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InTroduCTIon

Particle swarm optimization (PSO) is a sto-
chastic global optimization technique inspired 
by social behavior of bird flocking or fish 

schooling. In the conventional PSO suggested 
in Kennedy and Eberhart (1995) and Eberhart 
and Kennedy (1995), each particle in a popu-
lation adjusts its position in the search space 
according to the best position it has found 
so far, and the position of the known best-fit 
particle in the entire population. Compared to 
other population-based algorithms, i.e., genetic 
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algorithms, the PSO does not need genetic op-
erators such as crossover and mutation. Thus it 
has advantages of easy implementation, fewer 
parameters to be adjusted, strong capability 
to escape from local optima as well as rapid 
convergence. As a result, the PSO outperforms 
other population-based algorithms in many 
real-world application domains.

In recent years, the PSO has been increas-
ingly used as an efficient technique for solving 
complicated and hard optimization problems, 
such as function optimization, evolving artificial 
neural networks, fuzzy system control, optimi-
zation in dynamic and noisy environments, blind 
source separation, machine learning, games, 
to name a few. Furthermore, the PSO has also 
been found to be robust and fast in solving 
non-linear, non-differentiable and multi-modal 
problems (Ge & Zhou, 2005). Therefore, it is 
very important and necessary to exploit some 
new mechanisms and principles to improve and 
promote the performance of the conventional 
PSO for a variety of problems in practice. In this 
article, the clonal mechanism found in natural 
immune system of creatures is introduced into 
the PSO, resulting in a novel clonal PSO (CPSO, 
for short). In addition, in order to improve the 
CPSO further, an advance-and-retreat(AR) 
strategy and the concept of random black 
hole(RBH) are then introduced into the CPSO, 
resulting in two variants of the CPSO, called 
CPSO with AR strategy (AR-CPSO, for short) 
and RBH model (RBH-PSO, for short).

This article is an extended version of our 
earlier short paper (Tan & Xiao, 2007), in which 
a basic idea of the CPSO is briefly presented. 
Here, we have extended it substantially and 
included two variants with some deep discus-
sions, comprehensive experimental studies as 
well as our application to spam detection.

The remainder of this article is organized 
as follows. Section II describes the conventional 
PSO algorithm and its related modification ver-
sions. Section III presents the proposed CPSO 
by introducing the clonal mechanism in NIS into 
the conventional PSO and its implementation. 
Section IV improves the CPSO by introducing 
the AR strategy and the RBH model. Section V 

gives several experimental results to illustrate 
the effectiveness and efficiency of the proposed 
algorithms in comparison with the conventional 
PSO. An application of spam detection is also 
given in details in section VI. Finally, conclud-
ing remarks are drawn in Section VII.

rElaTEd worKS

Conventional PSo

In the conventional PSO algorithm, each po-
tential solution to an optimization problem is 
considered as a particle in the search space, and 
a population of particles called a swarm is used 
to explore the search space. All of particles in 
the swarm have their fitness values which are 
evaluated by a fitness function related to the 
optimization problem to be solved. Therefore, 
the PSO algorithm is originally initialized with 
a swarm of particles randomly placed on the 
search space. Then the randomly initialized 
swarm is getting to start to search for the optimal 
solution to the optimization problem by evolv-
ing iteratively. In each iteration, the position 
and the velocity of each particle are updated 
according to its own previous best position 
(𝑃𝑖𝐵𝑑(𝑡)) and the current best position of all 
particles(𝑃𝑔𝐵𝑑(𝑡)) in the swarm. The update 
formula for the velocity and position of each 
particle in the conventional PSO is written as

V t wV t c r P t X t
id id iBd id
( ) ( ) ( ( ) ( ))+ = + -1

1 1
 

+ -c r P t X t
gBd id2 2

( ( ) ( )),  (1)

X t X t V t
id id id
( ) ( ) ( ),+ = + +1 1  (2)

where 𝑖 =1, 2, ⋅⋅⋅, 𝑛, 𝑛 is the number of par-
ticles in the swarm, 𝑑 =1, 2, ⋅⋅⋅, 𝐷, and 𝐷 is the 
dimension of solution space.

In Eqs. (1) and (2), the learning factors 𝑐1 
and 𝑐2 are nonnegative constants, 𝑟1 and 𝑟2 are 
random numbers uniformly distributed in the 
interval [0,1], 𝑉𝑖𝑑 ∈ [−𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥], where 𝑉𝑚𝑎𝑥 
is a designated maximum velocity which is a 
constant preset by users according to the objec-
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tive function of optimization. The velocity on 
one dimension which exceeds the maximum 
will be set to 𝑉𝑚𝑎𝑥. This parameter controls the 
convergence rate of the PSO and can prevent it 
from growing too fast. The parameter 𝑤 ∈ [0, 1] 
in Eq. (1) is the inertia weight used to balance 
the global and local search abilities. A large 
inertia weight is more appropriate for global 
search while a small inertia weight facilitates 
local search.

The termination criterion for iterations in 
the PSO is determined by whether reaching the 
fixed maximum number of fitness evaluations 
or a designated value of the fitness.

For convenience, we call the PSO in Eqs. 
(1) and (2) as standard PSO (abbreviated as 
SPSO) in the remainder of this article.

Improvements of the PSo

Since its invention, the PSO has attracted an 
extensive attentions and interests of research-
ers from different scientific and engineering 
domains. Many researchers have worked on 
improving its performance in various ways, 
thereby deriving many interesting improve-
ments of the PSO.

