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a b s t r a c t

In this paper, we show how support vector machine (SVM) can be employed as a powerful tool for k-

nearest neighbor (kNN) classifier. A novel multi-class dimensionality reduction approach, discriminant

analysis via support vectors (SVDA), is proposed. First, the SVM is employed to compute an optimal

direction to discriminant each two classes. Then, the criteria of class separability is constructed. At last,

the projection matrix is computed. The kernel mapping idea is used to derive the non-linear version,

kernel discriminant via support vectors (SVKD). In SVDA, only support vectors are involved to compute

the transformation matrix. Thus, the computational complexity can be greatly reduced for kernel based

feature extraction. Experiments carried out on several standard databases show a clear improvement on

LDA-based recognition.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The k-nearest neighbors (kNN) [1] rule is one of the oldest and
simplest methods for pattern classification. Feature extraction
(dimensionality reduction) are often employed in helping kNN
classifier to reduce computational complexity and improve
classification accuracy.

The generic problem of linear dimensionality reduction is the
following. Given a dataset X ¼ ðx1,x2, . . . ,xNÞARn�N , find a trans-
formation matrix A¼ ða1, . . . ,akÞARn�k that maps these N points
to a set of points Z ¼ ðz1,z2, . . . ,zNÞARk�N , such that zi represents
xi, where zi¼ATxi.
1.1. PCA and LDA

Principal component analysis (PCA) [2], also known as
Karhunen–Loeve expansion, is a classical feature extraction and
data representation technique widely used in the areas of pattern
recognition and computer vision. Due to its simplicity and
effectiveness, many variants of PCA were developed [3–5].

Linear discriminant analysis (LDA) [6], or called Fisher’s linear
discriminant (FLD), for feature extraction has been applied to a
wide variety of problems such as face recognition. It often produces
much better results than PCA. However, in practice, the LDA has
three major problems: (1) It suffers from the small sample size
(SSS) problem when dimensionality is greater than the sample size.
ll rights reserved.
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(2) It creates subspaces that favor well separated classes over those
that are not. (3) LDA assumes the data obey normal distribution.
And it simply uses ma�mc to discriminate two classes oa and oc . It
fails to obtain the optimal direction to separate two classes.

Many algorithms tried to alleviate one or two of the problems
in LDA. The regularized discriminant analysis (RDA) [7] added a
multiple of identify matrix to the within-class matrix with regard
to the small sample size problem. Another well-known approach
is the Fisherface [8], in which LDA is employed after the PCA is
used. Another technique, newLDA [9], first transforms the data
into the null space of Sw. It then applies PCA to maximize the
between-class scatter matrix in the transformed space.

1.2. Local learning

More recent years, many manifold (graph) based methods are
implemented to preserve the local information and obtain a new
subspace [10,11]. Some popular ones include: discriminant locally
linear embedding (DLLE) [12], geometric mean for subspace
selection (MGMD) [13], harmonic mean for subspace selection
(MHMD) [14], discriminative locality alignment [15], transductive
component analysis (TCA) [16], locality preserving projection
(LPP) [17], marginal Fisher analysis (MFA) [18] and locality
sensitive discriminant analysis (LSDA) [19], etc. To learn more
about local learning methods, one can refer to [11].

1.3. Margin based discriminant

Large margin nearest neighbor (LMNN) [20] learns a Mahana-
lobis distance metric for kNN classification by semidefinite
programming. Large margin component analysis (LMCA) [21]

www.elsevier.com/locate/neucom
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solves for a low-dimensional embedding of the data such that
Euclidean distance in this space minimizes the large margin
metric objective described in [20]. Yuan and Pang [22] iteratively
selects a series of simple but effective 1D subspaces, and then
combines the corresponding 1D projections by Adaboost.

Support vector machine (SVM) [23] is based on the statistical
learning theory of Vapnik and quadratic programming learning
theory. The superior classification performance of SVM has been
justified in numerous experiments, particularly in high dimension-
ality and small sample size (SSS) problems. Bi et al. [24] described a
methodology for performing variable ranking and selection using
support vector machines (SVMs). Margin maximizing discriminant
analysis (MMDA) [25] attempted to preserve as much discriminant
information as possible by projecting the dataset onto margin
maximizing directions (separating hyperplane normals) found by an
SVM algorithm. The corresponding normal vectors of the hyperplanes
are taken as new features and the data are projected onto them. The
first MMDA feature is obtained by simply using the standard SVM.
Then, after obtaining orthogonal MMDA features, the second feature
is found by optimizing the SVM in the remaining feature subspace. It
is intrinsically a two-class approach.

