
Feeding the Fish – Weight Update Strategies

for the Fish School Search Algorithm

Andreas Janecek and Ying Tan

Key Laboratory of Machine Perception (MOE), Peking University
Department of Machine Intelligence, School of Electronics Engineering and

Computer Science, Peking University, Beijing, 100871, China
andreas.janecek@univie.ac.at, ytan@pku.edu.cn

Abstract. Choosing optimal parameter settings and update strategies
is a key issue for almost all population based optimization algorithms
based on swarm intelligence. For state-of-the-art optimization algorithms
the optimal parameter settings and update strategies for different prob-
lem sizes are well known.

In this paper we investigate and compare different newly developed
weight update strategies for the recently developed Fish School Search
(FSS) algorithm. For this algorithm the optimal update strategies have
not been investigated so far. We introduce a new dilation multiplier as
well as different weight update steps where fish in poor regions loose
weight more quickly than fish in regions with a lot of food. Moreover,
we show how a simple non-linear decrease of the individual and volitive
step parameters is able to significantly speed up the convergence of FSS.

1 Introduction

The Fish School Search (FSS) algorithm [1, 2, 3] is a recently developed swarm
intelligence algorithm based on the social behavior of schools of fish. By living
in swarms, the fish improve survivability of the whole group due to mutual pro-
tection against enemies. Moreover, the fish perform collective tasks in order to
achieve synergy (e.g. finding locations with lots of food). Comparable to real
fish that swim in the aquarium in order to find food, the artificial fish search
(swim) the search space (aquarium) for the best candidate solutions (locations
with most food). The location of each fish represents a possible solution to the
problem – comparable to locations of particles in Particle Swarm Optimization
(PSO, [4]). The individual success of a fish is measured by its weight – conse-
quently, promising areas can be inferred from regions where bigger ensembles of
fish are located. As for other heuristic search algorithms we consider the prob-
lem of finding a “good” (ideally the global) solution of an optimization problem
with bound constraints in the form: minx∈Ω f(x), where f : R

N → R is a non-
linear objective function and x is the feasible region. Since we do not assume
that f is convex, f may possess many local minima. Solving such tasks for high
dimensional real world problems may be expensive in terms of runtime if exact
algorithms were used. Various nature inspired algorithms have shown to be able

Y. Tan et al. (Eds.): ICSI 2011, Part II, LNCS 6729, pp. 553–562, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



554 A. Janecek and Y. Tan

to preform well with these difficulties. Even though if these algorithms are only
meta-heuristics, i.e. there is no proof that they reach the global optimum of the
solution, these techniques often achieve a reasonably good solution for the given
task at hand in a reasonable amount of time.

Related work. The FSS algorithm was introduced to the scientific community
in 2008 [1]. This paper was extended to a book chapter [2] where FSS has been
evaluated and compared to different variants of PSO. Results indicate that FSS is
able to achieve better results as PSO on several benchmark functions, especially
on multimodal functions with several local minima. In another study [3] the same
authors analyzed the importance of the swimming operators of FSS and showed
that all operators have strong influences on the results. Although for some bench-
marks the individual operator alone sometimes produced better results than all
operators together, the results using only the individual operator are highly sen-
sitive to the initial and also final values of stepind and stepvol. Moreover, it was
shown that a rather large initial value for stepind (stepind initial = 10%) generally
achieved the best results. In a very recent study FSS has been used successfully
to initialize the factors of the non-negative matrix factorization (NMF) [5].

In this work we aim at investigating the influence of newly developed weight
update strategies for FSS as well as the influence of a non-linear decrease of
the step-size parameters stepind and stepvol. We introduce and compare weight
update strategies based on a linear decrease of weights, as well as a fitness based
weight decrease strategy. Moreover, we introduce a combination of (i) this fit-
ness based weight decrease strategy, (ii) the non-linear decrease of the step-size
parameters, and (iii) a newly introduced dilation multiplier which breaks the
symmetry between contraction and dilation but can be useful in some situa-
tions to escape from local minima. Experimental evaluation performed on five
benchmark functions shows that especially the non-linear decrease of the step-
size parameters is an effective and efficient way to significantly speed up the
convergence of FSS and also to achieve better fitness per iteration results.