One of the improvements introduced a 
linearly decreasing inertia weight over the 
course of search by Shi and Eberhart (1998) 
and gave a good convergence performance. 
A smart technique for creating a binary PSO 
suggested by Kennedy and Eberhart in 1997 
used the concept of velocity as a probability 
that a bit takes on one or zero. Furthermore, 
by analyzing the convergence behavior of the 
PSO, a variant of the PSO with a constriction 
factor was introduced by Clerc and Kennedy 
(2002), which guarantees the convergence and 
improves the convergence speed sharply simul-
taneously. Parsopoulos and Vrahatis proposed 
a unified particle swarm optimizer (UPSO) 
which combined both the global version and 
local version together (Parsopoulos, & Vrahatis, 
2004). A cooperative particle swarm optimizer 
was also proposed in (Bergh & Engelbrecht, 
2004). Furthermore, El-Abd and Kamel pro-
posed a hierarchal cooperative particle swarm 

optimizer (El-Abd & Kamel, 2006). In Peram, 
Veeramachaneni and Mohan (2003), proposed 
the fitness-distance-ratio based particle swarm 
optimization (FDR-PSO),by defining the 
“neighborhood” of a particle as the 𝑛 closest par-
ticles of all particles in the population. In Pereira 
and Fernandes (2005) and Ismael and Fernandes 
(2005), a SAPSO algorithm combined the 
particle swarm optimization with the simulated 
annealing. The SAPSO can narrow the field 
of search and speedup the rate of convergence 
continuously during the optimizing process. 
Recently, a comprehensive learning particle 
swarm optimizer (CLPSO) was proposed to 
improve the performance of the conventional 
PSO on multi-modal problems by a novel learn-
ing strategy (Liang, Qin, Suganthan & Baskar, 
2006). A stretching technique was introduced 
into the PSO by Parsopoulos, Plagianakos, 
Magoulas and Vrahatis (2001), which applied 
a two-stage transformation to the shape of the 
fitness function that eliminates undesired local 
minima but preserves the global minimum.

Although there are numerous improved 
versions of the PSO, they almost need much 
time to accomplish the evaluations of fitness 
function, and give similar results in the early 
phase of convergence. Hence, we here choose 
the improvement of the PSO with the inertia 
weight as a foundation of our standard PSO for 
further comparisons in the rest of this article.

Clonal ParTIClE 
SwarM oPTIMIzaTIon

Clonal Expansion Process 
in nature Immune System

Artificial immune system (AIS) is a novel 
computational intelligence paradigm inspired 
by the natural immune system (NIS). Like ar-
tificial neural networks and genetic algorithm, 
AIS are highly abstract models of their biologi-
cal counterparts applied to solve a number of 
complex problems in different domains. Some 
work processes in NIS are used as metaphors to 
develop novel computing models in computa-
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tional intelligence, such as negative selection, 
clonal selection, to name a few, to solve many 
complex problems in science and engineering 
domain (Dasgupta & Attoh-Okine, 1997; Castro 
& Timmis, 2003; Castro, 2002).

Originally, according to clonal selection 
theory, when the B-and T-lymphocytes in NIS 
recognize an antigen as non-self, the NIS will 
start to proliferate by cloning upon recognition 
of such antigen. When a B cell is activated by 
binding an antigen, many clones are produced 
in response, via a process called clonal expan-
sion. The resulting cells can undergo somatic 
hyper mutation, creating offspring B cells with 
mutated receptors. The higher the affinity of a B 
cell to the available antigens, the more likely it 
will clone. This is called as a Darwinian process 
of variation and selection, i.e., affinity matura-
tion (Dasgupta & Attoh-Okine, 1997; Castro & 
Timmis, 2003).

The essence of the SPSO is to use these 
particles with best known positions to guide the 
swarm or the population to converge to a single 
optimum in the search space. However, how to 
choose the best-fit particle to guide each particle 
in the swarm is a critical issue. This becomes 
even more acute when the problem to be solved 
has multiple optima since the entire swarm could 
potentially be misled to local optima. In order 
to deal with this case, a clonal expansion in NIS 
is probably a good way to guide or direct the 
SPSO escaping from local optima whilst search-
ing for the global optima efficiently. Therefore, 
here we want to introduce the clonal expansion 
process in NIS into the SPSO to strength the 
interaction between particles in a swarm for 
improving its convergent performances and 
global optimization capability greatly.

Clonal Particle Swarm 
optimization algorithm

According to the clonal expansion process in 
NIS discussed above, we propose a clonal op-
erator for the SPSO. The clonal operator is at 
first to clone one particle as 𝑁 same particles in 
the solution space according to its fitness func-
tion, then generate 𝑁 new particles via clonal 

mutation and selection processes which are 
related to the concentration mechanisms used 
for antigens and antibodies in NIS. Here we call 
the SPSO with such clonal operator as clonal 
particle swarm optimization (for short, CPSO) 
algorithm. For simplification in presentation, 
we will use the abbreviated CPSO algorithm 
directly later on.

As indicated in Liang, Qin, Suganthan 
and Baskar (2006), CLPSO’s learning strategy 
abandons the global best information, the past 
best information of other particles is used to 
update the particles’ velocity instead. In such 
a way, the CLPSO can significantly improve 
the performance of the SPSO on multi-modal 
problems.

Here in order to present our CPSO clearly 
and efficiently, we adopt the similar definitions 
used in AIS paradigms. Antigen, antibody, and 
the affinity between antigen and antibody are 
corresponding to objective optimization func-
tion, solution candidate, and the fitness value 
of the solution on the objective optimization 
function, respectively. The clonal operator is 
used to duplicate one point as 𝑁 same points 
according to its fitness function, and then gen-
erate 𝑁 new particles by undergoing mutation 
and selection operations. In general, the state 
transition process of a swarm of particles in 
the CPSO can be schematically expressed as 
follows:

P t C t M t P tclone mutation sel( ) ( ) ( ) ( )¾ ®¾¾ ¾ ®¾¾¾ ¾ ®¾¾ +1  
                (3)

where the arrow represents the transition pro-
cess between two states while symbols over 
the arrows show the operations needed for the 
transition processes.

Notice that the population of particles 𝑃(𝑡) 
at time 𝑡 can be transited as C(𝑡) via a clonal 
process, then next generation population 𝑃(𝑡+1) 
can be generated by using mutation and selection 
processes for the cloned population C(𝑡).

Briefly, the CPSO algorithm can be sum-
marized in Algorithm 1.
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algorithm 1 CPSo algorithm

• Step 1: Initialization. Assume 𝑎 =1, 
𝑐1 =2, 𝑐2 =2, and 𝑤 be from 0.9 to 0.4 
linearly.

• Step 2: The state evolution of particles is 
iteratively updated according to Eqs. (1) 
and (2).

• Step 3: Memory the global best-fit par-
ticle of each generation, 𝑃gB, as a mother 
particle of the clonal operator in Step 4.

• Step 4: After M generations, clone the 
memorized M global best particles, 
𝑃gB(i), i =1, ⋅⋅⋅, M.