In this paper, we developed a supervised dimensionality
reduction approach for multiple-class problems, by employing
SVM. To make a contrast with LDA, we call this approach
discriminant analysis via support vectors (SVDA). Both linear and
nonlinear models, discriminant analysis via support vectors (SVDA)
and kernel discriminant via support vectors (SVKD), are described.

The rest of this paper is organized as follows. In Section 2, the
LDA and SVM are reviewed briefly. In Section 3, the proposed
SVDA algorithm is introduced. We describe how to perform SVDA
in reproducing kernel Hilbert space (RKHS) which gives rise to
kernel SVDA in Section 4. The experimental results are presented
in Section 5. Finally, a conclusion is given in Section 6.

Notation conventions used in this paper:

i,N counter and number of training samples;
n dimension of training samples;
X training samples with size of n�N;
j Rn-F ;
K Kðxi,xjÞ ¼/jðxiÞ,jðxjÞS;
K kernel matrix, Ki,j ¼Kðxi,xjÞ;
a,M counter and number of classes;
ma mean vector of class oa;
Na number of samples in class oa;
Ia collection of sample indexes in class oa;

2. LDA and SVM

2.1. LDA

In LDA, within-class and between-class scatter matrices are
used to formulate the criteria of class separability. A within-class
scatter matrix characterizes the scatter of samples around their
respective class mean vectors, and it is expressed by

Sw ¼
XM

a ¼ 1

X
iA Ia

ðxi�maÞðxi�maÞ
T : ð1Þ

A between-class scatter matrix characterizes the scatter of the
class means around the mixture mean m. It is expressed by

Sb ¼
XM
a ¼ 1

Naðma�mÞðma�mÞ
T : ð2Þ

Linear discriminant analysis (LDA) seeks directions that are
efficient for discrimination. Fisher criterion is used to find the
projection matrix and the objective function of LDA is

aopt ¼ arg max
a

aT Sba

aT Swa
: ð3Þ

One can solve the generalized eigenvalue problem:

Sba¼ lSwa: ð4Þ

2.1.1. RDA

In practice, the small sample size (SSS) problem is often
encountered, where Sw is singular. Therefore, the maximization
problem can be difficult to solve. To address this issue, the term eI
is added, where e is a small positive number and I is the identity
matrix of proper size. This results in maximizing

aopt ¼ arg max
a

aT Sba

aT ðSwþeIÞa
: ð5Þ

This is a special case of Friedman regularized discriminant
analysis with regard to the small sample size problem [7].

2.2. SVM

Generally, an SVM [23] solves a binary (two-class) classifica-
tion problem, and multi-class classification is accomplished
by combining multiple binary SVMs. An M-class problem can be
decomposed into M binary problems with each separating one
class from the others, or into M(M�1)/2 binary problems with
each discriminating between a pair of classes. On a pattern x, the
discriminant function of a binary SVM is given by

f ðxÞ ¼
Xl

i ¼ 1

yiaiKðx,xiÞþb, ð6Þ

where l is the number of learning patterns, yi is the target value of
learning pattern xi (+1 for the first class and �1 for the second
class), b is a bias, and Kðx,xiÞ is a kernel function which implicitly
defines an expanded feature space:

Kðx,xiÞ ¼jðxÞ �jðxiÞ, ð7Þ

where jðxÞ is the feature vector in the expanded feature space and
may have infinite dimensionality. Several popular kernels are:
linear kernel K(xi, xj)¼xi

Txj; polynomial kernel K(xi, xj)¼(1+xi
T xj)

p

and RBF kernel Kðxi,xjÞ ¼ expð�Jxi�xjJ
2=s2Þ.

The discriminant function of Eq. (6) can be viewed as a
generalized linear discriminant function with weight vector

w¼
Xl

i ¼ 1

yiaijðxiÞ: ð8Þ

The coefficients ai ði¼ 1,2, . . . ,lÞ are determined according to the
learning patterns by solving the following optimization problem:

Minimize tðwÞ ¼ 1

2
JwJ2

þC
Xl

i ¼ 1

zi

subject to yif ðxiÞZ1�zi and ziZ0, i¼1,2,y,l.
This is a quadratic programming problem and can be

converted into the following dual problem:

Minimize Q ðaÞ ¼
Xl

i ¼ 1

ai�
1

2

Xl

i ¼ 1

aiajyiyjKðxi,xjÞ

subject to 0rairC, i¼ 1,2, . . . ,l,

and
Xl

i ¼ 1

aiyi ¼ 0, ð9Þ

where C (default C¼100) is a parameter to control the tolerance of
classification errors in learning.
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2.3. SVM vs. LDA

From Fig. 1, we can see that the LDA fails to obtain the optimal
direction to separate two classes, and approximated by

wLDA
ac ¼ ma�mc : ð10Þ

Another problem with Fisher criterion is that in multi-class
problems, it creates subspaces that favor well separated classes
over those that are not. This is because the solution to Eq. (3) is a
linear transform that maximizes the mean squared distance
between the classes in the transformed space. As a result, an
outlier (far away) class can be further separated from the
remaining classes that really need a clear separation.

Alternately, the SVM can discover the optimal directions to
maximize the margin between two classes. Also the optimal
direction wSVM

ac satisfies

JwSVM
ac J¼

2

dac
, ð11Þ

where dac is the margin distance between oa and oc. Therefore,
the SVM can create subspaces that favor closer classes over far
away classes.
3. Discriminant analysis via support vectors (SVDA)

In SVDA, the within-class and between-class matrices are used
to formulate the criteria of class separability, similarly as in LDA.
But, the SVDA only employed the distinct support vectors (SVs) to
compute between-class matrix Vb and within-class matrix Vw.
3.1. Between-class matrix

For each two classes, oa and oc , 1raocrM, a linear SVM is
employed first. An optimal direction wac ¼

Pl
i ¼ 1 yiaixi can be

found by solving Problem (9). Then, let an n�MðM�1Þ=2 matrix
W be the collection of MðM�1Þ=2 optimal wac, each column is one
wac, 1raocrM.

The between-class matrix Vb is given by

Vb ¼
X

1rao crM

wacwT
ac ¼WWT : ð12Þ
Fig. 1. SVM direction and LDA direction of binary (two-class) classification

problem.
3.2. Within-class matrix

Let X̂ ¼ ½x̂1,x̂2, . . . ,x̂N̂ �ARn�N̂ be the data matrix of SVs, where
N̂ rN is the number of SVs. N̂a denotes the number of SVs in class
oa; Î a are the collection of indexes of SVs in class oa; m̂a denotes
mean of SVs in class oa.

Similar as in LDA, the within-class matrix Vw is given by

Vw ¼
XM

a ¼ 1

X
iA Î a

ðx̂i�m̂aÞðx̂i�m̂aÞ
T : ð13Þ

3.3. SVDA

While the between class matrix and the within class matrix are
computed, the SVDA seeks to find the optimal projection by

aopt ¼ arg max
a

aT Vba

aT Vwa
: ð14Þ

Note that, rankðVwÞrN̂�M. If N̂�Mon, then Vw will be singular.
Therefore, we add a small multiple of identity matrix though

V�w ¼ ð1�gÞVwþg �
traceðVwÞ

N̂�M
� I, ð15Þ

where 0rgr1 (default g¼ 0:05) is a parameter of the regularizer.
One can solve the generalized eigenvalue problem:

Vba¼ lV�wa: ð16Þ

The eigenvectors corresponding to the k largest eigenvalues form
the columns of the final transformation matrix A.

3.4. Optimal projection dimensionality

We have known that the optimal projection dimensionality of
LDA, dLDA, is with constraint dLDArM�1, where M is the number of
classes. We have rankðVbÞrminðN�1,MðM�1Þ=2Þ, then the poten-
tial projection dimensionality of SVDA can be minðN�1,
MðM�1Þ=2Þ. However, the optimal projection dimensionality may
be different. We will evaluate this in our experiments.

3.5. Computational complexity

The computational complexity of LDA is O(n3). The additional
flops of SVDA for solving the quadratic programming (QP)
problem is O(Na

3) and totally O(M2Na*
3 ), where Na� ¼maxaðNaÞ.

However, the original QP problem can be broken into a series of
smaller QP problems, by using the well-known sequential
minimal optimization (SMO) algorithm [26]. Especially for the
high dimensional and small size problems, computational com-
plexities of SVDA and LDA are nearly the same.
4. Kernel discriminant via support vectors (SVKD)

SVDA is a linear algorithm. It may fail to discover the intrinsic
geometry when the data are highly nonlinear [27]. In this section,
we will discuss how to perform SVDA in reproducing kernel
Hilbert space (RKHS), which gives rise to kernel SVDA.