2 The Fish School Search Algorithm

FSS is based on four operators which can be grouped into two classes: feeding
and swimming. Feeding represents updating the weight of the fish based on the
successfulness of the current movement. The swimming operators (individual
movement, collective instinctive movement, and collective volitive movement)
move the fish according to the feeding operator. FSS is closely related to PSO and
other population based algorithms such as Genetic Algorithms [6], Differential
Evolution [7], and the Firework Algorithm [8]. The main difference compared to
PSO is that no global variables need to be logged in FSS. Some similarities and
differences of FSS to other population based algorithms are given in [2].

FSS operators. In the following we briefly review the basic operators of the
Fish School Search algorithm as presented in [3]. A pseudo code of the FSS
algorithm can also be found in [3]. The algorithm starts with all fish initialized
at random positions and equal weight wi(0) set to 1.



Feeding the Fish – Weight Update Strategies for the FSS Algorithm 555

A. Individual movement: In each iteration, each fish randomly chooses a
new position which is determined by adding to each dimension j of the current
position a random number multiplied by a predetermined step (stepind).

nj(t) = xj(t) + randu(−1, 1) ∗ stepind, (1)

where randu(−1, 1) is a random number from a uniform distribution in the
interval [−1, 1]. The movement only occurs if the new position n has a better
fitness than the current position x, and if n lies within the aquarium boundaries.
Fitness difference (Δf) and displacement (Δx) are evaluated according to

Δf = f(n) − f(x), (2)

Δx = n − x. (3)

If no individual movement occurs Δf = 0 and Δx = 0. The parameter stepind

decreases linearly during the iterations

stepind(t + 1) = stepind(t) − stepind initial − stepind final

number of iterations
. (4)

B. Feeding: Fish can increase their weight depending on the success of the
individual movement according to

wi(t + 1) = wi(t) + Δf(i)/max(Δf), (5)

where wi(t) is the weight of fish i, Δf(i) is the difference of the fitness at current
and new location, and max(Δf) is the maximum Δf of all fish. An additional
parameter wscale limits the weight of a fish (1 <= wi <= wscale).

C. Collective instinctive movement: After all fish have moved individually, a
weighted average of individual movements based on the instantaneous success of
all fish is computed. All fish that successfully performed individual movements
influence the resulting direction of the school movement (i.e. only fish whose
Δx !=0 influence the direction). The resulting direction m(t) is evaluated by

m(t) =
∑N

i=1 ΔxiΔfi
∑N

i=1 Δfi

. (6)

Then, all fish of the school update their positions according to m(t)

xi(t + 1) = xi(t) + m(t). (7)

D. Collective volitive movement: This movement is either a contraction of
the swarm towards the barycenter of all fish, or a dilation of the swarm away from
the barycenter, depending on the overall success rate of the whole school of fish.
If the overall weight increased after the individual movement step, the radius of
the fish school is contracted in order to increase the exploitation ability, else the



556 A. Janecek and Y. Tan

radius of the fish school is dilated in order to cover a bigger area of the search
space. First, the barycenter b (center of mass/gravity) needs to be calculated

b(t) =
∑N

i=1 xiwi(t)
∑N

i=1 wi(t)
. (8)

When the total weight of the school increased in the current iteration, all fish
must update their location according to

x(t + 1) = x(t) − stepvolrandu(0, 1)
(x(t) − b(t))

distance(x(t), b(t))
, (9)

when the total weight decreased in the current iteration the update is

x(t + 1) = x(t) + stepvolrandu(0, 1)
(x(t) − b(t))

distance(x(t), b(t))
, (10)

where distance() is a function which returns the Euclidean distance between
x and b, and stepvol is a predetermined step used to control the displacement
from/to the barycenter. As suggested in [3] we set stepvol = 2 ∗ stepind.

3 New Update Strategies

On the one hand, we apply new weight update strategies that aim at adjusting
the weight of each fish in each iteration (S1, S2 ). On the other hand, we intro-
duce a non-linear update to the step-size parameters stepind and stepvol (S3 ).
Finally, S4 is a combination of S2, S3, and an additional parameter.