• Step 5: Mutation Process. All of the 
cloned particles are mutated to some 
extents to differentiate with original or 
mother particle by using some random 
disturbances such as Gaussian noise. As-
sume 𝑃𝑔𝐵𝑘 be the k-th entry of the vector 
𝑃𝑔𝐵 and 𝜇 is an Gaussian random variable 
with zero mean and unity variance, then 
one can have the following random mu-
tation process

 P P s V
gB gBk k

= + -* ( ) *
max

1 m           (4)

 where s is the scale of mutation and Vmax 
is the max velocity.

• Step 6: Selection Process. We store the 
current 𝑃𝑔𝐵 in memory, but the other par-
ticles are selected according to a strategy 
of the diversity keeping of the concentra-
tion mechanism so that in next genera-
tion of particles, a certain concentration 
of particles will be maintained for each 
fitness layer. Here the concentration of 
𝑖-th particle are defined as follows:

 
D x f x f x

i i j
j

N M

( ) ( | ( ) ( ) |) ,= - -

=

+

å 1

1

 i N M= +1 2, ,...,              (5)

 where 𝑥𝑖 and f(𝑥𝑖) in Eq. (5) denote the i-th 
particle and its fitness value, respectively. 

According to above Eq. (5), one can de-
rive a selection probability in terms of the 
concentration of particles as
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• Step 7: Termination. The algorithm can 
be terminated by some common stop cri-
teria such as a given maximum number 
of fitness evaluations or a presetting ac-
curacy of the solution. In our experiments 
in the article, we adopt the former stop 
criterion, i.e. a maximum number of fit-
ness evaluations, which is 1,200,000.

It can be seen from Eqs. (5) and (6) that 
the more the particles are similar to the anti-
body 𝑖, the less the probability the particle 𝑖 
can be chosen, and vice versa. In such a way, 
the particle with low fitness value also has an 
opportunity to evolve. Therefore, this kind of 
probability selection mechanism in terms of 
the concentration of particles in the swarm is 
able to guarantee the diversity of antibodies 
theoretically and endows the method with the 
ability of escaping from local minima.

Through keeping current global optima, 
the proposed CPSO algorithm can guarantee to 
maintain the good convergent performance of 
original SPSO. In the meantime, the essence of 
the clonal operator is to generate a new particle 
swarm near the promising candidate solution 
according to the value of the fitness function 
such that the search space are enlarged greatly 
and the diversity of clones is increased to avoid 
trapping in local minima. So, the speed of con-
vergence and the global optimization capability 
can be raised rapidly.

analysis of the CPSo

The essence of the CPSO is making full use 
of the area around the current best particle, 
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denoted as 𝑥𝑔𝐵, in depth, which works well for 
two reasons. First of all, we assume the prob-
ability that the actual global solution lies in the 
range around the current best particle would be 
probably greater than that in the other space. 
Secondly, when the SPSO converges to one 
solution, it is supposed to be the current best-fit 
position 𝑥𝑔𝐵. If 𝑥𝑔𝐵 is the global best particle, 
the CPSO will speed up the convergence of 
the evolving swarm, because we have cloned 
more particles which are very close to 𝑥𝑔𝐵, and 
search the area around 𝑥𝑔𝐵 more thoroughly and 
completely. If 𝑥𝑔𝐵 f alls into a local optimum, 
which means a premature for the SPSO, the 
CPSO can give 𝑥𝑔𝐵 another chance to escape 
from trapping in the local minima by using the 
mutation and selection operations that keep the 
diversity of the swarm.

However, the clones may be not efficient 
enough to find nearby minima in an enlarged 
unknown space after the clonal operation. 
Moreover, as can be seen, the above CPSO 
algorithm has complex operations which lead 
to much more computational time and preserve 
more memory. In addition, the clonal selection 
cannot be tuned easily for a specific task. So, 
by introducing the advance-and-retreat (AR) 
strategy, and random black hole (RBH) model 
into the CPSO, we propose two variants, i.e., 
AR-CPSO and RBH-PSO (Zhang, Xiao, Tan 
& He, 2008; Zhang, Liu, Tan, & He, 2008), to 
overcome these two limitations.

In the AR-CPSO, the AR strategy endows 
the clones with faster speed to find nearby lo-
cal basins by using the history information of 
each particle’s last performance of “flying” 
after each clonal operation. In the next clonal 
operation, clonal mutation and selection of 
the best individual of a number of succeeding 
generations enlarge the search space greatly and 
increase the diversity of clones to avoid being 
trapped in local minima. Thus, the clones have 
more chances to find and flee the nearby local 
basins with fast speed.

Black hole model in physics is inspired 
by the concept of black holes in the outer 
space. A black hole is a highly dense star that 
exerts a strong force on other stars and matter 

around it. It is impossible to see a black hole 
directly because no light can escape from it, so 
it is always black. But when it passes through 
a cloud of interstellar matter, or is close to 
another ”normal” star, the black hole can ac-
crete matter into itself. So we can estimate the 
position of the black hole according to the X-
ray emission curves of matter which is being 
magnetized by it (NASA, n.d.). Here we still 
use the clonal operation, but in each genera-
tion, we clone one particle of 𝑥𝑔𝐵, which is set 
to be more powerful but more stochastic, like 
a black hole in outer space in physics. In such 
a way, we can accelerate the convergence rate 
considerably. On the other hand, instead of the 
mutation and selection operations in the CPSO, 
our black hole model employs the randomness 
to keep the diversity of the swarm and enlarge 
the search space in the meantime, which is very 
simple and effective.

Two VarIanTS oF CPSo

CPSo with ar Strategy

Many researches focus on improving the con-
vergent capability of the PSO by a variety of 
methods. In Liu, Qin and Shi (2004), golden 
division algorithm is introduced into the particle 
swarm optimization algorithm. In PSO-LS 
(Chen, Qin, Liu & Lu, 2005), each particle has 
a chance of self-improvement by applying local 
search algorithm before it communicates with 
other particles in the swarm. Hybrid Gradient 
descent PSO (HGPSO) (Noel & Jannett, 2004) 
algorithm makes use of gradient information to 
achieve a fast convergence. In this combination, 
the third part of the original evolving equation, 
i.e., local best solution is replaced by a gradient 
term. Multi-Local PSO (MLPSO) algorithm 
(Vaz & Fernandes, 2005) uses gradient descent 
directions to drive each particle to a nearby 
local minimum for locating multiple solutions. 
The second part of the original PSO equation, 
called global best solution, is replaced by the 
steepest descent direction evaluated at the best 
ever particle position. In these two methods, the 
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gradient or the approximate gradient is used to 
increase the convergent ability in the PSO.