Let X̂ ¼ ½x̂1,x̂2, . . . ,x̂N̂ �ARn�N̂ be the data matrix of SVs. And let
F̂, with N̂ column vectors, denote the data matrix of SVs in RKHS:

F̂ ¼ ½jðx̂1Þ,jðx̂2Þ, . . . ,jðx̂N̂ Þ�: ð17Þ

First, the kernel SVM is employed to find the optimal direction wac

to separate the two classes, oa and oc ,

wac ¼
XN̂

i ¼ 1

yac
i a

ac
i jðx̂iÞ ¼ F̂aac , ð18Þ
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where aac ¼ ðyac
1 aac

1 ,yac
2 aac

2 , . . . ,yac
N̂
aac

N̂
Þ
T and

yac
i ¼

1 if iA Îa,

�1 if iA Î c ,

0 otherwise:

8><
>:

ð19Þ

Hence, Vb in Eq. (12) can be rewritten as

Vb ¼
X
ao c

F̂aacðF̂aacÞ
T
¼ F̂LbF̂

T
, ð20Þ

where Lb ¼
P

ao caacðaacÞ
T .

For i¼ 1,2, . . . ,N̂ , if iA Î a, let

yiðjÞ ¼

ðN̂a�1Þ=N̂a if j¼ i,

�1=N̂a if jA Î a, ja i,

0 otherwise:

8><
>:

ð21Þ

Then Vw ¼
PN̂

i ¼ 1 F̂yiy
T
i F̂

T
¼ F̂LwF̂

T
, where Lw ¼

PN̂
i ¼ 1 yiy

T
i .

Now, the eigenvector problem in RKHS can be written as
follows:

F̂LbF̂
T
v¼ lF̂LwF̂

T
v: ð22Þ

Because the eigenvectors of (22) are linear combinations of
jðx̂1Þ,jðx̂2Þ, . . . ,jðx̂N̂ Þ, there exist coefficients bi, i¼ 1,2, . . . ,N̂ ,
such that

v¼
XN̂

i ¼ 1

bijðx̂iÞ ¼ F̂b, ð23Þ

where b¼ ðb1,b2, . . . ,bN̂ Þ
T .

Following some algebraic formulations, we get

F̂LbF̂
T
v¼ lF̂LwF̂

T
v,

) F̂LbF̂
T
F̂b¼ lF̂LwF̂

T
F̂b,

) F̂
T
F̂LbF̂

T
F̂b¼ lF̂

T
F̂LwF̂

T
F̂b,

) K̂ LbK̂b¼ lK̂ LwK̂b, ð24Þ

where K̂ ARN̂�N̂ is the kernel matrix, K̂ ði,jÞ ¼Kðx̂i,x̂jÞ.
Let Kb ¼ K̂ LbK̂ and Kw ¼ K̂ LwK̂ , then the eigenvector problem

can be rewritten as

Kbb¼ lK�wb, ð25Þ

where K�w ¼ ð1�gÞKwþgðtraceðKwÞ=ðN̂�MÞÞI, g is a parameter of the
regularizer. We recommend to use g¼ 0:05 for default, and we
use g¼ 0:05 on both Isolet and USPS database in our experiments.

For a test point x, its projection to the obtained optimal
direction is obtained as

Fðx,bÞ ¼
PN

i ¼ 1 biKðx,x̂iÞ

ðbT K̂bÞ1=2
: ð26Þ

Note that a uniform kernel must be used for SVM and the
eigenvalue problem. It is also worthwhile to mention that the
SVKD solves a smaller eigenvalue problem than kernel discrimi-
nant analysis (KDA) with less computational complexity of OðN̂

3
Þ.

In some cases, we have OðN̂
3
Þ5OðN3Þ.
1 Available at: http://www.ics.uci.edu/�mlearn/MLRepository.html.
2 Available at: http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html.
5. Experiments and discussions

In this section, we investigate the use of SVDA on face
recognition, speech recognition and handwritten recognition.
RBF kernel is selected for the nonlinear SVDA and SVM.
5.1. Visualization on wine database

In the first experiment we sought to demonstrate the visualization
capability of SVDA. We used the wine database from the UCI machine
learning repository1 which has 13 continuous attributes, three classes
and 178 instances. The data were centered and scaled to have unit
variance. We applied PCA, LDA, RDA and SVDA (g¼ 0:9 for SVDA) to
these datasets. Two dimensional projections of the data are shown in
Fig. 2. The data are projected onto the eigenvectors corresponding to
the two largest eigenvalues. Actually, the data are not linearly
separable in the case of the PCA projection.

