3. Malware for this dataset comes from the “VX Heavens Virus Collection”
(http://vx.netlux.org). The paper only considers malware based on the PE format of Win32. The VX
Heavens dataset used in this paper contains 7128 malware, details of which are given in Table 4. Here
“Others” includes malware such as DoS, Nuker, Exploit, Hacktool, and Flooder.

4.2 Experiments on the Henchiri dataset

Here we adopt 5-fold cross validation to estimate the performance of the proposed model as accurately
as possible.
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Table 4 Malware in VX Heavens dataset

Filetype Qty. Avg. Size Min. Size Max. Size

Backdoor 2200 48 3500 9227

Constructor 172 392.9 5060 2391

Trojan 2350 147.7 215 3800

Virus 1048 71.1 1500 1278

Worm 351 199.3 394 11899

Others 1007 151.4 1090 3087

4.2.1 Cross validation

According to the malware’s name, 2994 malware is divided into 880 families. Based on family, the malware
is divided into 5 fold referred to as M i (i = 1, 2, . . . , 5). 1414 benign programs are divided into 5 fold in
a similar manner and are referred to as Bi (i = 1, 2, . . . , 5). The detailed process of cross validation is
shown in Algorithm 1.

Algorithm 1 Cross validation algorithm

M =
⋃5

i=1 M i, B =
⋃5

i=1 Bi

for i = 1 to 5 do

DS = M i ∪ Bi, TS = (M − M i) ∪ (B − Bi);

Train model on TS;

Trained model detects suspicious programs in TS and DS;

end for

FP TS = BW TS/(4 × ‖B‖), TP TS = MC TS/(4 × ‖M‖)
FP DS = BW DS/‖B‖, TP DS = MC DS/‖M‖

In Algorithm 1, TS and DS denote the training set and test set; BW TS and MC TS denote the
number of misclassified benign programs and the number of correctly recognized malware in the TS;
BW DS and MC DS are the number of misclassified benign programs and the number of correctly
recognized malware in the DS; FP TS and TP TS denote the false positive and true positive rates in
the TS, while FP DS and TP DS denote the false positive and true positive rates in the DS.

Results for the training and test sets are given in Tables 5 and 6. Experimental results of Henchiri and
Japkowicz [2] are shown in Table 7 for comparison.

Experimental results on the training set show that when penalty factor C lies within [0.90, 0.99], the
proposed model achieves good detection accuracies with lower false positive rates (FPRs), less than 3%,
and higher true positive rates (TPRs), above 95.9%. The proposed model also obtains very good results
on the test set with an FPR below 4%, which is lower than the FPR obtained by Henchiri and Japkowicz,
and the average TPR at 95%. The optimal overall accuracy (OA) on the test set is 96.1%, higher than
that achieved by Henchiri and Japkowicz (93.65%) [2].

It is easy to ascertain from Tables 5 and 6 that with a decrease in penalty factor C, the penalty
to signatures in MDSL2 decreases. The MDSL2 provides more and more false information while still
providing correct information. As a result, the FPR of the proposed model increases, while the TPR
decreases. The OA increases at first and finally drops. With C = 0.90, the OA of the proposed model
is at its maximum, 96.1%. The results demonstrate that the MDSL2 plays a positive role and improves
the effectiveness of the proposed model.

The performance of the proposed model on the test set is similar to its performance on the training
set, proving that the model has a good training function.

4.2.2 Negative direction cross validation

In this section, we take the training set used in the cross validation as the test set and vice versa.
Negative direction cross validation is done to verify the model’s generalization ability. Experimental
results is shown in Table 8.



ZHANG PengTao, et al. Sci China Inf Sci December 2010 Vol. 53 No. 12 2469

Table 5 Experimental results on the training set

C OA(%) FPR(%) TPR(%)

0.00 95.5 7.3 96.8

0.50 95.9 5.9 96.8

0.90 96.7 2.9 96.6

0.95 96.7 1.7 95.9

0.99 96.6 0.8 95.3

1.00 95.6 0.0 93.6

Table 6 Experimental results on the test set

C OA(%) FPR(%) TP(%)

0.00 95.0 7.4 96.2

0.50 95.5 5.9 96.2

0.90 96.1 3.3 95.8

0.95 95.8 2.5 95.0

0.99 95.4 2.5 94.4

1.00 94.2 1.3 92.0

Table 7 Experimental results of Henchiri and Japkowicz

Classifier OA(%) FPR(%) TPR(%)

ID3 93.29 4.16 90.56

J48 93.65 5.24 92.56

Näıve Bayes 69.51 0.13 37.17

SMO 93.39 5.71 92.26

Table 8 Experimental results on the test set

C OA(%) FPR(%) TPR(%)

0.00 94.3 6.8 94.8

0.50 94.5 6.5 94.9

0.90 95.3 4.5 95.2

0.95 95.2 3.8 94.7

0.99 94.7 3.2 93.6

1.00 94.2 3.0 92.8

From Table 8, we can see that the OA still remains above 94% on the test set. The proposed model
trained with a small training set also achieves good performance on a larger test set, showing that this
model has strong generalization ability. With C = 0.90, the OA on the test set achieves its maximum
value: 95.3%.