1. AR strategy: The AR strategy is a 
simple and effective method for the problem 
of one-dimensional search. One-dimensional 
search is also called linear search for optimi-
zation of a single-variable objective function. 
The iterative formula in one-dimension search 
is as follows.

x x v d
k k k k+ = +

1
              (7)

where xk denotes the position of a solution, 
v𝑘 the velocity of a solution and dk the direction 
of the velocity. The bottleneck problem in Eq. 
(7) is how to determine the search direction dk 
and the step-size vk. Let

j( ) ( )v f x v d
k k k k

= +              (8)

where 𝜑(.) denotes the function value of the 
velocity vk, 𝑓 is the objective function.

The problem of how to determine the step-
size 𝑣𝑘 and the search direction 𝑑𝑘 in Eq.(8) is 
just an one-dimensional search problem such 
that makes

j j( ) ( )v
k

< 0               (9)

The step-size 𝑣𝑘 could be optimal if the 
step-size 𝑣𝑘 minimizes the objective function 
along the search direction 𝑑𝑘 as in Eq. (10).

j j( ) min ( ),v v v
k v

= > 0            (10)

In practice, the optimal step-size is hard 
to determine analytically, and often requires 
expensive computational cost. Therefore, an 
approximate one-dimensional search with less 
cost becomes increasingly popular.

It is well known that the AR strategy is a 
simple and effective method in one-dimensional 
search, whose main principle is to start a par-
ticle from one point with a certain step-size to 
determine three points of ’high-low-high’, then 
calculate the distance from the point of ’low’, 
i.e., the approximate optimal step-size. If a 

particle succeeds in one direction, its search 
direction remains unchanged. Otherwise, it will 
return and search along its opposite direction. 
Finally, algorithm 2 outputs an interval which 
contains the minimum of an unimodal function. 
In summary, Algorithm 2 shows steps of the AR 
strategy in detail.

algorithm 2 advance-and-
retreat algorithm

Step 1: Initialization: v0 ∈ 
[0, ∞), h0 > 0, acceleration 
factor 𝛼 > 1, compute 𝜑(v0), 
k=0.  
Step 2: Compare Fitness Val-
ues: 

 

𝑣𝑘+1 = 𝑣𝑘 + h𝑘  
𝜑𝑘+1 = 𝜑(𝑣𝑘+1)  
if 𝜑𝑘+1 < 𝜑𝑘 then  
  go

 
Step3

 
 

else
  

  go Step4
  

end if  
Step 3: Advance:  
h𝑘+1 = 𝛼h𝑘  
𝑣 = 𝑣𝑘  
𝑣𝑘 = 𝑣𝑘+1  
𝜑𝑘 = 𝜑𝑘+1  
𝑘 = 𝑘 +1  
go Step2

 
 

Step 4: Retreat:
  

if 𝑘
 =
0 the

n  

  h𝑘 
= 
−h𝑘 //reverse the 

search direction 𝑣𝑘 = 𝑣𝑘+1  
  go Step2  
else  
  stop

 
 

end if  
Step 5:  
𝑎 = 𝑚𝑖𝑛{𝑣, 𝑣𝑘+1}  
𝑏 = 𝑚𝑎𝑥{𝑣, 𝑣𝑘+1}  
output [a,b] 

2. AR-CPSO: In each iteration, we use the AR 
strategy to replace the first  part (i.e., the previous 
velocity of a particle) of Eq. (1) in SPSO just 
for the cloned particles. When the fitness value 
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turns better after the last ”flying”, the cloned 
particle advances according to Eq. (1). On con-
trary, when the fitness value turns worse after 
the last ”flying”, the cloned particle then retreats 
the searches in the reverse direction of the last 
”flying” with a smaller step-size of the previous 
velocity, which can be formulated as

V t w V t c r P t X t
id id iBd id
( ) ( ( )) ( ( ) ( ))+ = - + -1

1 1
a  

+ -c r P t X t
gBd id2 2

( ( ) ( ))            (11)

where 𝛼 < 1.
The AR-CPSO algorithm is the same as 

the CPSO algorithm in Algorithm 1 except for 
replacing its Step2 with the following step.

Step2: The state evolution of particles is 
iteratively updated according to Eqs. (1), (2) 
and (11).

With the inertia weight 𝑤 decreasing with 
the evolution of the swarm, clones may be 
restricted in a decreasing local area for search-
ing nearby local minima. Due to the influence 
of the global best position and the local best 
positions, clones change their tracks randomly. 
Noticeably, the AR strategy is just applied to 
the cloned particles.

The AR strategy in the AR-CPSO on Ackley 
benchmark test function is schematically shown 
in Figure 1. As can be seen, a particle starts from 
𝑝1, after the 1st step, the particle advances in 
the 2nd step and retreats in the 3rd step. Thus, 
the clones do not scatter over the search space, 
but fly toward the nearby local basin quickly. 
Therefore, the AR strategy enables each clone 
to predict the next direction to the local optima 
according to its own history information rather 
than just memorizing the last velocity without 
any judgement of the last ”flying”. In such a 
way, the clones are restricted to the search space 
around nearby local optima, so the individual 
convergent capability of each clone is able to 
be enhanced greatly.

