
Efficient Euclidean Distance Transform
Using Perpendicular Bisector Segmentation ∗†

Jun Wang and Ying Tan ‡

Key Laboratory of Machine Perception (Ministry of Education), Peking University
Department of Machine Intelligence, School of EECS, Peking University, Beijing, P.R. China

bedouins@pku.edu.cn ytan@pku.edu.cn

Abstract

In this paper, we propose an efficient algorithm for com-
puting the Euclidean distance transform of two-dimensional
binary image, called PBEDT (Perpendicular Bisector Eu-
clidean Distance Transform). PBEDT is a two-stage inde-
pendent scan algorithm. In the first stage, PBEDT com-
putes the distance from each point to its closest feature point
in the same column using one time column-wise scan. In
the second stage, PBEDT computes the distance transfor-
m for each point by row with intermediate results of the
previous stage. By using the geometric properties of the
perpendicular bisector, PBEDT directly computes the seg-
mentation by feature points for each row and each segment
corresponding to one feature point. Furthermore, by us-
ing integer arithmetic to avoid time consuming float opera-
tions, PBEDT still achieves exact results. All these methods
reduce the computational complexity significantly. Conse-
quently, an efficient and exact linear time Euclidean dis-
tance transform algorithm is implemented. Detailed com-
parison with state-of-the-art linear time Euclidean distance
transform algorithms shows that PBEDT is the fastest on
most cases, and also the most stable one with respect to im-
age contents.

1. Introduction
Given a binary image, whose elements have only the val-

ue 0 — background (feature) pixels — and 1 — feature
(background) pixels, its distance transform computes the
distance for each pixel between that pixel and the feature
pixel closest to it [21]. Distance transform (DT) algorithms

∗This work is supported by National Natural Science Foundation of
China (NSFC), under grant number 60875080 and 60673020, and partly
supported by the National High Technology Research and Development
Program of China (863 Program), with grant number 2007AA01Z453.
†The source code of PBEDT is available on

http://cil.pku.edu.cn/algorithm/distancetransform/
‡Ying Tan is the corresponding author.

are excellent tools for a variety of applications, such as im-
age processing, computer vision, pattern recognition, mor-
phological filtering and robotics, etc. [9][19][21]. In prac-
tice, several distance metrics, such as the city-block (L1),
the chessboard (L∞), the octagonal and the Euclidean met-
ric, are all used for different situations. One of the most
natural and appropriate one of these is the Euclidean met-
ric, which is radially symmetric and virtually invariant to
rotation [1][9][16], and used in many applications. Howev-
er, the DT in exact Euclidean metric, called EDT, is time
consuming.

Intuitionally, treated as a global operation, EDT can
be computed by using an exhaustively brute-force search-
ing algorithm: for each pixel of the image, calculate
the distance between that pixel and each feature pix-
el. This requires O(N2) time (N is the number of
image pixels) [1][16]. Numerous algorithms have been
proposed to restrict the searching for the closest fea-
ture pixel in order to realize a fast EDT computa-
tion. In terms of searching mode, all these algorithm-
s can be roughly classified into three categories, ordered
propagation[2][20], raster scan [5][20][21] and independen-
t scan [1][6][12][13][15][16][22]. However, so far there is
no algorithm which can compute the EDT with good effi-
ciency and good precision [9]. Some extensive surveys are
introduced in [2] and [9]. They indicate that an efficient
EDT should be based on obtaining feature pixels informa-
tion from limited region, and should avoid global search-
ing. Although many of these algorithms are of liner time
complexity, some are not stable when the image content is
changed or have a large constant term [2][9].

