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ABSTRACT

In the recent years, multi-objective particle swarm optimization (MOPSO) has become quite
popular in the field of multi-objective optimization. However, due to a large amount of fit-
ness evaluations as well as the task of archive maintaining, the running time of MOPSO
for optimizing some difficult problems may be quite long. This paper proposes a parallel
MOPSO based on consumer-level Graphics Processing Units (GPU), which, to our knowl-
edge, is the first approach of optimizing multi-objective problems via PSO on the platform of
GPU. Experiments on 4 two-objective benchmark test functions are conducted. Compared
with the CPU based sequential MOPSO, our GPU based parallel MOPSO is much more
efficient in terms of running time, and the speedups range from 3.74 to 7.92 times. When
the problem is large-scale, i.e. the dimension of the decision vector is large, the speedups
can be bigger than 10 times. Furthermore, the experimental results show that the larger
the size of the swarm is, the more nondominated solutions are found, the higher the quality
of solutions are, and the bigger the speedup is.

Keywords: MOPSO, GPU, Parallel, Speedup.

Computing Classification System: I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

1 Introduction

Multi-objective problems are very common in real-world optimization filed, of which the objec-
tives to be optimized are normally in conflict with respect to each other. As a result, there is
no single solution for them. Instead, several solutions with good trad-off among the objectives
should be found out.
Particle swarm optimization (PSO) is a population based global optimization technique (Kennedy,
Eberhart et al., 1995). PSO was originally designed to solve single objective optimization prob-
lems, but it can also be extended for multi-objective, resulting in many multi-objective particle
swarm optimization approaches (Reyes-Sierra and Coello, 2006).
Parsopoulos and Vrahatis proposed a Vector Evaluated PSO (VEPSO) approach for multi-
objective optimization (only two-objective problems) (Parsopoulos and Vrahatis, 2002). The
whole swarm consisted of two subswarms. Each subswarm was evaluated according to one of
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the two objectives but information coming from the other subswarm was used to determine the
change of the velocities. Through this technique, the two subswarms purchased their own ob-
jective, meanwhile, the influence of the other objective was also imposed, thus a good tradeoff
between the two objectives could be made. Compared with Vector Evaluated Genetic Algo-
rithm (VEGA) (Schaffer, 1985), VEPSO for multi-objective optimization had an almost identical
performance.
In this paper, we modify and parallelize the VEPSO approach for multi-objective optimization
based on GPU, forming our GPU MOPSO. Experiments on 4 two-objective benchmark test
functions are conducted, with the results thoroughly analyzed. Firstly, the performance of our
GPU MOPSO is compared with the corresponding CPU based serial MOPSO in terms of
running speed. Secondly, the benefits of implementing MOPSO on GPU are presented.
The rest of the paper is organized as follows: in Section 2, a short overview of multi-objective
optimization as well as a brief introduction to GPU based computing are given, followed by the
discussions of several approaches for parallelizing multi-objective optimizing methods; Sec-
tion 3 describes the parallel implementation of GPU based MOPSO. Experimental results are
reported and analyzed in Section 4, followed by conclusions in Section 5.

2 Related Works

2.1 Multi-objective Optimization

A general multi-objective optimization problem can be described as a vector function f that
maps a tuple of D decision variables to a tuple of M objectives:

min/max y =f(x) = (f1(x), f2(x), ..., fM (x))

subject to x =(x1, x2, ..., xD) ∈ X

y =(y1, y2, ..., yM ) ∈ Y

where x is called the decision vector, X is the parameter space, y is the objective vector, Y is
the objective space. The set of solutions of a multi-objective optimization problem consists of
all decision vectors for which the corresponding objective vectors cannot be improved in any
dimension without degradation in another−these vectors are known as Pareto optimal.
Mathematically, the concept of Pareto optimality can be defined as follows: without loss of
generality, assume a minimization problem and consider two decision vectors a, b ∈ X. a is
said to dominate b (written as a ≺ b) iff

∀i ∈ {1, 2, ..., m} : fi(a) � fi(b) ∧ ∃j : fj(a) < fj(b)

where j ∈ {1, 2, ..., m} as well.
All decision vectors which are not dominated by any other decision vector of a given set are
called nondominated regarding this set. The decision vectors that are nondominated within the
entire search space are denoted as Pareto optimal and constitute the socalled Pareto-optimal
set or Pareto-optimal front.