Particle Swarm optimization 
with random Black Hole

For each dimension in every generation, we 
randomly generate a particle close to the cur-
rent best particle. We regard it as a black hole 
by giving a threshold 𝑝 drawn in the interval 
[0, 1], to decide its capability of magnetism. In 
each dimension of a particle in the swarm, we 
randomly generate a value 𝑙, which is drawn 

Figure 1. Convergent performance of one particle on Ackley benchmark function within 4 gen-
erations using the AR-CPSO
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from an uniform distribution over interval [0, 
1]. If 𝑙 is smaller than 𝑝, we let the particle be 
arrested by the black hole, i.e. the coordinate 
of the particle in this dimension is directly 
set to the coordinate of the black hole. At the 
same time, the velocities of other particles in 
the swarm in calculation of the SPSO are kept 
unchanged, which will be used in the next 
generation. The transition of a particle 𝑥 from 
the t-𝑡h to the (t+1)-𝑡h generation in the RBH-
PSO is schematically shown in Figure 2, where 
𝑥𝑔𝐵 is the position of current best-fit particle 
in the entire population. 𝑥(𝑡) is the position 
of 𝑥 in curren t t -𝑡ℎ gen erat ion , 𝑥(𝑡 + 1) is 
t he pos it ion  t hat  𝑥 is s uppos ed t o be in t he
n ext generation in the SPSO, and x  (t + 1) is 
its actual position in the next generation after 
using our random black hole operation. s is 
randomly drawn from an uniform distribution 
over the interval [-r, r], and r is the radius of 
the area around 𝑥𝑔𝐵 , in which the black hole is 
generated randomly. r is determined according 
to the attributes of test functions which will be 
discussed in section IV in detail.

As shown in Figure 2, if the particle 𝑥(𝑡) 
is randomly chosen to be magnetized to the 
black hole, i.e., l < p, the actual position x  (t 
+ 1) in our RBH-PSO would be calculated by 
Eq. (12). Otherwise, 𝑥(𝑡 +  1)  will be as same 
as that in the SPSO according to Eq. (13). This 

operation is carried out in each dimension for 
all particles in the swarm. So, from the point 
of view of high-dimensionality, the black hole 
gives another direction for some particles in 
some dimensions to converge in a probability 
threshold p.

x t x s if l p
gB

( ) ,+ = + <1
          (12)

x t x t if l p( ) ( ),+ = + ³1 1           (13)

Briefly, the RBH-PSO algorithm can be 
summarized in Algorithm 3.

algorithm 3 rBH-PSo algorithm

• Step 1: Initialization. Assume 𝑐1 =2, 𝑐2 
=2, and 𝑤 be from 0.9 to 0.4 linearly.

• Step 2: The state of particles evolves it-
eratively according to Eqs. (1) and (2).

• Step 3: Find the current best-fit particle 
𝑥𝑔𝐵, an d gen erat e a n ew part icle clos e
t o 𝑥g𝐵 as a ran d om black hole in t he
ran ge of 𝑟. Determine 𝑟 as t he rad ium of
t he ran ge,  an d  t hen  choos e 𝑠 ran d om ly 
from  an  un iform  d is t ribut ion  in  in t er-
val [-r, r].

• Step 4: For each part icle 𝑥 in t he s w arm , 
ran d om ly  give it  an  evaluat ion  𝑙, an d 

Figure 2. Schematic Graph of the Position Transformation of 𝑥(𝑡) in the RBH-PSO
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d et erm in e t he t hres hold  of t he black  
hole 𝑝. Then upd at e t he pos it ion of 𝑥
accord in g to Eqs. (12) and (13). Accord-
ingly, the velocity is updated by Eq. (1).

• Step 5: Termination. The algorithm can 
be terminated by a given maximum num-
ber of fitness evaluations, i.e., 1,200,000 
in this study. If the termination condition 
is not met, go to step 2.

The essence of the RBH-PSO is to randomly 
clone and mutate another new best particle to 
guide all particles in the swarm. This new guide 
is considered to represent the actual best-fit 
position which exists but not found so far, just 
like a black hole in physics which has a huge 
quality (Black hole). We do not know where 
the real solution should be, but according to our 
analysis and knowledge so far, the small range 
around the current best-fit particle is considered 
to be the best candidate of the real solution, 
and randomness is employed to enhance the 
feasibility. As the SPSO evolves, we expect 
𝑥𝑔𝐵in  cert ain gen erat ion s w ould con verget o 
t he s olut ion  of t he problem  at  han d . If t his  is  
achieved ,  our black  hole m od el w ill en han ce 
t he con vergen t  s peed  becaus e it  is  right  n ext  
t o 𝑥𝑔𝐵 in  each gen erat ion , an d help 𝑥𝑔𝐵 t o 
magnetize other particles strongly. If the SPSO 
would converge to local optima, the  black hole 
will give all particles another chance to fly out 
of the trapped local optima and keep evolving 
continuously.

Comparisons among 
CPSo and Its Variants

For the AR-CPSO, a clonal operator is used 
to generate a new particle swarm near the 
promising candidate solution according to the 
value of the fitness function so that the search 
space is enlarged greatly and the diversity of 
clones is increased to avoid being trapped in 
local minima. Meanwhile, the essence of the 
AR strategy is to speed up clone for greatly 
finding nearby minima in an enlarged unknown 
space. Convergent rate and global optimization 
performance could be raised significantly. The 

RBH-PSO is also inspired by the clone and 
selection mechanism, which not only keep the 
diversity of the swarm but also accelerate the 
local search at the same time. Because the two 
clonal operations are complicated highly and 
need more computational time and preserve 
much more memory, therefore, a simple model, 
RBH-PSO, is proposed to find a more reason-
able tradeoff between the convergent speed and 
global optimization capability.

In summary, during the iteration procedure 
of the three proposed algorithms, the local 
search space is enlarged significantly by the 
corresponding clonal operations around 𝑥𝑔𝐵, 
which accelerate the local search greatly. 
Meanwhile, we not only keep the velocity of 
the original particles but also keep the diversity 
of the swarm for global search.

EXPErIMEnTS and analYSIS

Experimental Setup

1. Fifteen Benchmark Test Functions: To test 
and verify the performance of the proposed 
CPSO and its variants, fifteen benchmark 
functions and their corresponding parameters 
listed in Figure 3 are used for our following 
simulations. Besides the global optimum of 
Shaffer f6 function is 1, the global optimum 
of the other fourteen benchmark test functions 
are 0. Since the optimization cost in real-world 
applications is usually dominated by the evalua-
tions of the objective function, so the presetting 
expected number of fitness evaluations (𝐹 𝐸𝑠 ) 
is retained as the main algorithmic performance 
measure. The stop criterion in algorithms, i.e. 
the maximum number of fitness evaluations, 
is set to 1,200,000 in our simulations. In addi-
tion, we fix the number of particles in a swarm 
to be 40 for the convenience of comparisons 
later on. In Figure 3, 𝐹 𝐸𝑠  denotes the number 
of the fitness evaluations and 𝐷 the dimension 
of test functions.

