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Abstract. The nonnegative matrix factorization (NMF) is a bound-
constrained low-rank approximation technique for nonnegative multi-
variate data. NMF has been studied extensively over the last years, but
an important aspect which only has received little attention so far is a
proper initialization of the NMF factors in order to achieve a faster error
reduction. Since the NMF objective function is usually non-differentiable,
discontinuous, and may possess many local minima, heuristic search al-
gorithms are a promising choice as initialization enhancers for NMF.

In this paper we investigate the application of five population based
algorithms (genetic algorithms, particle swarm optimization, fish school
search, differential evolution, and fireworks algorithm) as new initializa-
tion variants for NMF. Experimental evaluation shows that some of them
are well suited as initialization enhancers and can reduce the number of
NMF iterations needed to achieve a given accuracy. Moreover, we com-
pare the general applicability of these five optimization algorithms for
continuous optimization problems, such as the NMF objective function.

1 Introduction

The nonnegative matrix factorization (NMF, [1]) leads to a low-rank approxi-
mation which satisfies nonnegativity constraints. Contrary to other low-rank ap-
proximations such as SVD, these constraints may improve the sparseness of the
factors and due to the “additive parts-based” representation also improve inter-
pretability [1, 2]. NMF consists of reduced rank nonnegative factors W ∈ R

m×k

and H ∈ R
k×n with k � min{m, n} that approximate matrix A∈ R

m×n. NMF
requires that all entries in A, W and H are zero or positive. The nonlinear
optimization problem underlying NMF can generally be stated as

min
W,H

f(W, H) = min
W,H

1
2
||A − WH ||2F . (1)

Initialization. Algorithms for computing NMF are iterative and require initial-
ization of the factors W and H . NMF unavoidably converges to local minima,
probably different ones for different initialization (cf. [3]). Hence, random initial-
ization makes the experiments unrepeatable since the solution to Equ. (1) is not
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unique in this case. A proper non random initialization can lead to faster error
reduction and better overall error at convergence. Moreover, it makes the exper-
iments repeatable. Although the benefits of good NMF initialization techniques
are well known in the literature, most studies use random initialization (cf. [3]).

The goal of this paper is to utilize population based algorithms (abbreviated
as “PBAs”) as initialization booster for NMF. The PBAs are used to initialize
the factors W and H in order to minimize the NMF objective function prior to
the factorization. The goal is to find a solution with smaller overall error at con-
vergence, and/or to speed up convergence of NMF (i.e., smaller approximation
error for a given number of NMF iterations). Instead of initializing the com-
plete factors W and H at once, we sequentially optimize single rows of W and
single columns of H , respectively. This allows for parallel/distributed computa-
tion by splitting up the initialization into several partly independent sub-tasks.
Mathematically, we consider the problem of finding a “good” (ideally the global)
solution of an optimization problem with bound constraints in the form:

min
x∈Ω

f(x), (2)

where f : R
N → R is a nonlinear function, and Ω is the feasible region. In the

context of this paper, f refers to the optimization (i.e., minimization) of the error
of a single row or column, respectively, of the NMF approximation A ≈ WH .
Hence, f is usually not convex and may possess many local minima. Since NMF
allows only positive or zero values the search space Ω is limited to nonnegative
values. In this paper we consider the following optimization algorithms: Genetic
algorithms (GA), particle swarm optimization (PSO), fish school search (FSS),
differential evolution (DE), and the fireworks algorithm (FWA).

Related work. So far, only few algorithms for non random NMF initializa-
tion have been published. [4] used spherical k-means clustering to group col-
umn vectors of A as input for W . A similar technique was used in [5]. Another
clustering-based method of structured initialization designed to find spatially
localized basis images can be found in [6]. [3] used an initialization technique
based on two SVD processes called nonnegative double singular value decomposi-
tion (NNDSVD). Experiments indicate that this method has advantages over the
centroid initialization in [4] in terms of faster convergence. In a recent study [7]
we have successfully applied feature selection methods for initializing the basis
vectors in W . Compared to the methods mentioned before our approach has com-
putational advantages but can only be applied if the class variables of all data
objects are available. Summarizing, so far no generally preferable initialization
method for NMF exists which motivates for more research in this area.

Only two studies can be found that combine NMF and PBAs, both of them are
based on GAs. [8] have investigated the application of GAs on sparse NMF for
microarray analysis, while [9] have applied GAs for boolean matrix factorization,
a variant of NMF for binary data based on Boolean algebra. The results in these
two papers are promising but barely connected to the initialization techniques
introduced in this paper. To the best of our knowledge, there are no studies that
investigate the application PBAs as initialization enhancers for NMF.
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2 Methodology

2.1 The NMF Algorithm

The general structure of NMF algorithms is given in Alg. 1. Usually, W and H are
initialized randomly and the whole algorithm is repeated several times (maxrep-
etition). In each repetition, NMF update steps are processed until a maximum
number of iterations is reached (maxiter). These update steps are algorithm spe-
cific and differ from one NMF variant to the other. If the approximation error
drops below a pre-defined threshold, or if the shift between two iterations is very
small, the algorithm might stop before all iterations are processed.