0 2500 5000
0.001 %

10 % A B

C

D

a a

b

b

c

Iterations%
 o

f s
ea

rc
h 

sp
ac

e 
am

pl
itu

de

Behavior of step_ind

Fig. 1. Linear and non-linear decrease of step ind and step vol

• S1 (weight update) - linear decrease of weights: Here, the weights of all fish
are decreased linearly in each iteration by a pre-defined factor Δ lin such
that after the weight update in Eqn. (5) the weight of all fish is reduced by
wi = wi − Δ lin, and all weights smaller than 1 are set to 1.

• S2 (weight update) - fitness based decrease of weights: Here, not all fish will
have their weights diminished by the same factor, instead fish in poor regions
will loose weight more quickly. If f(x) is a vector containing the fitness values
of all fish at their current location, the weight of the fish will be decreased by



Feeding the Fish – Weight Update Strategies for the FSS Algorithm 557

Δf fit based = normalize(f(x)), where normalize() is a function that scales
f(x) in the range [0, 1]. Experiments showed that in order to get good results
Δf fit based needs to be scaled by a constant cfit (between 3 and 5), which is
done by Δffit based = (Δf fit based.

2)/cfit. Finally the weights are updated
by (11) and weights smaller than 1 are set to 1.

wi = wi − Δf fit based (11)

• S3 (step size update) - non-linear decrease of stepind and stepvol: S3 im-
plements a non-linear decrease of the step size parameters which is based
on the shape of an ellipse (see Fig. 1). The motivation for this non-linear
decrease is that the algorithm is forced to converge earlier to the (ideally
global) minimum and has more iterations to search the area around the op-
timum in more detail. The bold curve in Fig. 1 shows the new non-linear
step parameter stepind nonlin, while the dotted line (“c”) shows the behavior
when stepind is decreased linearly. Remember that stepvol = 2 ∗ stepind.
Let a be the number of iterations, let b be the distance between stepind initial

and stepind final, and let t be the number of the current iteration. In each
iteration stepind nonlin(t) is calculated by

stepind nonlin(t) = stepind initial − sqrt
[
(1 − t2/a2) ∗ b2

]
, (12)

which is derived from the canonical ellipse equation x2/a2+y2/b2 = 1 (where
x is replaced with t, and y is replaced with stepstepind nonlin(t).

• S4 - combination of S2, S3 and a dilation multiplier: This strategy com-
bines S2 and S3 with a newly introduced dilation multiplier cdil that allows
to cover a bigger area of the search space when a dilation occurs in the col-
lective volitive movement (i.e. when the total weight of the school decreased
in the current iteration). The general idea behind the dilation multiplier is
to help the algorithm to jump out of local minima. S2 and S3 are applied
in every iteration, and, moreover, in case of a dilation all weights are reset
to their initial weight (w(t) = 1). A pseudo code of S4 follows

while stop criterion is not met do
apply (in this order) Eqns. (1) (2) (3) (11) (12) (6) (7) (8);
if (w(t) > w(t− 1)) then

Eqn. (9);
else

w(t) = 1;

x(t+ 1) = x(t) + cdil ∗ stepvol ∗ randu(0, 1) ∗ (x(t)−b(t))
distance(x(t),b(t))

end

end

4 Experimental Setup

Table 1 shows the benchmark functions used for minimization in this paper, as
well as the search space and the optimum point for each function. The initializa-
tion subspace was chosen to be in the interval [up/2, up], where up is the upper



558 A. Janecek and Y. Tan

Table 1. Benchmark test functions and function parameters

Name Equation Search space Optimum

FAckley(x) = −20exp

(
−0.2

√
1
D

D∑
i=1

x2
i

)

− exp

(
1
n

D∑
i=1

cos(2πxi)

)
+ 20 + e

−32 ≤ xi ≤ 32 0.0D

FGriewank(x) =
D∑

i=1

x2
i

4000 −
D∏

i=1

cos
(
xi/
√
i
)
+ 1 −600 ≤ xi ≤ 600 0.0D

FRastrigin(x) = 10D +
D∑

i=1

[
x2
i − 10 cos(2πxi)