The column ‘Ini. Space’ in the figure shows 
the spaces where the initializations lie in. For 
concrete expressions of the fifteen benchmark 
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test functions used in our experiments, and 
more complex and compound benchmark test 
functions (see Liang, Qin, Suganthan & Baskar, 
2006; Kennedy & Mendes, 2002).

2. Experimental Platforms: All experi-
ments in this article are conducted on two PCs 
with AMD Athlon 3200+ CPU and 1G RAM 
under Windows XP OS. Accuracy, precision, 
recall and miss rates are used as performance 
indices for spam detection.

LIBSVM software package is used for 
implementing our SVM under an environment 
of MATLAB version R2007a.

determination of Parameters 
in algorithms

A best trade-off between exploration and ex-
ploitation strongly depends on properties of 

objective functions to be optimized, such as the 
number of local optima, the distance to the global 
optimum, the position of the global optimum in 
the search space (for example, at center, near 
borders, etc.), the size of the search area, the 
accuracy required in location of the optimum, 
etc. It is probably impossible to find a unique 
set of algorithmic parameters that work well 
in all cases (Trelea, 2003). Therefore, usually, 
a tentative method is adopted to determine the 
parameters in terms of three representative test 
functions, i.e., the Sphere function with only 
one optimum, the Rosenbrock function with 
slow slope, and the Schwefel function being 
rotated. Actually, all fifteen benchmark test 
functions are used to verify and test the valida-
tion of the parameters determined above in our 
experiments.

Figure 3. List of fifteen benchmark test functions and their parameters for our following simula-
tions
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1.  Number of generations of clones versus 
performance: For the number of genera-
tions of clones, denoted by symbol 𝑛, be-
ing 2, 5, 10, 20 and 30, respectively, the 
performances of the CPSO on Sphere and 
Rotated Schwefel functions are illustrated 
in Figure 4.

It can be seen from Figure 4 that the best 
performances of the proposed CPSO on both 
Sphere and Rotated Schwefel functions are 
obtained when ‘𝑛=10’.

2.  Mutation scale of clones versus perfor-
mance: For the mutation scale of clones 𝑠  
from 0.001 to 0.0000001, when the retreat 
step 𝑎 is equal to 0.4 and the generation 
of clones is set to 10, the performances 
of the CPSO on Rosenbrock and Rotated 
Schwefel functions are illustrated in Fig-
ure 5. It can be seen from Figure 5 that 𝑠  
=0.000001 has better performance. As a 
result, in the following experiments, let 
𝑠  be 0.000001 for the CPSO and the AR-
CPSO.

3.  Retreat step-size versus performance 
of AR-CPSO: For the retreat step-size𝑎, 

in Eq. (11), being from 0.1 to 0.5, when 
the mutation scale of clones is equal to 
0.000001 and the number of generations 
of clones is 10, the performances of the 
AR-CPSO on Rosenbrock and Rotated 
Schwefel functions are illustrated in Figure 
6. It can be seen that the best performance 
is achieved as 𝑎 =0.4. So, in the following 
experiments, 𝑎 is assumed to be 0.4 for the 
AR-CPSO.

4.  Generations of clones versus perfor-
mance for AR-CPSO: For the number 
of generations of clones, denoted by 𝑛, 
from 10 to 50, when the mutation scale of 
clones is equal to 0.000001 and the retreat 
step is equal to 0.4, the performances of 
the AR-CPSO on Rosenbrock and Rotated 
Schwefel functions are illustrated in Figure 
7. It can be seen that 𝑛 = 10 has better per-
formance. So in the following experiments, 
let 𝑛 be 10 for the AR-CPSO and CPSO.

5.  Determination of parameters in the 
RBH-PSO: Two parameters in the RBH-
PSO need to be determined, i.e., 𝑝 and 𝑟, 
which represent the probability of a black 
hole and the radius of the interval, respec-
tively. For simplification and convenience, 
three benchmark functions are chosen 

Figure 4. Convergent performances of the CPSO on Rosenbrock and rotated Schwefel functions 
with different generations of clones (Denoted by 𝑛) 
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to test their effects. Sphere function and 
Rosenbrock function both have one single 
optimum, but the former has a “large scale” 
curvature while the latter has a flat bottom. 
Rotated Rastringrin function has multiple 
optima scattering over the entire search 
space.

With a fixed 𝑝 =0.05, the performance 
of the RBH-PSO on the three functions with 
different initial values of 𝑟 are illustrated in 
Figures 8 (a)-8 (c). It can be seen from Figures 
8 (a)-8 (c) that the best performance for all the 
three benchmark functions is achieved at 𝑟 
=0.000001. In Figures 8(d)-8(f), with a fixed 
𝑟 =0.000001, it is obvious that 𝑝 =0.1 would 

Figure 5. Convergent performances of the CPSO on Rosenbrock and rotated Schwefel functions 
with different mutation scales (Denoted by 𝑠 ) 

Figure 6. Convergent performances of the CPSO on Rosenbrock and rotated Schwefel functions 
with different retreat step-size (Denoted by 𝑎) 
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be a good choice. Therefore, the parameters in 
the RBH-PSO are finally chosen as 𝑝 =0.1 and 

𝑟 =0.000001 which will be used in our follow-
ing experiments.

Figure 7. Convergent performances of the CPSO on Rosenbrock and rotated Schwefel functions 
with different generations of clones (Denoted as 𝑛) 

Figure 8. Convergent performances of the RBH-PSO on sphere, Rosenbrock and rotated Ras-
tringrin functions with different parameters
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Performance Comparisons 
among CPSo, ar-CPSo, 
rBH-PSo and SPSo

The comparisons of performance among the 
CPSO, the AR-CPSO, the RBH-PSO and the 
SPSO on fifteen typical benchmark test func-
tions are shown in Figure 9. These convergent 
curves are drawn from the averaged values 
of 50 independent runs. In such a way, these 
curves can give the stable performances of the 
CPSO, the AR-CPSO, the RBH-PSO and the 
SPSO completely and reliably. As can be seen 
from Figure 9, the proposed CPSO, AR-CPSO 
and RBH-PSO have much faster convergence 
speed and much more accurate solution than 
that of the SPSO on all fifteen benchmark test 
functions.

