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Abstract: Along with the evolution of computer viruses, the number of file samples that need to be analyzed
has constantly increased. An automatic and robust tool is needed to classify the file samples quickly and efficiently.
Inspired by the human immune system, we developed a local concentration based virus detection method, which
connects a certain number of two-element local concentration vectors as a feature vector. In contrast to the existing
data mining technique, the new method does not remember exact file content for virus detection, but use a non-
signature paradigm, such that it can detect some previously unknown viruses and overcome the techniques like
obfuscation to bypass signatures. This model first extracts the viral tendency of each fragment and identifies a set of
statical structural detectors, then uses an information-theoretic preprocess to remove redundancy in the detectors’
set to generate ‘self’ and ‘nonself’ detector libraries. Finally, ‘self’ and ‘nonself’ local concentrations are constructed
by using the libraries, to form a vector with an array of two elements of local concentrations for detecting viruses
efficiently. Several standard data mining classifiers, including k-nearest neighbor (KNN), RBF neural networks, and
support vector machine (SVM) are leveraged to classify the local concentration vector as the feature of a benign or
malicious program and to verify the effectiveness and robustness of this approach. Experimental results demonstrate
that the proposed approach not only has a much faster speed, but also gives around 98% of accuracy.
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1 Introduction

Since the first malicious executable code ap-
peared in 1981, computer viruses have been evolv-
ing with the rapid development of computer environ-
ments such as operating system, network, etc. There
are three main virus detection methods: signature-
based, malicious activity detection, and heuristic-
based.

The natural immune system is a dynamic, adap-
tive, and distributed learning system. It protects
organisms against antigen invasion by distinguishing
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foreign antigens (pathogens and tumor cells) from or-
ganismsąŕ own healthy cells and tissues and eliminat-
ing foreign antigens. Similarly, the functionality of
computer security systems is to recognize and elim-
inate virus, so that the natural immune system has
provided with an inspiration to develop such kind of
an artificial immune based heuristic method for virus
detection(Kephart, 1994).

In order to overcome the disadvantages, what
of the widely used signature-based virus detec-
tion method, data mining and machine-learning
approaches are also proposed for virus detec-
tion(Christodorescu et al., 2007),(Kolter and Mal-
oof, 2006). Many classification algorithms have
been put into practice for solving virus problems
combined with AIS including Naïve Bayes, Sup-
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port Vector Machine (SVM), Artificial Neural Net-
work (ANN), and hybrid approaches(Christodorescu
et al., 2007),(Kolter and Maloof, 2006),(Schultz
et al., 2001), (Wang et al., 2003).

In this paper, a novel AIS method is used to
generate an array of two-element immune local con-
centration (LC) vectors as the feature vector for virus
detection. ‘Self’ and ‘nonself’ detector libraries con-
tain the bit strings are most representative of benign
and virus programs, respectively. ‘Self’ and ‘non-
self’ local concentrations are constructed by using
‘self’ and ‘nonself’ detector libraries to traverse the
fixed length segment of a program. Then these two-
element local concentrations of the program are con-
nected to form a feature vector to identify a virus.
The framework of the proposed technique is shown
in Figure 1.
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Fig. 1 Architecture of our proposed technique

Comprehensive experiments were conducted on
a public virus data set in the previous works(Wang
et al., 2009),(Chao and Tan, 2009). Comparisons

on performance were made against these works
among different classifiers including k-nearest neigh-
bor (KNN), RBF neural networks and support vector
machine (SVM). Experimental results show that the
proposed approach achieves more than 97% detec-
tion rate, and thus outperform the current approach.
The runtime of training and detecting is relatively
short. It takes 0.054 seconds on average to identify
a given file.

It is well known that the signature-based virus
detection method is incompetent to detect some new
viruses. Furthermore, the number of malwares main-
tains an exponential growth, such that signature-
based virus detection methods cannot keep pace with
the security challenges, considering either increase of
signatures’ database or matching time of signatures.
Differing from the existing data mining techniques
including signature-based method and malicious ac-
tivity detection, the proposed now approach neither
memorizes specific byte-sequences appearing in the
actual file content nor monitors suspicious program
behavior. Our approach is non-signature based and
therefore has the potential to detect previously un-
known viruses. Moreover, in most of the current
approaches, every selected detector is related to one
feature dimension resulting in large dimensionality
of feature. The proposed model reduces the fea-
ture dimensionality and extract position related in-
formation during the process of local concentration
extraction. In this way, the model can somewhat re-
solve the two inherent shortcomings of non-signature
based techniques: high false positive rate and large
processing cost, resulting in low false positive rate
and processing cost.