In this paper, we propose an efficient algorithm for com-
puting the Euclidean distance transform of two-dimensional
binary image, called PBEDT (Perpendicular Bisector Eu-
clidean Distance Transform). PBEDT is a two-stage inde-
pendent scan algorithm. In the first stage, PBEDT computes
the distance from each point to its closest feature point in
the same column using one time column-wise scan. In the
second stage, PBEDT computes the distance transform for

1625

each point by row with intermediate results of the previous
stage. By using the geometric properties of the perpendicu-
lar bisector, PBEDT directly computes the segmentation by
feature points for each row and each segment corresponding
to one feature point. Furthermore, by using integer arith-
metic to avoid time consuming float operations, PBEDT
still achieves exact results. The remainder of this paper is
organized as follows. In Section 2, the detail of PBEDT
is introduced. The refined implementation of the proposed
algorithm is presented in Section 3. Experiments of com-
parison with state-of-the-art algorithms on variant feature
objects and in-depth discussion are reported in Section 4.
Finally, Section 5 gives the concluding remarks of this pa-
per.

2. PBEDT by perpendicular bisector segmen-
tation

2.1. Preliminary

As usual, this algorithm takes a n by m binary image
as the input and outputs a distance transform, usually in
squared distance. Let I denote the point set of the image,
Ir denote the points in row r, and FI denote the set of
feature pixels. (Generally, let uppercase letter denote point
set and lower case letter denote point.) Let f(u) denote the
closest feature point of u, and ‖ · ‖ is the Euclidean metric:

f(u) = arg
v∈FI

min ‖u− v‖, u ∈ I. (1)

Thus, the distance transform of image I can be computed
by:

DT (u) = ‖u− f(u)‖2, u ∈ I (2)

The feature points in the column c are denoted by :

Cc = {v|v.x = c, v ∈ FI}, 0 ≤ c < n (3)

PBEDT is a two-stage independent scan algorithm. In
the first stage, it computes the closest feature points for each
row. Then in the second stage, it computes the distance of
each point to its closest feature point by row [1][16].

2.2. First stage

For row r, given two feature points u, v ∈ Cc, if ‖u.y −
r‖ < ‖v.y − r‖, then any point in row r is closer to u than
to v. If ∃u ∀v ∈ Cc, ‖u.y − r‖ ≤ ‖v.y − r‖, u is called
r’s closest feature point in column c. All closest feature
points in columns of row r are denoted by Sr

g , and |Sr
g | ≤ n.

Therefore, f(u) is rewriten as:

f(u) = arg
v∈Sr

g

min ‖u− v‖, u ∈ Ir. (4)

2.3. Second stage

In this stage, we give an effective method to compute
(4). Let Sr

f denote the closest feature points of row r, and
Sr
f ⊆ Sr

g .

Sr
f =

⋃
u∈Ir

f(u) (5)

Let points in Sr
g and Sr

f are increasingly ordered by x
coordinate. Let P r

t denote the set of points in row r whose
closest feature point is t, called t’s region of influence in
row r.

P r
t = {v|f(v) = t, v ∈ Ir}, t ∈ Sr

g (6)

If t ∈ Sr
f , then P r

t 6= ∅; otherwise, P r
t = ∅. Hence,

Sr
f = Sr

g − {u|P r
u = ∅, u ∈ Sr

g}.

0 2 4 6 8

0

2

4

6

8

u
v

B
uv

p(c
uv
r ,r)

0 2 4 6 8

0

2

4

6

8

c

u

vw
p
v

Figure 1. The perpendicular bisector of u and v intersects row r.

We take advantage of the geometrical property of per-
pendicular bisector to verify the points whose region of in-
fluence is empty. Let Buv denote the perpendicular bisector
of u and v (Fig.1). Buv is the set of points which have e-
qual distance to u and v. Consequently, the points located
at the u side of Buv are closer to u than to v. Let cruv de-
note the x coordinate of the intersection of Buv with row
r. Hence, point p(cruv, r) (Fig.1) is the separation point of
P r
u and P r

v (P r
u 6= ∅, P r

v 6= ∅, u.x < v.x), and we assign
p ∈ P r

u , p 6∈ P r
v . Given u.x < v.x, the points in Ir at

the left of cruv are closer to u than to v. The situations in
Fig.2(a)(b) clearly indicate a point’s region of influence in
row r is empty.