International Journal of Artificial Intelligence (IJAI)

126



2.2 Multi-objective PSO

PSO is a population-based search algorithm based on the simulation of the social behavior of
birds within a flock (Kennedy et al., 1995). It is a very popular global optimizer for problems in
which the decision variables are real numbers.
First let us define the notations adopted in this paper. Assuming that the search space is D-
dimensional, the position of the i − th particle of the swarm is represented by vector Xi =
(xi1, xi2, ..., xiD) and the best particle in the swarm is denoted by the index g. The personal
best position of the i − th particle is represented as P̃i = (pi1, pi2, ..., piD) and the velocity of
the i-th particle is recorded as Vi = (vi1, vi2, ..., viD), and t is the number of current iteration.
Following these notations the particles are manipulated according to the following equations
iteratively:

vid(t + 1) =w · vid(t) + c1 · r1(pid(t) − xid(t))

+ c2 · r2(pgd(t) − xid(t)) (2.1)

xid(t + 1) =xid(t) + vid(t + 1) (2.2)

where d = 1, 2, ..., D; i = 1, 2, ..., N , here N is the size of the population. w is the inertia weight;
c1 and c2 are two positive constants; r1 and r2 are two random numbers within the range [0,1].
In this paper, w is initially set to 1.0 and linearly decreases to 0.4, c1 = c2 = 2.05. If xid exceeds
the boundary limitation Xmax or Xmin, it will be directly set to Xmax or Xmin.
In order to solve multi-objective optimization problems, the original PSO has to be adjusted,
as the solution set of a problem consists of different solutions (a Pareto-optimal front) instead
of a single one. Given the population-based nature of PSO, it is desirable to produce sev-
eral (different) nondominated solutions within a single run. The leaders should be carefully
chosen among the nondominated solutions found so far, which are usually stored in an exter-
nal archive. There are currently over twenty five different proposals of MOPSOs reported. A
survey of this specialized literature was given by Coello in (Reyes-Sierra and Coello, 2006).
In 2002, Parsopoulos proposed a VEPSO approach for multi-objective optimization (Parsopoulos
and Vrahatis, 2002), which might be the first particle swarm approach for multi-objective op-
timization. They used two subswarms to solve two-objective problems. Each subswarm was
evaluated with only one of the two objectives. Meanwhile, the best particle coming from the
other subswarm was used for the determination of the new velocities of its own particles. The
experimental results showed that the performance of this approach was as good as VEGA,
which was a well-known evolutionary algorithm approach for multi-objective optimization.
They extended their VEPSO approach to multi-objective problems with more than two ob-
jectives in 2004 (Parsopoulos, Tasoulis, Vrahatis et al., 2004). They used M subswarms to
optimize S objectives (M may be bigger than S). Each subswarm optimizes a single objective,
and they exchange their best particles through a ring topology. But the performance of this
model was only tested on two-objective problems.
Compared with other MOPSO methods, the VEPSO approach had the following promising
features.
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2.2.1 Easy Implementation

As the non-dominated solutions found during the evolution process are not responsible for the
guidance of the particles during the evolution process, they are stored in the archive just for
outcome. Strategies which focus on choosing good solutions out of the archive to guide the
whole swarm are not necessary, so the implementation of VEPSO is relatively simple.

2.2.2 Suitable for Parallelization

It can be parallelized based on various parallel hardware architecture, e.g. multi-computer or
multi-processor systems, thus the running speed of VEPSO can be greatly accelerated.