4.3 Experiments on the CILPKU08 dataset

Comparable experiments were done on the CILPKU08 dataset we used in [15]. In this study, we selected
six experiments from our previous study for comparison. The proposed model is referred to as the MDM-
NSAPF, while the approach in [15] is referred to as HAIM. The penalty factor is set to 1 and graphs of
the experimental results are shown in Figures 6 and 7.

In Figure 7, R = T ime1/T ime2, T ime1 is the training time used by MDM-NSAPF and T ime2 is
HAIM’s training time.

As illustrated in Figures 6 and 7, the OA of the proposed model is about 1%–3% higher than that of
HAIM; yet the training time of the proposed model is only 1/10 of that of HAIM.

4.4 Experiments on the VX Heavens dataset

The specific training set for “virus” consists of 50 benign programs and 50 “viruses” which were randomly
selected from the VX Heavens dataset. The remaining benign programs and “viruses” make up the specific
test set for “virus”. We divided the worm, trojan, backdoor, constructor and other malware in a similar
way. Six datasets were obtained and used to train and verify the proposed model.
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Figure 6 Overall accuracy comparison. Figure 7 Training time comparison.

Table 9 Experimental results on the VX Heavens dataset

C Virus Worm Trojan Backdoor Constructor Others

0.00 0.918 0.965 0.91 0.739 0.96 0.867

0.50 0.986 0.962 0.908 0.739 0.96 0.912

0.90 0.987 0.961 0.913 0.923 0.963 0.917

0.95 0.986 0.962 0.911 0.923 0.963 0.917

0.99 0.98 0.961 0.911 0.924 0.963 0.907

1.00 0.931 0.939 0.852 0.918 0.922 0.867

Table 10 Experimental results obtained by Tabish

Virus Worm Trojan Backdoor Constructor Others

0.945 0.919 0.881 0.849 0.925 0.903

To compare the resuluts obtained by Tabish et al. [3], the area under the receiver operating charac-
teristic curve (AUC) was set as the measure of the effectiveness of the proposed model. Table 9 gives
the experimental results in detail with the bold font in each column indicating the optimal AUC in the
corresponding models.

Compared with the results of Tabish et al. [3] shown in Table 10, the optimal AUC of the proposed
model is on average 0.04 higher. This is because the proposed model generates the MDSL using the
NSAPF, which decreases the FPR and achieves a better tradeoff between FPR and TPR by adjusting
penalty factor C.

4.5 Parameter analysis

Experimental results demonstrate that when the number of signatures in the MDSL2 is greater than 2000
and the percentage of these signatures contributing to the MDSL is greater than 30%, penalty factor C

plays a positive role improving the model’s performance significantly. This paper suggests that penalty
factor C should be set to a value in the interval [0.9, 0.99].

The malware instruction threshold T1 usually obtains its value in the interval [0.9, 1], while the malware
classification threshold T2 should be set to a value in the interval [0.00001, 0.0001].

Figure 8 shows the detection accuracy of the proposed model for different values of T1. With T1 =
0.95, the model achieves optimal detection accuracy. When T1 is small, malware instructions with
lower tendencies increase the FPR. When T1 is large, there are too few malware instructions to provide
enough malware detection signatures to cover the space of malware detection signatures. In summary,
an appropriate T1 ensures that the proposed model contains enough malware instructions with marked
tendencies, thus generating an optimized MDSL to help the model achieve better performance.

Figure 9 shows the effect of the malware classification threshold T2 on the detection accuracy of the
proposed model. By increasing T2, the TPR of the proposed model decreases monotonically, while the
FPR increases monotonically. With C = 0.00005, the proposed model achieves optimal overall accuracy.

5 Conclusions

The malware detection model based on the NSAPF overcomes the drawback of the traditional NSA in
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Figure 8 Detection accuracy with different T1. Figure 9 Detection accuracy with different T2.

defining harmfulness of “self” and “nonself”. It focuses on the harmfulness of the code and extracts
dangerous signatures, which are included in the MDSL. By adjusting the penalty factor C, the model
achieves a tradeoff between the TPR and FPR to satisfy the requirements of various users in terms of
TPR and FPR. Comprehensive experimental results demonstrate that the proposed model is effective in
detecting unknown malware with a lower FPR.

Further work includes making use of the relativity of signatures, and integrating other heuristic intel-
ligent algorithms.
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