If cruv > crvw(u, v, w ∈ Sr
g), then P r

v = ∅ (Fig.2(d)).
Next, u and w will be compared with other points in Sr

g . If
cruv < crvw(u, v, w ∈ Sr

g), then P r
v 6= ∅ (Fig.2(c)). Howev-

er, point v will not be compared with all the points in Sr
g ,

since the region of influence has some special properties:

Property 1. The points in set P r
t are continuous in x-

coordinate, or, @v{v|u.x ≤ v.x ≤ w.x, u,w∈ P r
t ,v 6∈ P r

t }.
(If v exists, then s = f(v). Thus, Bst intersects row r be-
tween u and v, and between v and w, too. This violates the
fact that two lines only intersects at most once.)

1626

0 2 4 6 8

0

2

4

6

8

u

v

(a)

0 2 4 6 8

0

2

4

6

8

u

v

(b)

0 2 4 6 8

0

2

4

6

8

u

v

w

(c)

0 2 4 6 8

0

2

4

6

8

u

v

w

(d)

Figure 2. Four situations when a point is added in S1. (a) P r
u = ∅;

(b) P r
v = ∅; (c) P r

u 6= ∅; (d) P r
v = ∅;

Moreover,

Property 2. If u, v ∈ Sr
f , u.x < v.x, then s.x ≤ t.x ,

∀s ∈ P r
u and ∀t ∈ P r

v .

Therefore, if the points in Sr
g at the left of point v are all

verified, then none of them is closer to the right of cruv than
v (Property.1, Property.2).

ComputeS1

S1 and Sc are stacks. Initially, S1 and Sc are both empty.
while S0 is not empty

withdraw the lowest point w from S0;
if S1 is empty

push(S1, w); push(Sc, 0);
else

v is top of S1 and cruv is top of Sc;
calculate crvw with v and w;

pop(S1), pop(Sc), add w back to the
front of S0, when c

r
vw < cruv;

pop(S1), pop(Sc), push(S1, w),
push(Sc, c

r
vw), when crvw = cruv;

push(S1, w), push(Sc, c
r
vw),

when crvw > cruv and c
r
vw < cols;

return S1;

Consequently, we give an algorithm COMPUTES1 to ob-
tain Sr

f from Sr
g . Let S1 and Sc be stack structures. Initially,

let S0 = Sr
g , and S1 = ∅. Points are moved from S0 to S1

one by one. If an added point results in point p of S1 whose
region of influence in row r is empty, then p should be re-
moved from S1. When S1 is empty, we push 0 into Sc as the
first intersection point. In the next loop, we use the newly
added point w and the stack top of S1 point v to compute
crvw, and compare crvw to the stack top of Sc. The 0 at the
bottom of stack labels the edge of the processing row.

Next, we prove S1 = Sr
f .

Theorem 1. S1 = Sr
f

Proof: This proof has two steps:

1. P r
v = ∅,∀v ∈ Sr

g − S1;

In the algorithm COMPUTES1, the points of S0 are
moved to S1 one by one, and only the point whose
region of influence on r is empty is removed from S1.
Therefore, P r

v = ∅,∀v ∈ Sr
g − S1.

2. P r
v 6= ∅,∀v ∈ S1;

Following algorithm COMPUTES1, each point v (ex-
cept the endpoints) and its adjacent points u, w
(u, v, x ∈ S1 and u.x < v.x < w.x) have two
separation position cruv and crvw. cruv < crvw, thus
cruv < P r

v .x ≤ crvw.

The left endpoint v and its adjacent pointw have a sep-
aration position crvw. crvw > 0, thus 0 < P r

v .x ≤ crvw.
(The right end point is in a similar way.) Therefore,
P r
v 6= ∅,∀v ∈ S1.

Therefore, S1 = Sr
f .

�
Thus, each point in Ir is compared with two adja-

cent points in Sr
f at most to get its closest feature point

(Property.1, Property.2). By processing each row with
COMPUTES1, we get the closest feature point for each point
of I. Thus, we calculate the EDT by (2).