2.3 Graphics Processing Units and CUDA

Graphics Processing Units (GPU) was originally designed specifically for image and graphic
processing, where compute-intensive and highly parallel computing is required. GPU com-
putes faster than CPU and is especially well-suited to solve problems that can be expressed
as data-parallel computations with high arithmetic intensity−the ratio of arithmetic operations
to memory operations. Because of these advantages, general-purpose computing through
GPU is becoming a new trend.
Recently, NVIDIA developed the Compute Unified Device Architecture (CUDATM) technology
which enables researchers to implement their GPU-based applications more easily (CUDATM,
2008). It is a new hardware and software architecture which runs under C language envi-
ronment for the purpose of managing computations on the GPU as a data-parallel computing
device, without the need of mapping them to a graphics API.
Two important concepts of CUDATMare thread batching and memory model.

2.3.1 Thread Batching

When programming through CUDA, the GPU is viewed as a compute device capable of exe-
cuting a very large number of threads in parallel. A function in CUDA is called as a Kernel,
which is executed by a batch of threads. The batch of threads is organized as a grid of thread
blocks. A thread block is a batch of threads that can cooperate together by efficiently shar-
ing data through some fast shared memory and synchronizing their execution to coordinate
memory accesses. Each thread is identified by its thread ID. To help with complex addressing
based on the thread ID, an application can also specify a block as a 2 or 3-dimensional array
of arbitrary size and identify each thread using a 2 or 3-component index instead. For a two
dimensional block of size Dx×Dy , the ID of the thread with the index (x,y) is y ∗ Dx + x.

2.3.2 Memory Model

The memory model of CUDA is tightly related to its thread bathing mechanism. There are
several kinds of memory spaces on the device: read-write per-thread registers, read-write per-
thread local memory, read-write per-block shared memory, read-write per-grid global memory,
read-only per-grid constant memory and read-only per-grid texture memory.
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2.4 Parallel Approaches for Multi-objective Optimization

Until now, most of the parallel approaches for multi-objective optimization are evolutionary
algorithms. The implementation of those algorithms are usually based on MIMD (Multiple In-
struction, Multiple Data) architectures, which are either multicomputer systems such as grid
computing and clusters of workstations, or multiprocessor systems such as symmetric multi-
processors (SMP) and non-uniform memory access (NUMA) system. There are several paral-
lelization models (Jaimes and Coello, 2009).

2.4.1 Master-Slave Model

One of the simplest ways to parallelize a multi-objective evolutionary algorithms (MOEA). A
master processor executes the MOEA, and the objective function evaluations are distributed
among a number of slave processors. Once the slaves have completed the evaluations, the
objective function values are returned to the master. Using this model of parallelization, the
running time can be greatly reduced depending on the number of slaves, meanwhile, the same
solutions can be found by its serial counterpart.

2.4.2 Diffusion Model

A unique population is considered, and it is spatially distributed onto a neighborhood structure,
which is usually a two-dimensional rectangular grid, with one individual on each grid point. This
model is appropriate for shared-memory MIMD computers such as SMPs. However, custom
hardware implementations on SIMD computers are also possible.

2.4.3 Island Model

The population is divided into several small sub-populations, called islands or demes, which
are independent of each other. In each island a serial MOEA is executed for a number of gen-
erations, and after that, individuals migrate between neighboring islands, according to some
migration topology. This model is well-suited for clusters of computers or for grid computing
systems.