] −5.12 ≤ xi ≤ 5.12 0.0D

FRosenbrock(x) =
D−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)

2
] −30 ≤ xi ≤ 30 1.0D

FSphere(x) =
D∑

i=1

x2
i −100 ≤ xi ≤ 100 0.0D

limit of the search space for each function (similar to [3]). We used the same
settings as in [3]: 5 000 iterations, 30 dimension, and 30 fishes, leading to 300 000
functions evaluations. We performed 15 trials per function. For all experiments
stepind initial was set to 10% of up, and stepind final was set to 0.001% of up.

5 Evaluation

In this section we evaluate the update strategies introduced in Section 3. First,
we discuss each strategy separately and focus especially on fitness per iteration
aspects, i.e. how many iterations are needed in order to achieve a given fitness.
Later we compare the best results achieved by all update strategies to each other
and discuss the increase of computational cost caused by the update strategies.
In all figures basic FSS refers to the basic FSS algorithm as presented in [3].

S1 - linear decrease of weights. The results for strategy S1 are show in
Fig. 2. The results are shown for four different values of Δlin (abbreviated as
“Δ lin 0.0XXX” in the figure) ranging from 0.0125 to 0.075. Subplots (B) to
(F) show the fitness per iteration for the five benchmark functions, and Subplot
(A) shows the average (mean) weight of all fish per iteration, which decreases
with increasing Δlin. Obviously, in most cases S1 is not able to improve the
results, but for the Rastrigin function the final result after 5 000 iterations can
by clearly improved when Δlin is set to 0.075 (and partly also for 0.05). However,
generally this update strategy is neither able to improve the final results after
5 000 iterations nor to achieve better results after a given number of iterations.
S2 - fitness based decrease of weights. The results for strategy S2 are
show in Fig. 3. Subplot (A) shows again the average (mean) weight of all fish
per iteration – the average weight is very similar to Subplot (A) of Fig. 2. The
parameter cfit that scales the decrease of the weights is abbreviated as “cfit X”.
The results for the Rastrigin function are even better than for the strategy S1



Feeding the Fish – Weight Update Strategies for the FSS Algorithm 559

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

Iterations

m
ea

n(
w

ei
gh

t)

(A) Avg. weight per iteration

 

 
basic FSS
Δ lin 0.0250
Δ lin 0.0500
Δ lin 0.0750

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

Iterations

f(x
)

(B) Ackley function

 

 
basic FSS
Δ lin 0.0250
Δ lin 0.0500
Δ lin 0.0750

0 1000 2000 3000 4000 5000
0

2

4

6

8

Iterations

f(x
)

(C) Griewank function

 

 
basic FSS
Δ lin 0.0250
Δ lin 0.0500
Δ lin 0.0750

0 1000 2000 3000 4000 5000

50

100

150

200

Iterations

f(x
)

(D) Rastrigin function

 

 

basic FSS
Δ lin 0.0250
Δ lin 0.0500
Δ lin 0.0750

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Iterations

f(x
)

(E) Rosenbrock function

 

 

basic FSS
Δ lin 0.0250
Δ lin 0.0500
Δ lin 0.0750

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Iterations

f(x
)

(F) Sphere function

 

 

basic FSS
Δ lin 0.0250
Δ lin 0.0500
Δ lin 0.0750

Fig. 2. S1 - linear decrease of weights

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

Iterations

m
ea

n(
w

ei
gh

t)

(A) Avg. weight per iteration

 

 
basic FSS
c

fit
 3

c
fit

 4

c
fit

 5

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

Iterations

f(x
)

(B) Ackley function

 

 
basic FSS
c

fit
 3

c
fit

 4

c
fit

 5

0 1000 2000 3000 4000 5000
0

2

4

6

8

Iterations

f(x
)

(C) Griewank function

 

 
basic FSS
c

fit
 3

c
fit

 4

c
fit

 5

0 1000 2000 3000 4000 5000

50

100

150

200

Iterations

f(x
)

(D) Rastrigin function

 