3. Implementation of PBEDT

In this section, we introduce the implementation of
PBEDT.

3.1. First stage algorithm

Different from former independent scan algorithm-
s [1][16], which compute the squared distance in 1-D
by twice scan, in the first stage, we compute the rela-
tive squared distance between the closest feature points
in column and the left end point of each row by a for-
ward scan with back propagation. INFTY used in
SQUARE-DISTANCE-1D(I) is an integer bigger than the
squared diagonal distance of the image.

1627

SQUARE-DISTANCE-1D(I)

1 for c = 0→ n-1
2 mid ⇐ −1
3 for r = 0→ m-1
4 if (I(r, c) = 1)
5 if (mid > −1)
6 mid⇐ (r +mid)/2;
7 for r = mid+ 1→ r
8 I(r, c)⇐ (r − r)2 + c× c;
9 mid⇐ x;

10 else
11 if (mid = −1)
12 I(r, c)⇐ INFTY ;
13 else
14 I(r, c)⇐ (r −mid)2 + c× c;

3.2. Second stage algorithm

We implement the second stage algorithm introduced by
COMPUTES1 in an effective way.

3.2.1 Calculate the intersection points

Buv intersects row r at (cruv, r), thus ‖u− (cruv, r)‖ = ‖v−
(cruv, r)‖ (Fig.1), and we obtain cruv:

cruv = {(v.x)2 − (u.x)2 − 2× r × (v.y − u.y)

+(v.y − r)2 − (u.y − r)2}/{2× (v.x− u.x)}

We use the relative distance to replace the y coordinate,
ȳ = y − r, then cruv can be simplified as:

cruv =
((v.x)2 + (v.y)2)− ((u.x)2 + (u.y)2)

2(v.x− u.x)
;

Moreover, let

du = (u.x)2 + (u.ȳ)2 (7)

, then

cruv =
dv − du

2(v.x− u.x)
. (8)

This calculation can be organized as a function
(Intersection), which only has 1 division , 1 multiplication,
and 2 substraction.

Intersection(ux, vx, du, dv)

return (dv − du)/(2 ∗ (vx− ux));

From (7), du is the squared distance of u to the left most
point of row r which can be computed in the first stage
(SQUARE-DISTANCE-1D).

3.2.2 Integer calculation

We use integer division to replace the float division in (8).
The integer division abandons the decimal and keep the in-
teger, which is faster but not always accurate. In our algo-
rithm, we use the efficiency of integer arithmetic and keep
the accuracy meanwhile. Fig.3 shows two different situa-
tions, but cruv = crvw = 4 in every situation by integer divi-
sion. In both of situations, we assign point p(4,5) is close to
the leftmost point of this triple — u, since the point coordi-
nates of I are all integers. Even if Buv and Bvw all inter-
sect at point p(4,5), the assignment is valid. Therefore, an
equivalent integer division will be more efficient than float
division.

0 2 4 6 8

0

2

4

6

8

u
v

w

c

(a)

0 2 4 6 8

0

2

4

6

8

u
v

w

c

(b)

Figure 3. Different situations of assigning same closer feature
point: (a) cruv > crvw; (b) cruv < crvw

Negative values between two integers will be rounded to
the lager integer (-0.9 will be rounded to 0), while positive
values in between two integers will be rounded to the small-
er integer (5.9 will be rounded to 5). Therefore, we use -1
to label the left edge of the processing row while we use
0 in COMPUTES1. Moreover, we prejudge the sign of cruv
before calculating it, which promotes the execution speed.
In (8), vx < ux is known, thus the sign of cruv is relative to
(dv − du).

Therefore, Intersection is rewritten as:

Intersection-INT(ux, vx, du, dv)

if (dv > du)
return (dv − du)/(2 ∗ (vx− ux));

else
return -2;

3.2.3 Euclidean distance computation

We also use du which comes from (7) in the distance com-
putation. Given u is a point on row r (u.y = r) and v is the
closest feature point of u, then
‖u− v‖2 = (u.x− v.x)2 + (u.y − v.y)2

= (u.x)2 − 2(u.x)(v.x) + (v.x)2 + (v.y)2

= (u.x)(u.x− 2× v.x) + dv

1628

This can be organized as a function, which only has one
addition, one substraction and two multiplications.