2.4.4 Hybrid Models

This model combines a coarse-grained parallel scheme at a high level (e.g., island model) with
a fine-grained scheme at a low level (e.g., diffusion model).
There are also some approaches for parallelizing MOEA utilizing SIMD architectures such as
Graphics Processing Unit (GPU). Wong (Wong, 2009) implemented a parallel MOEA based on
GPU within the environment of CUDATM. The speedups of the parallel MOEA range from 5.62
to 10.75 times.
Parallel MOPSO are not so well studied as parallel MOEA, and only a very limited number
of parallel MOPSO approaches can be found in the literature. Mostaghim et al. (Mostaghim,
Branke and Schmeck, 2007) designed two methods to parallelize MOPSO: cluster-based MOPSO
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and hypervolume-based MOPSO, both of which worked on several number of processors,
namely computer grids. The basic idea of these methods was to divide the population into
subswarms which can be processed in parallel. The parallel VEPSO proposed by Parsopou-
los (Parsopoulos et al., 2004) mentioned in 2.2 was another example of parallel MOPSO,
which was implemented on the parallel virtual machine (PVM).
In our previous work (Zhou and Tan, 2009), we implemented standard PSO in parallel based on
GPU using CUDATM, and a maximum speedup of 10 times was achieved on some functions. In
this paper, we intend to design a GPU-based MOPSO method on the basis of VEPSO, which,
to our knowledge, is the first attempt of conducting MOPSO on GPU.

3 GPU-based MOPSO

In VEPSO, the whole swarm consists of two subswarms with the same size. Assume that the
total swarm size is N , then the population of each subswarm is N/2. For each subswarm,
Equation( 2.1) (velocity update process) should be adjusted as follows:

vid(t + 1) =w · vid(t) + c1 · r1(pid(t) − xid(t))

+ c2 · r2(p∗gd(t) − xid(t)) (3.1)

where p∗gd is the d−th element of the global best particle’s position vector coming from the other
subswarm. In this way, each subswarm updates the velocities and positions of its particles
using Equation( 3.1) and ( 2.2) corresponding to its own objective, while the influence of the
other objective is also imposed. The nondominated solutions found in each iteration are stored
in an external archive, which is built and maintained using the pseudo-code provided in (Jin,
Olhofer and Sendhoff, 2001).
In order to parallelize VEPSO according to the specific hardware architecture of GPU, we mod-
ify VEPSO and propose our parallel GPU based MOPSO (ab. GPU MOPSO). In GPU MOPSO,
the on-line performance is considered instead of off-line performance utilized in VEPSO, which
means there is no need to maintain an external archive. On-line performance means that only
the nondominated solutions in the final population are considered as the outcome, while off-line
performance takes the nondominated solutions generated during the entire evolution process
into account (Zitzler, Deb and Thiele, 2000). The following benefits can be obtained by this
modification:

• Each particle in the swarm is evaluated by only one of the two objectives, which halves
the computational task of fitness evaluation, while in original VEPSO, each particle must
be evaluated using both of the objectives.

• The time-consuming data transferring between GPU and CPU can be greatly reduced,
as there is no need to transfer the GPU-resided fitness and position values of each non-
dominated solution back to CPU, resulting in a higher speedup.

The proposed GPU MOPSO is described by Algorithm 1. In this algorithm, Iter denotes the
maximum number of iterations, and i = 1, 2, ..., N . The fitness values of all the N particles are
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Algorithm 1 Algorithm for GPU MOPSO
1: Set t, the generation counter to 0.
2: Generate N individuals for initial population.
3: Transfer initial data from CPU to GPU.
4: for t=0 to Iter do

5: Evaluate Fitness()
6: Update Pbest()
7: Transfer F back to CPU, find out the indices (g) of the best particle in each subswarm

via F .
8: Update velocity and position values of the i − th particle, using Equation( 3.1) and

( 2.2).
9: end for

10: Transfer data back to CPU, evaluate each particle using both of the objectives, output the
nondominated solutions.

stored in a 1-dimensional array F . Steps 5, 6, 8 are executed in parallel, employing N threads,
each of which is allocated with one particle to process.
In the following subsections, the details for implementing GPU MOPSO are given.

3.1 Data Organization

As there are N individuals and each one is represented by a D-dimensional vector, we use a
1-dimensional array X of size N ∗ D on global memory to store the whole population.
When the concurrent memory accesses by CUDA threads in a half wrap (16 parallel threads)
can be coalesced into a single memory transaction, the global memory bandwidth can be
improved. In order to fulfill the requirements for coalesced memory accesses, the same vari-
ables from all individuals are grouped and form a tile of N values in the global memory. The
representation scheme for the whole swarm is shown in Fig. 1.