5.2. Face recognition on ORL and Yale databases

Two face databases were tested: ORL database, Yale database.2

Table 1 lists some properties of the databases. The size of each
cropped image in all the experiments is 32�32 pixels, with 256
gray levels per pixel. Thus, each image can be represented by a
1024-dimensional vector in image space. Each face image vector
was normalized to unit before use.

Laplacian smoothing transform (LST) [28] is an efficient data
independent pre-process approach for face recognition. It can
discard high frequency features and make dimensionality reduc-
tion of an image. We reduced the input dimensionality (originally
at 1024) by projecting the data onto its 90 (for ORL) and 80 (for
Yale) low frequency coefficients, respectively.

5.2.1. Number of SVDA features

We employed ORL and Yale databases to evaluate how many
SVDA features are proper for classification problems. From Fig. 3,
we can get: (1) Number of RDA features cannot be greater than
M�1, but SVDA can select more features. (2) If we choose less
than 10 features for SVDA and RDA, SVDA obtains much higher
recognition rates than RDA. (3) As number of features grows, the
differences between SVDA and RDA get smaller. (4) For SVDA, best
performance occurs when about M�1 SVDA features are selected.

5.2.2. Comparison

We compare our proposed algorithm with Fisherface (LDA, [6]),
marginal Fisher analysis (MFA, [18]), discriminative locality
alignment (DLA, [15]) and regularized discriminant analysis (RDA,
[7]). Libsvm [29] is employed to train the SVDA and SVM. In all face
recognition experiments, the dimensionality obtained by SVDA is
always simplified as k¼M�1, where M is the number of classes.

For each individual, G(¼2, 3, 4, 5) images are randomly selected
for training and the rest are used for testing. For each given G, we
average the results over 50 random splits and report the mean. The
regularizer g is selected by using cross-validation. For each database,
only one g is used for all the experiments. We use g¼ 0:15 for ORL
database and g¼ 0:05 for Yale database. The training set was used to
learn a face subspace using the SVDA, RDA, MFA, DLA and Fisherface
methods. Recognition was then performed in the subspaces. The
result and dimensionality for each method on ORL and Yale databases
are shown in Tables 2 and 3, respectively. As can be seen, our SVDA
algorithm performed the best for all the cases, significantly.

From Tables 2 and 3, we have
�
 The manifold-based methods (MFA and DLA) achieved better
performances than LDA. However, they did not show any
advantage over RDA.

�
 NN classifier using SVDA features obtained higher recognition

rates than SVM on the baseline features.

http://www.ics.uci.edu/&sim;mlearn/MLRepository.html
http://www.ics.uci.edu/&sim;mlearn/MLRepository.html
http://www.cs.uiuc.edu/homes/dengcai2/Data/FaceData.html
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Fig. 2. Scatter plot of wine data projected onto a two-dimensional subspace. (a) PCA, (b) LDA (FLD), (c) RDA, (d) SVDA.

Table 1
Datasets for experiments.

Datasets ORL Yale Isolet USPS

Train set 400 165 6238 7291

Test set 1559 2007

Classes 40 15 26 10

Size 32�32 32�32 617 16�16

Dim(after LST) 90 80 – –

Regularizer g¼ 0.15 0.05 0.05 0.05

S. Gu et al. / Neurocomputing 73 (2010) 1669–1675 1673
�
 SVDA not only improved performances of nearest neighbor
classifier, but also improved performances of the SVM
classifier itself.

5.3. Speech recognition on Isolet database

The Isolet dataset from UCI Machine Learning Repository has
6238 training samples, 1559 testing samples and 26 classes
corresponding to letters of the alphabet. This database has been
studied by many approaches. Nonlinear algorithms usually
achieved better performance than linear algorithms. However, a
kernel feature extraction method should solve the eigenproblem
of a 6238�6238 matrix. Table 4 shows test error rates of different
feature extraction methods and Table 5 shows performance of
some other algorithms.

The SVKD is trained on the original data with 617 dimension-
ality without any preprocessing. Four thousand and twenty five
SVs are remained after SVM is implemented. Then the SVKD only
need to solve eigenvalues of a 4025�4025 matrix. We set
s2 ¼ 100 for the RBF kernel and the regularizer g¼ 0:05. SVKD
with kNN classifier obtains a test error rate of 3.2% and only 39
features are remained after SVKD.

5.4. Handwritten recognition on USPS database

The USPS database consisted of 16�16 pixel size-normalized
images of handwritten digits, coming from US mail envelopes. The
training and testing set had respectively 7291 and 2007 examples.
The multi-class SVM with RBF kernel (s2 ¼ 125) obtains a test
error rate of 4.7% on this database.