Distance(ux, vx, dv)

return ux ∗ (ux− vx ∗ 2) + dv;

3.2.4 Second stage algorithm

Based on the technical details above, we give the second
stage algorithm (SQUARE-DISTANCE-2D).

SQUARE-DISTANCE-2D(I)

1 for r = 0 to m− 1
2 stack c ⇐ ∅; stack cx ⇐ ∅;
3 stack g ⇐ ∅; p⇐ −1
4 for c = 0 to n− 1
5 if (I(r, c) < INFTY)
6 while (TRUE)
7 if (p ≥ 0)
8 cx⇐ Intersection-INT(stack c[p],

c,stack g[p], abs(I(r, c)))
9 if (cx = stack cx[p])

10 p⇐ p− 1;
11 else if (cx < stack cx[p])
12 p⇐ p− 1;
13 continue;
14 else if (cx ≥ (n− 1))
15 break;
16 else
17 cx⇐ −1;
18 p⇐ p+ 1;
19 stack c[p]⇐ c;
20 stack cx[p]⇐ cx;
21 stack g[p]⇐ I(r, c);
22 break;
23 if (p < 0)
24 return FALSE;
25 c⇐ 0;
26 for k = 0 to p
27 if (k = p)
28 cx⇐ n− 1;
29 else
30 cx⇐ stack cx[k + 1];
31 while (c ≤ cx)
32 I(r, c)⇐ Distance(c, stack c[k],

stack g[k]);
33 c⇐ c+ 1;

3.3. Computational complexity

We discuss the computational complexity of PBEDT:

• The time complexity of PBEDT is O(N) times.

1. In the first stage, SQUARE-DISTANCE-1D takes
O(N) time, since it scans forward once and prop-
agates backward at most 0.5N. Thus, each ele-
ment is accessed no more than twice, leading to
an average number of 1.5 access times per ele-
ment (computational complexity of O(N)).

2. In the second stage, SQUARE-DISTANCE-2D
processes m rows one by one. There are two pro-
cesses for each row, one computes stackcx and
the other computes squared distance.
In process one, |Sr

g | ≤ n, and each point in
Sr
g can only be added to stackc once. Each

point in stackc can only be removed once, and
|stackc| ≤ n . Hence, these adding and re-
moving operations are executed at most 2n times.
Thus, process one takes O(n) time.
Process two computes the distance between each
point w in row r and w’s closest feature point
compute once, and takes O(n) time.
Hence, in the second stage, SQUARE-
DISTANCE-2D takes O(N) (O(m ∗ n))
times.

• The space requirement of PBEDT is very low.

In each stage, PBEDT recycles the memory of input
image. In the second stage, PBEDT need a tempo-
rary memory whose size is 3n to store stackc, stackcx,
stackg .

4. Experiments and discussion
To evaluate its performance, PBEDT was compared

with state-of-the-art EDT algorithms, such as Maurer
et al.’s [16], Saito and Toriwaki’s [22], Cuisenaire and
Macq’s [4], Lotufo and Zampirolli’s [6], Meijster’s [17]
and Felzenszwalb et al.’s [10]. In order to improve
readability, these algorithms are abbreviated as MAU-
RER2003, SAITO1994, CUISENAIRE, LOTUFOZAM-
PIROLLI, MEIJSTER, FELZENSZWALB, respectively.
Felzenszwalb et al. give the implementation of their algo-
rithm [11], and other algorithms are implemented by Fabbri
et al. [8].

The tests were performed on a computer with an Intel
Core2 Duo 2.53GHz processor, 2GB RAM, Ubuntu Linux
OS with kernel v2.6.31. All algorithms are implemented in
ANSI C/C++, and built by GCC v4.1.1. The performance
of PBEDT was measured with images over a wide range of
sizes and contents, as Fabbri et al. recommends in [9].