 

basic FSS
c

fit
 3

c
fit

 4

c
fit

 5

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Iterations

f(x
)

(E) Rosenbrock function

 

 
basic FSS
c

fit
 3

c
fit

 4

c
fit

 5

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Iterations

f(x
)

(F) Sphere function

 

 

basic FSS
c

fit
 3

c
fit

 4

c
fit

 5

Fig. 3. S2 - fitness based decrease of weights



560 A. Janecek and Y. Tan

0 1000 2000 3000 4000 5000
0.001 %

10 %

Iterations%
 o

f s
ea

rc
h 

sp
ac

e 
am

pl
itu

de

(A) Behavior of step_ind

 

 
basic FSS
interpolated
non−linear

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

Iterations

f(x
)

(B) Ackley function

 

 
basic FSS
interpolated
non−linear

0 1000 2000 3000 4000 5000
0

2

4

6

8

Iterations

f(x
)

(C) Griewank function

 

 
basic FSS
interpolated
non−linear

0 1000 2000 3000 4000 5000

50

100

150

200

Iterations

f(x
)

(D) Rastrigin function

 

 
basic FSS
interpolated
non−linear

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Iterations

f(x
)

(E) Rosenbrock function

 

 
basic FSS
interpolated
non−linear

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Iterations

f(x
)

(F) Sphere function

 

 
basic FSS
interpolated
non−linear

Fig. 4. S3 - non-linear decrease of stepind and stepvol

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

Iterations

m
ea

n(
w

ei
gh

t)

(A) Avg. weight per iteration

 

 
c

dil
 5

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

Iterations

f(x
)

(B) Ackley function

 

 
basic FSS
non−linear
c

dil
 4

c
dil

 5

0 1000 2000 3000 4000 5000
0

2

4

6

8

Iterations

f(x
)

(C) Griewank function

 

 
basic FSS
non−linear
c

dil
 4

c
dil

 5

0 1000 2000 3000 4000 5000

50

100

150

200

Iterations

f(x
)

(D) Rastrigin function

 

 
basic FSS
non−linear
c

dil
 4

c
dil

 5

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Iterations

f(x
)

(E) Rosenbrock function

 

 
basic FSS
non−linear
c

dil
 4

c
dil

 5

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

10000

Iterations

f(x
)

(F) Sphere function

 

 
basic FSS
non−linear
c

dil
 4

c
dil

 5

Fig. 5. S4 - combination of S1, S2 and dilation multiplier



Feeding the Fish – Weight Update Strategies for the FSS Algorithm 561

Table 2. Comparison of mean value and standard deviation (in small font under mean
vaule) for 15 trials after 5 000 iterations for the five benchmarks functions. The best
results are highlighted in bold. Last row: computational cost.

Function basic FSS S1 S2 S3 S4

FAckley(x) 0.0100
0.0019

0.0100
0.0023

0.1270
0.0043

0.0007
6.7e-05

0.0007
5.3e-05

FGriewank(x) 0.0233
0.0098

0.0172
0.0061

0.7501
0.1393

0.0058
0.0048

3.2e-05
5.7e-06

FRastrigin(x) 70.443
19.465

36.879
8.0181

30.745
11.801

67.126
15.834

48.156
13.780

FRosenbrock(x) 27.574
1.2501

28.498
1.3876

26.277
2.3244

22.775
2.5801

23.718
2.5353

FSphere(x) 0.0699
0.0183

0.0649
0.0237

0.1165
0.0615

3.4e-04
7.26e-05

3.4e-04
6.59e-05

Runtime 1.0 × 1.0017 × 1.0042 × 1.0142 × 1.0238

and also the results for the Rosenbrock function could be improved slightly. As
Table 2 indicates, this strategy achieves the best final result for the Rastrigin
function of all strategies after 5 000 iterations. For the other benchmark functions
this strategy perform equally or worse than basic FSS.