Figure 1: Representation of N individuals with D variables on global memory

Generating random numbers on GPU are very tricky though there are several existing ap-
proaches (Howes and Thomas, 2007; Pang, Wong and Heng, 2008). In order to focus on the
implementation of MOPSO, we would rather generate random numbers on CPU and trans-
fer them to GPU. For the purpose of saving transferring time, we do it in the following way:
Q (Q >> D ∗ N) random numbers are generated on CPU before running GPU MOPSO.
Then they are transferred to GPU once for ado and stored in an array on the global memory.
Each time random numbers are needed during the evolution process, pass a random integer
(serves as a start point) to GPU, and fetch the corresponding number of random numbers from
global memory for use. This may impose some negative influence on the performance of GPU
MOPSO, as the random numbers are not exactly “random”.
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3.2 Fitness Value Evaluation

The computation of fitness values is the most important task during the whole search process,
where high density of arithmetical computation is required. It should be carefully designed for
parallelization so as to improve the overall performance of our GPU MOPSO. It is not necessary
to get the complete objective vector for each individual in GPU MOPSO. Assume that the two
objectives of the optimization problem are f1 and f2. f1 is used to evaluate the individuals of
the first subswarm (the first N/2 particles), and f2 for the remaining N/2 particles. As there are
no interaction among threads, the fitness value evaluation process can be fully parallelized.
The fitness values of all the particles are stored in F , which is an array of size N .
In step 5 of Algorithm 1, the fitness value of each individual is computed in the way as shown
in Algorithm 2. We can see that the iterations are only applied to dimension index d = 1, 2..., D.
The reason is that the arithmetical operations on all the N data of all the particles in dimension
d is done in parallel (synchronously) on GPU.

Algorithm 2 Evaluate Fitness()
1: Initialize, set the ’block size’ and ’grid size’, with the number of threads in a grid equaling

to the number of particles (N ).
2: for each dimension d do

3: Map all the N threads to the N position values of dimension d one-to-one
4: Load N data from global to shared memory
5: Apply arithmetical operations of f1 to the first N/2 data and f2 to the remaining N/2

data in parallel
6: Store the result of dimension d with Fd

7: end for

8: Combine Fd (d = 1, 2...D) to get the final fitness values of all particles, store them in array
F .

There are two instructions for mapping all the threads to the N data in a one-dimensional array
(step 3 of Algorithm 2), which are listed as bellow:

• Set the block size to S1×S2 and grid size T1×T2. So the total number of threads in the
grid is S1 ∗ S2 ∗ T1 ∗ T2. It must be guaranteed that S1 ∗ S2 ∗ T1 ∗ T2=N , only in this case
can all the data of N particles be loaded and processed synchronously.

• Assuming that the thread with the index (Tx, Ty) in the block whose index is (Bx, By), is
mapped to the I-th datum in a one-dimensional array, then the relationship between the
indices and I is:

I = (By ∗ T2 + Bx) ∗ S1 ∗ S2 + Ty ∗ S2 + Tx (3.2)

In this way, all the threads in a kernel are mapped to N data one to one. Operations are
applied to all the N threads synchronously. This is the main mechanism for accelerating the
computing.
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3.3 Update of Personal and Global Best Particle

After the fitness values are updated, each particle may arrive at a better position P̃ than ever
before and a new global best position may be found. So P̃ and the index g (refer to equa-
tion. 3.1) must be updated according to the current status of the particle swarm. The updating
process of P̃ can be achieved by Algorithm 3, in which PX and PF store the positions and
fitness values of personal best particles, respectively. i = 1, 2, ..., N is the index of thread,
which are executed in parallel, and X(d ∗N + i) is the position value of particle i on dimension
d.