Comparing the outputs of PBEDT to those of other al-
gorithms, no difference has been observed from all these
tests. Additional tests with thousands of randomly gener-
ated images varying in width and number of feature points
also indicate the correctness of our algorithm.

1629

(a) (b)

Figure 4. Randomly generated sample images. (a) Random points,
feature pixel proportion: 40%, size: 500×500; (b) Random
squares, feature pixel proportion: 15%, square angle: 15◦, size:
500×500

(a) (b)

Figure 5. Test image Lenna. (a) Original image; (b) Edge image
of Lenna

The following images are chosen for precisely analysis:

1. Random points. The image size varies from 100 ×
100, 500 × 500, ..., to 4000 × 4000 with randomly
generated feature points where the number of feature
points comprises 1%, 10%, ..., 90%, and 99% of the
image. One sample is shown in Fig. 4(a). This test
provides an idea of the performance of the algorithms
relative to the number of feature pixels [9][16].

2. Random squares. These images are generated by ran-
domly choosing the centers and sizes of black squares
rotated by θ ∈ [0, 90]. The squares are filled and plot-
ted into the image until the black pixels add up to a
percentage value p. One sample is shown in Fig. 4(b).
This test is based on a synthetic image having more
similarity to real images with some orientation [7][9].

3. Special feature contents:

• A feature square located at the corner of an im-
age. In this case, EDT produces the largest and s-
mallest possible distances for a given image size:
diagonal and 1, respectively [9][16].

• Binary images of real objects. The edge image
from the Lenna image obtained by thresholding

the response of an edge detector is used, as shown
in Fig. 5(b). Lenna is chosen since it has been
universally used as an impartial benchmark for
image analysis algorithms [9].

• A white disk inscribed in the image. It is a per-
fect test for exactness, since the Voronoi diagram
of the pixels along a circle is very regular in the
continuous plane, however, the discrete Voronoi
regions in this case are irregular, specially near
the center of the disk [3][9][22].

• Half-filled image. This is the worst case of the
brute-force algorithm, and Maurer2003 also suf-
fers a setback in this test [9].

As shown in Fig. 6 and Fig. 7, PBEDT is more sta-
ble than other algorithms with different proportions of fea-
ture pixels, and it is faster than MAURER2003, MEIJSTER
and FELZENSZWALB at all parameter settings used, faster
than SAITO1994 and LOTUFOZAMPIROLLI at small pro-
portion feature pixels, slower than CUSENAIRE only at
very large proportion of feature points. Besides, PBEDT
is more stable than others with different slant angle of ran-
dom squares. SAITO1994 and LOTUFOZAMPIROLLI are
faster than PBEDT when slant angle is 0 or 90, but s-
lower when other angles are used. Only when the pro-
portion of feature pixels is higher than 70%, SAITO1994,
CUSENAIRE and LOTUFOZAMPIROLLI are faster than
PBEDT at every slant angel. Fig. 8(a) shows that PBEDT is
the fastest with the test of edge image of Lenna at all sizes.
Fig. 8(b) shows that PBEDT is the fastest in all feature con-
tents.

In all these tests, PBEDT shows excellent performance.
It is the fastest in most cases, and the most stable in terms
of image contents. Neither the number of feature pix-
els nor the orientation of content objects can affect it-
s performance. It is faster than MAURER2003, MEI-
JSTER and FELZENSZWALB in all cases, and faster than
SAITO1994, LOTUFOZAMPIROLLI and CUISENAIRE
in most cases. SAITO1994 and LOTUFOZAMPIROLLI
are seriously affected by the orientation of feature objects,
which show poor performance in most of angles. Moreover,
their performance varies with different proportion of feature
pixels. Table.1 shows the mean execution time on random-
ly generated squares with various feature point proportions
and slant angels at size 3000 × 3000. Obviously, of all al-
gorithms, PBEDT is the fastest one.