Furthermore, in order to verify the vali-
dation and efficiency of our proposed three 
algorithms, by 50 independent runs, we give 
the statistical means and standard deviations, 
in Figure 10, of our obtained solutions of the 
fifteen benchmark test functions listed in Figure 
3, by using the proposed CPSO, AR-CPSO, 
RBH-PSO and the original SPSO, respectively. 
It turns out that the proposed CPSO, AR-CPSO 
and RBH-PSO has much more accurate solution 
than that of the SPSO on all fifteen benchmark 
test functions.

Specifically, the relationship of the conver-
gent speed among the CPSO, the AR-CPSO, 
the RBH-PSO and the SPSO can be obviously 
observed from Figure 9, which could be ex-
pressed as follows:

AR CPSO CPSO RBH PSO SPSO- -    
              (14)
 
where symbol ≻ denotes a relation of partial 
order such as ‘faster than’ in convergence 
speed.

According to Eq.(14), one can easily cap-
ture a clear picture of relations among the CPSO, 
AR-CPSO, RBH-PSO as well as the SPSO.

In a same way, the relationship among the 
proposed CPSO, AR-CPSO, RBH-PSO and the 

SPSO in global exploration capability is also 
easily observed from Figure 10, as follows:

RBH PSO CPSO AR CPSO SPSO- -    
              (15)

where symbol ≻ denotes a relation of partial 
order such as ‘stronger than’ in global explora-
tion capability.

As can be seen from Figure 10 and Eq. 
(15), the proposed CPSO, the AR-CPSO and 
the RBH-PSO has stronger global optimization 
capability than that of the SPSO on almost all 
fifteen benchmark test functions. Specifically, 
the CPSO achieves better global solution than 
the SPSO on twelve test functions. The AR-
CPSO achieves better global solution than the 
SPSO on eleven test functions. The RBH-PSO 
achieves better global solution than the SPSO 
on all fifteen test functions.

Therefore, we can conclude that the pro-
posed CPSO and its two variants are able to 
accelerate the convergence tremendously whilst 
keeping a good global search capability with 
much more accuracy. All of the simulation 
results in experiments have shown that the in-
troduction of the clonal mechanism in NIS into 
the PSO leads to a promising performance.

analysis and discussion

By inspired by immunity-clonal mechanism, 
the CPSO and its two variants, i.e., AR-CPSO 
and RBH-PSO, use a clonal operation to gener-
ate new particles near the promising candidate 
solution according to the fitness value so that 
the search space is able to be enlarged greatly 
and further the diversity of clones is increased to 
avoid being trapped in local minima. In such a 
way, convergent rate and global exploration ca-
pability can be greatly raised simultaneously.

As we know, those fifteen functions listed 
in Figure 3 are of very much different charac-
teristics and properties. Some of them have a 
single minimum, and others have multiple local 
minima. Several functions are of a large-scale 
curvature which guides the search toward the 
global minimum, while others are essentially 
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Figure 9. The average performance of the RBH-PSO and SPSO on 𝐹 1 − 𝐹 15 in Figure 3 with 
40 particles in a swarm over 50
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flat except the area near the global minimum. 
So, these functions are usually used as powerful 
and useful benchmark test functions to test the 
newly developed algorithms thoroughly and 
objectively. In spite of the complexities of these 
functions, it turns out from the comparisons of 
performances among the CPSO, the AR-CPSO, 
the RBH-PSO and the SPSO, that the CPSO and 
its two variants not only has a faster conver-
gence speed but also has more accurate optimal 
solution than that of the SPSO on almost all of 
the benchmark test functions, which strongly 
support our contributions introducing the clonal 
mechanism into the PSO.

In particular, the proposed CPSO, the AR-
CPSO and the RBH-PSO do not need to stop the 
evolving of the swarm (Liu, Qin & Shi, 2004; 
Chen, Qin, Liu & Lu, 2005) for a local search. 
Furthermore, the CPSO and its two variants 
do not need to calculate the gradient of the 
objective function, which is computationally 
expensive cost, and change the structure of the 
conventional PSO (Noel & Jannett, 2004; Vaz 
& Fernandes, 2005). Most recently, we have 
developed parallelism implementations of the 
PSO algorithms based on graphics process-

ing unit (GPU) in a personal computer and 
obtained a more than 20 times of speedup for 
the PSO algorithm for a specific task (Zhou 
& Tan, 2009).

What follows is an application of the 
proposed CPSO-like algorithms on spam 
detection.

SPaM dETECTIon 
aPPlICaTIon

Spam, usually defined as unsolicited com-
mercial e-mail, or unsolicited bulk e-mail, or 
uninterested e-mail from the perspective of 
individual e-mail user, has been regarded as 
an increasingly serious problem to the infra-
structure of Internet. According to the statistics 
from International Telecommunication Union 
(ITU), about 70% to 80% of the present emails 
in Internet are spam. Numerous spams not only 
occupy valuable communications bandwidth 
and storage space, but also threaten the network 
security as it is often used as a carrier of viruses 
and malicious codes. Meanwhile, spam wastes 
much user’s time to tackle with them so that the 

Figure 10. Statistical means (M)and standard deviations (STD)of the solutions of fifteen bench-
mark test functions, listed in Figure 3, given by the AR-CPSO, the CPSO, the RBH-PSO and the 
SPSO over 50 independent runs, where FEs denote the fitness evaluations 
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productivity is reduced considerably. Therefore, 
spam detection has attracted many attentions in 
Internet research community from academia as 
well as industry. Theoretical analysis and many 
practical algorithms, tools, and system level 
solutions have been successfully developed. 
In summary, they can be classified into three 
categories: simple approaches, intelligent ap-
proaches and hybrid approaches.