Algorithm 3 Update Pbest()
1: Map all the threads to N particles one-to-one.
2: Transfer all the N data from global to shared memory.
3: if F (i) is better than PF (i) then

4: PF (i)= F (i)
5: for each dimension d do

6: Store position X(d ∗ N + i) with PX(d ∗ N + i)
7: end for

8: end if

The global best particle update procedure (step 7 in Algorithm 1) is performed on CPU, as the
minimum (or maximum) fitness values in each subswarm must be found in array F . Although
it is possible to execute it on GPU, it is quite complex to implement and not efficient enough
when N is relatively small. We transfer F back to CPU, and the indices (g) of the best particle
in each sub-swarm are found and recorded, which will be passed to the velocity and position
update procedure as parameters.

3.4 Update of Velocity and Position

The update of velocity and position (step 8 in Algorithm 1) for the whole swarm is an essential
procedure in GPU MOPSO and it can be fully parallelized. The position of the global best par-
ticle (P̃g) of the second subswarm is responsible for the velocity update of the first subswarm,
and vice versa.

3.5 Selection of Nondominated Solutions

In the final generation, the nondominated solutions are picked out from the entire population,
and they are returned as outcome. As there are N individuals, multiple solutions may exist,
from which pareto fronts are constructed.

4 Experiment and Results Analysis

The benchmark test functions of this paper are adopted from (Parsopoulos and Vrahatis, 2002),
which are listed in TABLE 1. Deb (Deb, Thiele, Laumanns and Zitzler, 2005) gives a compre-
hensive study on how to construct test functions in 2005.
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Table 1: Two-objective Test Functions

Function m Equation bounds D

F1 2 f1 = 1
D

D∑

i=1
xi; f2 = 1

D

D∑

i=1
(xi − 2)2 [0, 1] 30

F2 2
f1 = x1; f2 = g ∗ h; g = 1 + 9.0

D∑

i=2
xi/(D − 1);

h = 1 − √
f1/g

[0, 1] 30

F3 2 as F2, except h = 1 − √
f1/g − (f1/g)sin(10π ∗ f1) [0, 1] 30

F4 2 as F2, except h = 1 − 4
√

f1/g − (f1/g)4 [0, 1] 30

We have also implemented a serial CPU based MOPSO (ab. CPU MOPSO) approach cor-
responding to GPU MOPSO, just for comparison. All of the experiments are conducted on
CUDATM platform, based on an Intel Core 2 Duo 2.20 GHz CPU, 3.0G RAM machine. The
display card is NVIDIA Geforce 9800GT, and OS is Windows XP.
We set N = 1024, 2048, 4096, 8192, respectively. Both GPU MOPSO and CPU MOPSO are
executed for 30 times to optimize the four test functions with Iter = 250. For each function, the
average number of nondominated solutions (denoted as No.S) found by these two approaches,
as well as the average running time are recorded. All the results are listed in TABLE 2, 3, 4, 5.
Figs. 2, 3, 6 are drawn to depict the data in the tables for the purpose of a more vivid impression.

Table 2: Results of CPU MOPSO and GPU MOPSO on F1

N
CPU MOPSO GPU MOPSO

Speedup
No.S Time No.S Time

1024 40 1.01 39 0.21 4.76

2048 49 2.03 45 0.33 6.18

4096 51 4.38 37 0.62 7.06

8192 79 9.40 42 1.19 7.92

Table 3: Results of CPU MOPSO and GPU MOPSO on F2

N
CPU MOPSO GPU MOPSO

Speedup
No.S Time No.S Time

1024 22 0.97 24 0.26 3.74

2048 41 1.98 30 0.45 4.36

4096 95 4.48 147 0.85 5.23

8192 171 9.56 106 1.69 5.65
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Table 4: Results of CPU MOPSO and GPU MOPSO on F3