5. Conclusion
We have introduced a two-stage independent scan algo-

rithm PBEDT, which is simpler than previous works: use
partial Voronoi diagram [1][16] or lower-envelop of parabo-
las [10][14][17][22]. The time complexity of PBEDT is
linear in the number of image points with a small constant

1630

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2
proportion15%

E
xe

cu
tio

n
tim

e(
s)

Angle (°)
0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

1.2
proportion30%

E
xe

cu
tio

n
tim

e(
s)

Angle (°)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

proportion50%

E
xe

cu
tio

n
tim

e(
s)

Angle (°)
0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

proportion70%

E
xe

cu
tio

n
tim

e(
s)

Angle (°)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

proportion95%

E
xe

cu
tio

n
tim

e(
s)

Angle (°)

MAURER2003
SAITO1994
CUISENAIRE
LOTUFOZAMPIROLLI
MEIJSTER
FELZENSZWALB
PBEDT

Figure 6. Execution time for random squares images with varying
feature point proportion, size 3000×3000, slant angle varied from
0 to 90.

Algorithms Average Comparison with
time(s) PBEDT (%)

MAURER2003 0.469 168.2%
SAITO1994 0.441 158.0%

CUISENAIRE 0.547 196.0%
LOTUFOZAMPIROLLI 0.802 287.3%

MEIJSTER 0.391 139.9%
FELZENSZWALB 0.483 173.2%

PBEDT 0.279 100%

Table 1. Comparison of average execution time for randomly gen-
erated squares images.

term and the memory requirement is very low. Compared
with other state-of-the-art algorithms, PBEDT is the fastest
in most cases, and also the most stable one with respect
to image contents. The main innovations of this algorith-

20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2
angle0°

E
xe

cu
tio

n
tim

e(
s)

Proportion (%)
20 40 60 80

0

0.2

0.4

0.6

0.8

1

1.2
angle15°

E
xe

cu
tio

n
tim

e(
s)

Proportion (%)

20 40 60 80
0

0.2

0.4

0.6

0.8

1

angle30°

E
xe

cu
tio

n
tim

e(
s)

Proportion (%)
20 40 60 80

0

0.2

0.4

0.6

0.8

1

angle45°

E
xe

cu
tio

n
tim

e(
s)

Proportion (%)

20 40 60 80
0

0.2

0.4

0.6

0.8

1

angle60°

E
xe

cu
tio

n
tim

e(
s)

Proportion (%)

MAURER2003
SAITO1994
CUISENAIRE
LOTUFOZAMPIROLLI
MEIJSTER
FELZENSZWALB
PBEDT

Figure 7. Execution time for random squares images with varying
slant angle, size 3000 × 3000, feature points proportion ranged
from 15% to 95%.

m are: the geometric property of perpendicular bisector is
used to compute the segmentation of rows directly; the inte-
ger arithmetic is used to avoid time consuming float opera-
tions and still keeps exactness. All these innovations reduce
the computational complexity significantly. A parallel ver-
sion of PBEDT can be easily implemented [18][21]. This
algorithm can also be extended to three or higher dimen-
sional binary images. Currently, we are evaluating the n-D
version of this algorithm. Results will be published in a
more elaborate paper which is currently in preparation.

References
[1] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time

euclidean distance transform algorithms. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 17(5):529–
533, 1995.

[2] O. Cuisenaire. Distance transformations: fast algorithms

1631

1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
Test with edge image of Lenna

E
xe

cu
tio

n
tim

e(
s)

Image width

MAURER2003
SAITO1994
CUISENAIRE
LOTUFOZAMPIROLLI
MEIJSTER
FELZENSZWALB
PBEDT

(a)

Top−left Bottom−right Lenna White disk Half filled
0

0.01

0.02

0.03

0.04

0.05

Test with special content images

E
xe

cu
tio

n
tim

e(
s)

Image content

MAURER2003
SAITO1994
CUISENAIRE
LOTUFOZAMPIROLLI
MEIJSTER
FELZENSZWALB
PBEDT

(b)

Figure 8. Test results. (a) Results with Lenna edge images of
ranged size; (b) Results with images of special features, size
500×500.

and applications to medical image processing. PhD thesis,
Louvain-la-Neuve, Belgium, 1999.