The SVKD is trained on the original 256 dimensional data
vectors without any preprocessing. Two thousand three hundred
sixty six SVs are remained after SVM is implemented. Then the
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Fig. 3. Error rates of selecting different number of features. (a) ORL, (b) Yale.

Table 2
Error rates (%) of different algorithms on ORL database.

Feature Classifier 2 Train 3 Train 4 Train 5 Train

Baseline NN 33.2(90) 23.0(90) 18.3(90) 13.4(90)

Fisherface NN 29.7(28) 16.6(39) 10.4(39) 6.8(39)

MFA NN 20.7(39) 10.7(39) 8.7(39) 4.0(39)

DLA NN 19.8(39) 9.9(39) 8.3(39) 3.7(39)

RDA NN 17.9(39) 10.0(39) 5.8(39) 3.2(39)

SVDA NN 16.2(39) 7.5(39) 3.8(39) 2.1(39)

Baseline SVM-L 26.7(90) 15.6(90) 9.3(90) 6.3(90)

SVDA SVM-L 16.1(39) 7.5(39) 4.1(39) 2.4(39)

NN: nearest neighbor classifier. SVM-L: SVM with linear kernel.

Table 3
Error rates (%) of different algorithms on Yale database.

Feature Classifier 2 Train 3 Train 4 Train 5 Train

Baseline NN 52.0(80) 45.8(80) 42.8(80) 39.5(80)

Fisherface NN 52.0(14) 35.1(14) 27.1(14) 21.2(14)

MFA NN 42.3(14) 29.3(14) 22.9(14) 20.1(14)

DLA NN 40.9(14) 28.3(18) 20.3(24) 19.2(30)

RDA NN 39.1(14) 25.6(14) 19.6(14) 15.4(14)

SVDA NN 36.0(14) 23.3(14) 17.8(14) 13.3(14)

Baseline SVM-L 45.7(80) 36.0(80) 31.1(80) 26.5(80)

SVDA SVM-L 36.0(14) 23.1(14) 17.8(14) 13.5(14)

Table 4
Error rates (%) of different feature extraction methods on Isolet database.

Features NN kNN (k¼10)

Baseline 11.4(617) 8.2(617)

PCA 11.2(80) 7.8(80)

LDA 6.9(25) 5.1(25)

SVDA 5.9(52) 4.8(52)

SVKD 4.6(39) 3.2(39)

Table 5
Error rates (%) of different algorithms on Isolet database.

Feature Dim Classifier Error rate

PCA 172 SVM-L 4.1

PCA 172 LMNN 3.7

PCA 172 SVM-R 3.3

SVKD 39 KNN 3.2

SVM-R: SVM with RBF kernel.

Table 6
Error rates (%) of different feature extraction methods on USPS database.

Features Dim Error rates (%)

Baseline 256 5.7

PCA 80 5.3

LDA 9 9.7

SVDA 44 5.5

SVKD 38 4.3

kNN (k¼6) classifier is used.
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SVKD only need to solve eigenvalues of a 2366�2366 matrix. It
costs less than 4% time of traditional model.

We set s2 ¼ 125 for the RBF kernel and the regularizer
g¼ 0:05. Table 6 shows test error rates of different feature
extraction methods on USPS dataset. SVKD plus kNN classifier
obtains a test error rate of 4.3% and only 38 features are remained
after SVKD.
6. Conclusions

This paper presents a novel multi-class dimension reduction
approach, discriminant analysis via support vectors (SVDA), that
potentially provide a solution to the small sample size problem,
often associated with Fisher criterion. In particular, the paper has
shown that: (1) (14) for dimension reduction is essentially a
margin criterion; (2) the criterion has the potential to help
alleviate Fisher bias toward outlier classes in multi-class pro-
blems; (3) the criterion can be easily and efficiently computed by
using a regular SVM tool, such as Libsvm; (4) SVKD provides an
efficient computation of kernel discriminant in large datasets.
Therefore we believe that the proposed method will be a useful
tool for researchers using machine learning.

This paper also introduced a universal regularizer (Eq. (15)) by
fixing g¼ 0:05. This non-parameter regularizer can achieve an
optimal or nearly optimal performance in our experiments.

We have applied our algorithm to face recognition. Experi-
ments on ORL, Yale, Isolet and USPS databases have been
conducted to demonstrate the effectiveness of our algorithm.
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