Simple approaches include munging, list-
ing, aliasing and challenging. These techniques 
are easy to implement while are also prone to 
be deceived by tricks of spammers. Intelligent 
approaches play an increasingly important role 
in anti-spam in recent years for their ability 
of self learning and good performance, which 
include Naïve Bayes (Androutsopoulos, Kout-
sias, Chandrinos & Spyropoulos, 2000; Sahami, 
Dumais, Heckerman & Horvitz, 1998), Support 
Vector Machine (SVM) (Ruan & Tan, 2007; 
Drucker, Wu & Vapnik, 1999; Tan & Wang, 
2004), Artificial Neural Network (ANN) (Clark, 
Koprinska & Poon, 2003; Stuart, Cha & Tappert, 
2004), Artificial Immune System (AIS) (Ruan & 
Tan, 2008; Oda & White, 2003; Secker, Freitas 
& Timmis, 2003; Bezerra & Barra, 2006; Tan, 
2006; Sirisanyalak & Sornil, 2007) and DNA 
Computing (Rigoutsos & Huynh, 2004). As an 
anti-spam shield with one technique alone can 
be easily intruded in practice, consequently, 
several hybrid approaches by combining two or 
more techniques together are proposed (Leiba 
& Borenstein, 2004; Wu, Huang, Lu, Chen & 
Kuo, 2005) for better overall performance.

Support Vector Machine (SVM) has already 
proved its superiority in pattern recognition for 
its generalization performance, which is based 
on the Structural Risk Minimization principle 
from statistical learning theory (Vapnik, 1995; 
Drucker, Burges, Kauffman, Smola & Vapnik, 
1997). The goal of SVM is to find an optimal 
hyper plane for which the lowest true error can 
be guaranteed. In what follows, the SVM is used 
as the classifier for spam detection.

Natural immune system has some desirable 
properties for spam detection, including pattern 
recognition, dynamically changing coverage 
and noise tolerance, etc, some of which are 

drawn for our algorithm. So, inspired by human 
immune system, a concentration based feature 
construction (CFC) approach is constructed to 
characterize each e-mail through a two-element 
feature vector (Tan, Deng & Ruan, 2009). In 
the CFC approach, ‘self’ concentration and 
‘non-self’ concentration are constructed by 
using ‘self’ gene library and ‘non-self’ gene 
library, respectively. Subsequently, they are 
used to form a two-element concentration vec-
tor which characterizes the e-mail efficiently 
and concisely.

Two corpus used to test the CFC approaches 
are the PU1 corpus (Androutsopoulos, Kout-
sias, Chandrinos & Spyropoulos, 2000) and 
Ling corpus1 (Androutsopoulos, Koutsias, 
Chandrinos, Paliouras & Spyropoulos, 2000). 
PU1 corpus consists of 1,099 messages, with 
spam rate 43.77%, Ling corpus consists of 
2,893 messages, with spam rate 16.63%. All the 
messages in both corpora have header fields, 
attachment and HTML tags removed, leaving 
only subject line and mail body text. In PU1, 
each token is mapped to a unique integer to 
ensure the privacy of the content while keep-
ing its original form in Ling. Each corpus is 
divided into ten partitions with approximately 
equal amount of messages and spam rate. The 
version with stop-word removal is used in our 
experiments.

LIBSVM software package is used as an 
implementation of the SVM (Chang & Lin, 
2001). Polynomial kernel with three parameters, 
i.e., gamma, coef0 and degree, is adopted. 
Together with the cost parameter C, there are 
four parameters to be optimized.

The proposed CPSO, AR-CPSO, and 
RBH-PSO as well as three typical algorithms 
are used to tune the above four parameters. A 
corresponding test function model with four 
parameters as input and classification accuracy 
as output is established. The classification ac-
curacy, measured by 10-fold cross validation, 
serves as the objective function. The CPSO-like 
algorithms terminate when the fitness value 
of the global best particle does not change in 
consecutive 50 generations.
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Comparisons of performances among 
the CPSO, the AR-CPSO, the RBH-PSO are 
made and shown in Figure 11, where the ac-
curacy of the CPSO, the AR-CPSO, the RBH-
PSO, Nave Bayesian, Linger-V and SVM-IG 
on corpus PU1 and Ling are listed in digits 
(Androutsopoulos, Koutsias, Chandrinos & 
Spyropoulos, 2000; Clark, Koprinska & Poon, 
2003; Androutsopoulos, Koutsias, Chandrinos, 
Paliouras & Spyropoulos, 2000; Koprinska, 
Poon, Clark & Chan, 2007). Where, Linger-V 
is a NN-based system for automatic e-mail 
classification. All these results are obtained by 
using 10-fold validation. For Naïve Bayesian, 
50 words with the highest mutual information 
scores are selected. LINGER-V and SVM-IG 
uses variance (V) and information gain (IG) as 
the criteria of feature selection, respectively, 
and the best-scoring 256 features are chosen. 
It can be seen from Figure 11 that the proposed 
CPSO-like algorithms is indeed used to tune 
the parameters of SVM classifier and raise the 
accuracy of classification greatly.

Furthermore, the corresponding solutions 
of the four parameters, i.e., gamma, coef0, 
degree and C, optimized by the CPSO, the 
AR-CPSO and the RBH-PSO, respectively, are 
given in Figure 12 for corpus PU1 and in Figure 
13 for corpus Ling. In one word, we succeed 
in applying the proposed PSO algorithms to 
optimize the parameters of the SVM, which 
gives much higher classification accuracy than 
that of current methods.

ConCluSIon

Inspired by immunity-clonal strategies, a clonal 
particle swarm optimization (CPSO) and its two 
variants are proposed and implemented in details 
in this article. By cloning the best individuals 
of every several successive generations, the 
proposed CPSO algorithms have better opti-
mization solving capability and convergence 
performance than the conventional SPSO in 
terms of a number of experiments on fifteen 
benchmark test functions. Two variants to the 

Figure 11. Performances of CPSO, AR-CPSO, RBH-PSO, Naïve Bayesian (NB), Linger-V and 
SVM-IG on corpus PU1 and Ling, by using 10-fold cross-validation

Figure 12. The corresponding solutions of the four parameters, i.e., gamma, coef0, degree and 
c, found by the CPSO, AR-CPSO and RBH-PSO in Figure 11 on corpus PU1,using 10-fold 
cross-validation
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CPSO, i.e., AR-CPSO and RBH-CPSO, are 
developed to enhance the convergent ability. 
For the three proposed algorithms, the local 
search space is enlarged significantly by the 
corresponding clonal operations, which ac-
celerate the local search greatly whilst we not 
only keep the velocity of the original particles 
but also keep the diversity of the swarm for 
global search. Furthermore, an application to 
spam detection by a SVM classifier, optimized 
by the proposed PSO algorithms, is completely 
conducted to achieve a promising result, which 
implies that the proposed PSO algorithms will 
find themselves helpful in many real-world 
applications in future.
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