Given matrix A ∈ R
m×n and k � min{m, n};

for rep = 1 to maxrepetition do
W = rand(m, k);
(H = rand(k, n));
for i = 1 to maxiter do

perform algorithm specific NMF update steps;
check termination criterion;

end
end

Algorithm 1. General Structure of NMF Algorithms

Algorithmic variants. Several algorithmic variants for computing NMF have
been developed. Early algorithms comprise multiplicative update (MU) and
alternating least squares (ALS) [1], as well as projected gradient (PG) [10].
Over time, other algorithms were derived, such as a combination of ALS and
PG (ALSPGRAD) [10], quasi Newton-type NMF [6], as well as fastNMF and
bayesNMF [11].

2.2 Population Based Optimization Algorithms

Genetic Algorithms (GA, [12]) are global search heuristics that operate on a
population of solutions using techniques encouraged from evolutionary processes
such as mutation, crossover, and selection.

In Particle Swarm Optimization (PSO, [13]) each particle in the swarm
adjusts its position in the search space based on the best position it has found
so far as well as the position of the known best fit particle of the entire swarm.

In Differential Evolution (DE, [14]) a particle is moved around in the search-
space using simple mathematical formulation, if the new position is an improve-
ment the particles’ position is updated, otherwise the new position is discarded.

Fish School Search (FSS, [15, 16]) is based on the behavior of fish schools.
The main operators are feeding (fish can gain/loose weight, depending on the
region they swim in) and swimming (mimics the collective movement of all fish).

The Fireworks Algorithm (FWA, [17]) is a recently developed swarm intel-
ligence algorithm that simulates the explosion process of fireworks. Two types
sparks are generated, based on uniform and Gaussian distribution, respectively.
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3 NMF Initialization Using Population Based Algorithms

Before describing new initialization methods using population based algorithms,
we discuss some properties of the Frobenius norm (cf. [18]), which is used as
objective function to measure the quality of the NMF approximation (Equ. (1)).
The Frobenius norm of a matrix D∈ R

m×n is defined as

||D||F =

⎛
⎝

min(m,n)∑
i=1

σi

⎞
⎠

1/2

=

⎛
⎝

m∑
i=1

n∑
j=1

|dij |2
⎞
⎠

1/2

, (3)

where σi are the singular values of D, and dij is the element in the ith row and
jth column of D. The Frobenius norm can also be computed row wise or column
wise. The row wise calculation is

||D||RW
F =

(
m∑

i=1

|dr
i |2
)1/2

, (4)

where |dr
i | is the norm1 of the ith row vector of D, i.e., |dr

i | = (
∑n

j=1 |ri
j |2)1/2,

and ri
j is the jth element in row i. The column wise calculation is

||D||CW
F =

⎛
⎝

n∑
j=1

|dc
j |2
⎞
⎠

1/2

, (5)

with |dc
j | being the norm of the jth column vector of D, i.e., |dc

j | = (
∑m

i=1 |cj
i |2)1/2,

and cj
i being the ith element in column j. Obviously, a reduction of the Frobenius

norm of any row or any column of D leads to a reduction of the total Frobenius
norm ||D||F . In the following, D refers to the distance matrix of the original
data and the approximation, D = A − WH .

Initialization procedure. We exploit these properties of the Frobenius norm
to initialize the basis vectors in W row wise and the coefficient matrix H column
wise. The goal is to find heuristically optimal starting points for single rows of
W and single columns of H , which can be computed with all PBAs mentioned in
Section 2.2. Alg. 2 shows the pseudo code for the initialization procedure. In the
beginning, H0 needs to be initialized randomly using a non-negative lower bound
for the initialization. In the first loop, W is initialized row wise (cf. Equ. 4), i.e.,
row wr

i is optimized in order to minimize the Frobenius norm of the ith row dr
i

of D, which is defined as dr
i = ar

i − wr
i H0. In the second loop, the columns of

H are initialized using on the previously computed rows of W . H is initialized
column wise (cf. Equ. 5), i.e., column hc

j is optimized in order to minimize the
Frobenius norm of the jth column dc

j of D, which is defined as dc
j = ac

j − Whc
j .