S3 - non-linear decrease of stepind and stepvol. S3 results are show in Fig. 4,
where stepnonlinear(t) is abbreviated as “non-linear”. “Interpolated” shows the
results using an interpolation of “basic FSS” and “non-linear”, i.e. stepinterpol(t)
= stepind(t) - [stepind(t) − stepnonlinear(t)] /2. Subplot (A) shows the behavior
of stepind and should be compared to Fig. 1. The results indicate that this non-
linear decrease of the step-size parameters significantly improves the fitness per
iteration for all five benchmark functions. Generally, “non-linear” achieves the
best results, followed by “interpolated”. For some functions, such as (D) or (E),
this strategy needs only about half as many iterations as basic FSS to achieve
almost the same results as basic FSS after 5 000 iterations.

S4 - combination of S2, S3 and dilation multiplier. The results for stra-
tegy S4 are show in Fig. 5 and are compared to basic FSS and “non-linear”
from strategy S3 . The dilation multiplier cdil is abbreviated as “cdil X”. Since
the weight of all fish is reset to 1 if a dilation occurs, the average (mean) weight
per iteration is relatively low (see Subplot (A)). Generally, this strategy achieves
similar results as strategy S3 , but clearly improves the results for the Rastrigin
function and achieves a better final result after 5 000 iterations and also better
fitness per iteration for “cdil 5”.

Comparison of final results. Table 2 shows a comparison of the mean values
and the standard deviations after 5 000 iterations. As can be seen, the results for
all five benchmark functions could be improved. Overall, strategy S4 achieves
the best results followed by S3 . S1 and S2 are better or equal than basic FSS
for 4 out of 5 benchmark functions.



562 A. Janecek and Y. Tan

Computational cost. The last row of Table 2 shows the increase in computa-
tional cost caused by the additional computations of the update steps. Example:
the runtime for S1 is 1.0017 times as long as the runtime for basic FSS. This
indicates that the increase in runtime is only marginal and further motivates the
utilization of the presented update steps.

6 Conclusion

In this paper we presented new update strategies for the Fish School Swarm algo-
rithm. We investigated the influence of newly developed weight update strategies
as well as the influence of a non-linear decrease of the step-size parameters stepind

and stepvol. Results indicate that strategies S3 and S4 are able to significantly
improve the fitness per iteration for all benchmark functions and also achieve
better final results after 5 000 iterations when compared to the basic implemen-
tation of FSS. The results motivate for further research on update strategies for
FSS and also for adapting the non-linear decrease of the step size parameters
for other search heuristics.

Acknowledgments. This work was supported by National Natural Science
Foundation of China (NSFC), Grant No. 60875080. Andreas wants to thank the
Erasmus Mundus External Coop. Window, Lot 14 (2009-1650/001-001-ECW).

References

[1] Bastos Filho, C., Lima Neto, F., Lins, A., Nascimento, A.I.S., Lima, M.: A novel
search algorithm based on fish school behavior. In: IEEE International Conference
on Systems, Man and Cybernetics, SMC 2008, pp. 2646–2651 (2008)

[2] Bastos Filho, C., Lima Neto, F., Lins, A., Nascimento, A.I.S., Lima, M.: Fish
school search: An overview. In: Chiong, R. (ed.) Nature-Inspired Algorithms for
Optimisation. SCI, vol. 193, pp. 261–277. Springer, Heidelberg (2009)

[3] Bastos Filho, C., Lima Neto, F., Sousa, M., Pontes, M., Madeiro, S.: On the in-
fluence of the swimming operators in the fish school search algorithm. In: Int.
Conference on Systems, Man and Cybernetics, pp. 5012–5017 (2009)

[4] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

[5] Janecek, A.G., Tan, Y.: Using population based algorithms for initializing non-
negative matrix factorization. In: ICSI 2011: Second International Conference on
Swarm Intelligence (to appear, 2011)

[6] Goldberg, D.E.: Algorithms in Search, Optimization and Machine Learning, 1st
edn. Addison-Wesley Longman, Boston (1989)

[7] Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces. Journal of Global Optimiza-
tion 11(4), 341–359 (1997)

[8] Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010)


	Feeding the Fish – Weight Update Strategies for the Fish School Search Algorithm
	Introduction
	The Fish School Search Algorithm
	New Update Strategies
	Experimental Setup
	Evaluation
	Conclusion
	References