[3] O. Cuisenaire and B. Macq. Fast and exact signed euclidean
distance transformation with linear complexity. In ICASSP
’99: Proceedings of the Acoustics, Speech, and Signal Pro-
cessing, 1999, IEEE International Conference, pages 3293–
3296, Washington, DC, USA, 1999. IEEE Computer Society.

[4] O. Cuisenaire and B. M. Macq. Fast euclidean distance
transformation by propagation using multiple neighborhood-
s. Computer Vision and Image Understanding, 76(2):163–
172, 1999.

[5] P.-E. Danielsson. Euclidean distance mapping. Computer
Vision, Graphics, and Image Processing, 14:227–248, 1980.

[6] R. de Alencar Lotufo and F. A. Zampirolli. Fast multidimen-
sional parallel euclidean distance transform based on math-
ematical morphology. In SIBGRAPI, pages 100–105. IEEE
Computer Society, 2001.

[7] H. Eggers. Two fast euclidean distance transformations in
z2based on sufficient propagation. Computer Vision and Im-
age Understanding, 69(1):106–116, 1998.

[8] R. Fabbri, L. da Fontoura Costa, J. C. Torelli, and O. M.
Bruno. Complete results of the benchmark between exact
edt algorithms. ”http://distance.sourceforge.
net”, 2006.

[9] R. Fabbri, L. da Fontoura Costa, J. C. Torelli, and O. M.
Bruno. 2d euclidean distance transform algorithms: A com-
parative survey. ACM Comput. Surv., 40(1), 2008.

[10] P. F. Felzenszwalb and D. P. Huttenlocher. Distance trans-
forms of sampled functions. Technical report, Cornell Com-
puting and Information Science, September 2004.

[11] P. F. Felzenszwalb and D. P. Huttenlocher. Distance trans-
forms of sampled functions (program). http://people.
cs.uchicago.edu/˜pff/dt/, 2004.

[12] M. L. Gavrilova and M. H. Alsuwaiyel. Two algorithms for
computing the euclidean distance transform. Int. J. Image
Graphics, pages 635–645, 2001.

[13] W. H. Hesselink and J. B. T. M. Roerdink. Euclidean skele-
tons of digital image and volume data in linear time by the
integer medial axis transform. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 30(12):2204–2217,
2008.

[14] T. Hirata. A unified linear-time algorithm for computing dis-
tance maps. Inf. Process. Lett., 58(3):129–133, 1996.

[15] Y. Lucet. New sequential exact euclidean distance transform
algorithms based on convex analysis. Image Vision Comput.,
27(1-2):37–44, 2009.

[16] J. Maurer, R. Qi, and V. Raghavan. A linear time algorithm
for computing exact euclidean distance transforms of bina-
ry images in arbitrary dimensions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(2):265–270,
2003.

[17] A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink. A
general algorithm for computing distance transforms in lin-
ear time. Computational Imaging and Vision, 18(8):331–
340, 2000.

[18] M. Miyazawa, P. Zeng, N. Iso, and T. Hirata. A systolic al-
gorithm for euclidean distance transform. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 28(7):1127–
1134, 2006.

[19] D. W. Paglieroni. Distance transforms: Properties and ma-
chine vision applications. CVGIP: Graphical Model and Im-
age Processing, 54(1):56–74, 1992.

[20] I. Ragnemalm. Neighborhoods for distance transforma-
tions using ordered propagation. CVGIP: Image Underst.,
56(3):399–409, 1992.

[21] A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital
picture processing. J. ACM, 13:471–494, 1966.

[22] T. Saito and J. ichiro Toriwaki. New algorithms for euclidean
distance transformation of an n-dimensional digitized picture
with applications. Pattern Recognition, 27(11):1551–1565,
1994.

1632