N
CPU MOPSO GPU MOPSO

Speedup
No.S Time No.S Time

1024 15 0.95 13 0.25 3.84

2048 19 1.90 15 0.46 4.14

4096 23 3.96 19 0.85 4.69

8192 29 9.30 24 1.66 5.59

Table 5: Results of CPU MOPSO and GPU MOPSO on F4

N
CPU MOPSO GPU MOPSO

Speedup
No.S Time No.S Time

1024 33 0.99 30 0.26 3.78

2048 52 2.02 78 0.47 4.29

4096 125 4.60 121 0.86 5.36

8192 208 9.71 291 1.80 5.40

4.1 Running Time and Speedup VS. Swarm Size

Fig. 2 shows the relationship between running time and the swarm size (N ), when running
CPU MOPSO and GPU MOPSO to optimize function F1 − F4, respectively. As N grows in an
exponential way, the running time of CPU MOPSO also grows in the exponential way, while the
running time of GPU MOPSO increases in a linear way.
Fig. 3 depicts how speedup changes with N . As N grows, the speedup of the GPU MOPSO
over CPU MOPSO also increases, running on F1 − F4. The speedups range from 3.74 − 7.92,
and when N is bigger than 8192, the speedups can be expected to be even bigger.

4.2 Pareto Fronts Found by GPU MOPSO and CPU MOPSO

The Pareto-optimal fronts of F1 − F4 found by GPU MOPSO and CPU MOPSO are shown in
Fig. 4 and Fig. 5, respectively. Each of them are constructed by the specific run selected from
the 30 runs which returns the most number of nondominated solutions in the final generation.
It can be seen from the figures that the pareto fronts found by GPU MOPSO is as good as
those found by CPU MOPSO, both with high diversities. In fact, these fronts are as good as
the fronts returned by the original VEPSO (Parsopoulos and Vrahatis, 2002).

4.3 Quantity and Quality of Solutions VS. Swarm Size

In single objective optimization, a larger swarm size does not certainly mean a better optimizing
results, which was already pointed out by Bratton in (Bratton and Kennedy, 2007), and a swarm
size of 20 − 100 was suggested. Consequently, it is not quite necessary to implement PSO on
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Figure 4: Pareto fronts found by GPU MOPSO (N=4096)
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Figure 5: Pareto fronts found by CPU MOPSO (N=4096)

GPU in single objective optimization, as the GPU based parallel PSO with a small swarm (with
20 − 100 individuals) may even run slower than serial PSO on CPU.
However, in MOPSO, a larger swarm may be more powerful in searching for nondominated so-
lutions. As can be seen from Fig. 6, as the swarm size (N ) grows, the number of nondominated
solutions found by CPU MOPSO also increases, when running on all of the four test functions.
While in GPU MOPSO, this is also true when running on F2 − F4, but not so convictive on
F1. The reason may be that the random numbers used by GPU MOPSO are not quite exactly
“random”, for which the reason is explained in Section 3.1.
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Figure 6: Number of Solutions VS. Swarm Size

Large swarm size is not only beneficial to finding larger quantity of nondominated solutions,
but also helps in improving the quality of them.
The obtained solutions of all 30 runs are evaluated using an established measure, the C met-
ric (Zitzler et al., 2000). The metric C(A,B) measures the fraction of members of the Pareto-
optimal front B that are dominated by members of the Pareto-optimal front A. Notice that
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the C metric is neither symmetrical in their arguments nor satisfies the triangle inequality, thus
C(A,B) �= C(B,A).
Here we use C(N1, N2) to denote the C values of pareto fronts returned by the GPU MOPSO
swarm of size N1 and N2. The C values are statistically displayed with matlab boxplots in Fig. 7.
Each boxplot represents the distribution of the C values for the ordered pair (2048, 1024) and
(1024, 2048), respectively.
Each box of the boxplot has lines at the lower quartile, median, and upper quartile values. The
lines that extend from each end of the box are the whiskers, which show the extent of the rest
of the data. The outliers that lie beyond the ends of the whiskers are displayed with a red +
sign.
As can be seen from Fig. 7, the nondominated solutions found by the swarm of size 2048
dominate a bigger fraction of the solutions obtained by the swarm of size 1024. Contrarily, the
fraction is much lower. It can be concluded that the solutions found by the swarm of bigger size
are more quality than those obtained by a small population.