1 For vectors, the Frobenius norm is equal to the Euclidean norm.
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Given matrix A ∈ R
m×n and k � min{m, n};

H0 = rand(k, n);
for i = 1 to m do

Use PBAs to find wr
i that minimizes ||ar

i − wr
i H0||F , cf. Equ. 4;

W (i, :) = wr
i ;

end
for j = 1 to n do

Use PBAs to find hc
j that minimizes ||ac

j − Whc
j ||F , cf. Equ. 5;

H(:, j) = hc
j ;

end
Algorithm 2. Pseudo Code for NMF Initialization using PBAs

In line 4, input parameters for the PBAs are ar
i (the ith row of A) and H0, the

output is the initialized row vector wr
i , the ith row of W . In line 8, input parame-

ters are ac
j (the jth column of A) and the already optimized factor W , the output

is the initialized column vector hc
j , the jth column of H . Global parameters used

for all PBAs are upper/lower bound of the search space and the initialization
(the starting values of the PBAs), number of particles (chromosomes, fish, ...),
and maximum number of fitness evaluations. The dimension of the optimization
problem is identical to the rank k of the NMF.

Parallelism. All iterations within the first for -loop and within the second for -
loop in Algorithm 2 are independent from each other, i.e., the initialization
of any row of W does not influence the initialization of any other row of W
(identical for columns of H). This allows for a parallel implementation of the
proposed initialization method. In the first step, all rows of W can be initialized
concurrently. In the second step, the columns of H can be computed in parallel.

4 Experimental Evaluation

For PSO and DE we used the Matlab implementations from [19] and adapted
them for our needs For PSO we used the constricted Gbest topology using the
parameters suggested in [20], for DE the crossover probability parameter was set
to 0.5. For GA we adapted the Matlab implementation of the continuous genetic
algorithm available in the appendix of [21] using a mutation rate of 0.2 and a
selection rate of 0.5. For FWA we used the same implementation and parameter
settings as in the introductory paper[17], and FSS was self-implemented following
the pseudo algorithm and the parameter settings provided in [15]. All results are
based on a randomly created, dense 100×100 matrix.

4.1 Initialization Results

At first we evaluate the initial error of the approximation after initializing W
and H (i. e., before running an NMF algorithm). Figures 1 and 2 show the
average approximation error (i. e., fitness of the PBAs) per row and per column,
respectively, for a varying number of fitness function evaluations.
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Fig. 1. Left side: average appr. error per row (after initializing rows of W ). Right side:
average appr. error per column (after initializing columns of H) – rank k =5.

Fig. 2. Left side: average appr. error per row (after initializing rows of W ). Right side:
average appr. error per column (after initializing columns of H) – rank k =30.
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The figures on the left side show the average (mean) approximation error per
row after initializing the rows of W (first loop in Alg. 2). The figures on the right
side show the average (mean) approximation error per column after initializing
the columns of H (second loop in Alg. 2). The legends are ordered according to
the average approximation error achieved after the maximum number of function
evaluations for each figure (top = worst, bottom = best).

Results for k=5. Fig. 1 shows the results achieved for a small NMF rank k
set to 5 (k is identical to the problem dimension of the PBAs). In Fig. 1 (A),
only 500 evaluations are used to initialize the rows of W based on the randomly
initialized matrix H0 (see Alg. 2). In Fig. 1 (B) the previously initialized rows
of W are used to initialize the columns of H – again using only 500 function
evaluations. As can be seen, (to a small amount) GA, DE and especially FWA
are sensitive to the small rank k and the small number of function evaluations.
PSO and FSS achieve the best approximation results, FSS is the fastest in terms
of accuracy per function evaluations. The lower part (C, D) of Fig. 1 shows the
results when increasing the number of function evaluations for all PBAs from
500 to 2 500. The first 500 evaluations in (C) are identical to (A), but the results
in (D) are different from (B) since they rely on the initialization of the rows of W
(the initialization results after the maximum number of function evaluations in
Fig. 1 (A) and (C) are different). With more function evaluations, all algorithms
except FWA achieve almost identical results.

Results for k=30. With increasing complexity (i. e., increasing rank k) FWA
clearly improves its results, as shown in Fig. 2. Together with PSO, FWA clearly
outperforms the other algorithms when using only 500 function evaluations, see
Fig. 2 (A, B). With increasing number of function evaluations, all PBAs achieve
identical results when initializing the rows of W (see Fig. 2 (C)). Note that
GA needs more than 2 000 evaluations to achieve a low approximation error.
When initializing the columns of H (see Fig. 2 (D)), PSO suffers from its high
approximation error during the first iterations. The reason for this phenomenon
is the relatively sparse factor matrix W computed by PSO. Although PSO is able
to reduce the approximation error significantly during the first 500 iterations, the
other algorithms achieve slightly better results after 2 500 function evaluations.
FSS and GA achieve the best approximation accuracy. The NMF approximation
results in Section 4.2 are based on factor matrices W and H initialized with the
same parameters as Fig. 2 (C, D): k=30, 2 500 function evaluations.