C(2048,1024) C(1024,2048)
0

0.2

0.4

0.6

0.8

1

C
 M

et
ric

 V
al

ue
s

F1

C(2048,1024) C(1024,2048)
0

0.2

0.4

0.6

0.8

1

C
 M

et
ric

 V
al

ue
s

F2

C(2048,1024) C(1024,2048)
0

0.2

0.4

0.6

0.8

1

C
 M

et
ric

 V
al

ue
s

F3

C(2048,1024) C(1024,2048)
0

0.2

0.4

0.6

0.8

1

C
 M

et
ric

 V
al

ue
s

F4

Figure 7: Quality Metric of Nondominated Solutions

4.4 GPU MOPSO for Large-scale Multi-objective Problems

We call a multi-objective problem as “large-scale”, when the dimensions of either the decision
vector or the objective vector are relatively large. Here we run the CPU MOPSO and GPU
MOPSO, respectively, for optimizing F4 with large dimension. The size of the swarm is set
to 4096, and the dimension of the decision vector D = 100, 200, respectively. The other set-
tings are the same with previous experiments. The experimental results are list in TABLE 6.
From this table, we can see that when the dimension is relatively large, the GPU MOPSO can
even run more than 10 times faster than the corresponding CPU MOPSO, while maintaining
comparable optimizing performances.
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Table 6: Results of CPU MOPSO and GPU MOPSO on F4 (N = 4096)

D
CPU MOPSO GPU MOPSO

Speedup
No.S Time No.S Time

100 26 29.23 34 2.80 10.44

200 34 60.63 46 5.67 10.69

4.5 Comparison with Related Works

Wong (Wong, 2009) implemented a parallel MOEA based on GPU within the environment of
CUDATM. This algorithm contained five steps: fitness computation, parent selection, crossover
and mutation, dominance checking and non-dominated selection. All five procedures were
performed on GPU except the non-dominated selection procedure, and the implementation
was quite complex. The speedups of the parallel MOEA ranged from 5.62 to 10.75 times, but
the optimizing performances (e.g. number of non-dominated solutions, pareto fronts) were not
given.
Compared with the parallel MOEA, our parallel GPU MOPSO is easier for implementation,
while keeping a promising optimizing performance as well as comparable speedups.

5 Conclusions and Future Works

In this research, for the first time in the MOPSO research field, we implemented a parallel
MOPSO based on GPU (specifically, only two-objective problems are considered), within the
platform of CUDA, resulting in our GPU MOPSO method. It has the following promising fea-
tures:

• Each particle in the swarm is evaluated by only one of the objectives instead of both, thus
the time consuming fitness computation task is halved, and the running time is greatly
shortened.

• The Pareto-optimal fronts are constructed by the nondominated solutions selected from
the last generation of the swarm, thus the maintaining of an external archive for non-
dominated solutions is not necessary, which is a complex and quite time consuming
procedure. The Pareto-optimal fronts of the four test functions found by GPU MOPSO
are quite close to the true fronts, with high diversities.

• The bigger the size of the swarm is, the more nondominated solutions are found, the
higher their quality are (closer to the true fronts of the problems), and the bigger speedup
is reached by GPU MOPSO. The speedups range from 3.74 to 7.92, depending on the
functions to be optimized and the size of the swarm.

• GPU MOPSO performs well on the functions with large dimensions, i.e. large-scale
problems, and the speedups are bigger than 10 times.
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• This is the first approach to implement MOPSO methods based on consumer-level GPU,
which is available on common PC. Compared with other implementations which are
based on multicomputer or multiprocessor systems, such as clusters, the hardware re-
quirement is much lower.

For future work, we will extend our GPU MOPSO to multi-objective optimization problems
with more than two objectives, and the possibility of designing new migration schemes for
communicating information among the subswarms will be studied.
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