Parallel implementation. We implemented all population based algorithms
in Matlab using Matlab’s Parallel Computing Toolbox which allows to run eight
workers (threads) concurrently. Compared to sequential execution we achieved a
speedup of 7.47, which leads to an efficiency of 0.94. Our current implementation
is computationally slightly more demanding than the NNDSVD initialization (cf.
Section 1 and 4.2). However, we are currently working on an implementation that
allows to use up to 32 Matlab workers (using Matlab’s Distributed Computing
Server). Since we expect the efficiency to remain stable with increasing number
of workers, this implementation should be significantly faster than NNDSVD.
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Fig. 3. Approximation error achieved by different NMF algorithms using different
initialization variants (k=30, after 2500 fitness evaluations for PBA initialization)

4.2 NMF Approximation Results

In this subsection we report approximation results achieved by NMF using the
factors W and H initialized by the PBAs. We compare our results to random
initialization as well as to NNDSVD (cf. Section 1), which is the best (in terms
of runtime per accuracy) available initialization in the literature for unclassified
data. In order to provide reproducible results we used only publicly available
Matlab implementations of NMF algorithms. We used the following implementa-
tions: Multiplicative Update (MU, implemented in Matlab’s Statistics Toolbox),
ALS using Projected Gradient (ALSPG, [10]), BayesNMF and FastNMF (both
[11]). Matlab code for NNDSVD initialization is also publicly available (cf. [3]).

Fig. 3 shows the approximation error on the y-axis (log scale) after a given
number of NMF iterations for four NMF algorithms using different initializa-
tion methods. The initialization methods in the legend of Fig. 3 are ordered
according to the approximation error achieved after the maximum number of
iterations plotted for each figure (top =worst, bottom =best). The classic MU
algorithm (A) presented in the first NMF publication [1] has low cost per iter-
ation but converges slowly. Hence, for this algorithm the first 100 iterations are
shown. For MU, all initialization variants achieve a smaller approximation error
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than random initialization. NNDSVD shows slightly better results than PSO
and FWA, but GA, DE and especially FSS are able to achieve a smaller error
per iteration than NNDSVD. Since algorithms (B) - (D) in Fig. 3 have faster con-
vergence per iteration than MU but also also have higher cost per iteration, only
the first 25 iterations are shown. For ALSPG (B), all new initialization variants
based on PBAs are clearly better than random initialization and also achieve a
better approximation error than NNDSVD. The performance of the five PBAs
is very similar for this algorithm. FastNMF (C) and BayesNMF (D) are two
recently developed NMF algorithms which were developed after the NNDSVD
initialization. Surprisingly, when using FastNMF, NNDSVD achieves a lower
approximation than random initialization, but all initializations based on PBAs
are slightly better than random initialization. The approximation error achieved
with BayesNMF strongly depends on the initialization of W and H (similar to
ALSPG). The PSO initialization shows a slightly higher approximation error
that NNDSVD, but all other PBAs are able to achieve a smaller approximation
error than the state-of-the-art initialization, NNDSVD.

5 Conclusion

In this paper we introduced new initialization variants for nonnegative matrix
factorization (NMF) using five different population based algorithms (PBAs),
particle swarm optimization (PSO), genetic algorithms (GA), fish school search
(FSS), differential evolution (DE), and fireworks algorithm (FWA). These algo-
rithms were used to initialize the rows of the NMF factor W , and the columns
of the other factor H , in order to achieve a smaller approximation error for a
given number of iterations. The proposed method allows for parallel implemen-
tation in order to reduce the computational cost for the initialization. Overall,
the new initialization variants achieve better approximation results than random
initialization and state-of-the-art methods. Especially FSS is able to significantly
reduce the approximation error of NMF (for all NMF algorithms used), but other
heuristics such as DE and GA also achieve very competitive results.

Another contribution of this paper is the comparison of the general applicabil-
ity of population based algorithms for continuous optimization problems, such as
the NMF objective function. Experiments show that all algorithms except PSO
are sensitive to the number of fitness evaluations and/or to the complexity of
the problem (the problem dimension is defined by the rank of NMF). Moreover,
the material provided in Section 4 is the first study that compares the recently
developed PBAs, fireworks algorithm and fish school search. Current work in-
cludes high performance/distributed initialization, and a detailed comparative
study of the proposed methods. A future goal is to improve NMF algorithms by
utilizing heuristic search methods to avoid NMF getting stuck in local minima.
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