In this paper, Section II reviews the related work
in detail. The generation of ‘self’ and ‘nonself’ de-
tector libraries is described in section III followed by
the construction of the feature vector shown in sec-
tion IV. Experimental results and the conclusion are
reported in section V.

2 Related work

As is mentioned above, there are three main
feature construction approaches for virus detection.

The most common approach for virus detection
is the signature-based method. It utilizes binary
data mining to detect patterns in a large amount of
data and use them to detect future instances in sim-
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ilar data(Henchiri and Japkowicz, 2006). Because
viruses can embed themselves in existing files, the
entire file is searched not just as a whole, but also in
pieces. This traditional method can detect a exist-
ing virus accurately, but it is somewhat limited by
the fact that it can only identify a limited amount
of generic or extremely broad signatures. It cannot
detect some new emerging threats.

Malicious activity detection is another approach
to identify viruses(Ilgun et al., 1995),(Hofmeyr et al.,
1998). In this approach, the antivirus software mon-
itors the system for suspicious program behaviors. If
a suspicious behavior is detected, the suspect pro-
gram may be further investigated, using signature-
based detection or another method. This type of
detection, by contrast, does not attempt to identify
known viruses, but instead monitors the behavior of
all programs. Unlike the signature-based approach,
the suspicious behavior approach therefore provides
protection against new viruses that do not yet exist
in any virus dictionaries. Nevertheless, it is a dy-
namic form of monitoring, and the detection must
rely on elements observable from an external agent.
This method is often criticized because malicious
actions are effectively executed(Kirda et al., 2006)
(Egele, 2008)(Jacob et al., 2008).

Recently, heuristic methods that are more so-
phisticated, like malicious activity detection, are be-
ing actively investigated to identity unknown viruses.
Since these methods operate at the byte-level file
content, they do not require any a priori information
about the viruses.

The most inspired heuristic virus detection
method was proposed by Schultz et al.(Schultz et al.,
2001) and Kolter et al.(Kolter and Maloof, 2006).

The framework in(Schultz et al., 2001) is com-
posed of three learning algorithms: 1) An inductive
rule-based learner that generates boolean rules based
on feature attributes; 2) A probabilistic method gen-
erating the probability that an example was in a class
given a set of features; 3) A multi-classifier system
that combines the outputs from several classifiers to
generate a prediction. These three independent tech-
niques include system resource information, strings,
and byte sequences extracted from the malicious exe-
cutables in the data set as different types of features.
The byte sequence technique, as used in our work,
provides a relatively high detection accuracy. How-
ever, it requires large processing and memory which

has been improved by Kolter et al. in(Kolter and
Maloof, 2006).

Kolter et al used n-gram analysis and data min-
ing to detect and classify malicious executables as
they appear in the wild. The byte sequences were
extracted from the executables, converted into n-
grams, and the most relevant n-grams were treated
as features. Their approach is evaluated for two as-
pects, including the classification between the benign
and malicious executables and categorization of exe-
cutables based on the function of their payload.

3 Generation of detector libraries

Algorithm 1 Algorithm for Virus Detection
Generate ‘self ’ and ‘nonself ’ detector libraries
from training set
The sizes of the libraries are decided by parameter
m which corresponds to proportional selection of
the potential detectors

for each the sample in training set do
Extract the two-element local concentration vec-
tors of each segment in training sample through
the two detector libraries
Connect these local concentrations to an or-
dered feature vector as the input of a classifier

end for

Use these feature vectors to train a certain classi-
fier

while Algorithm is running do
if a program is detected then
Characterize the sample by local concentra-
tion vectors through trained ‘self ’ and ‘non-
self ’ detector libraries
Use trained classifier to predict the label of
the program

end if
end while

The dimensionality N of the feature vector is de-
cided by file truncated length

Our proposed approach is mainly divided into
three parts: 1) Generation of ‘self’ and ‘nonself’ de-
tector libraries from the randomly selected training
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set; 2) Extraction of the two-element local concen-
tration of each segment in a training sample and con-
nect these local concentrations to construct a feature
vector; 3) Three trained classifiers, including KNN,
RBF neural networks and SVM, detecting the testing
sample characterized using the ordered concentra-
tion vector. The overview of the proposed algorithm
is outlined in Algorithm 1.

This approach computes a statistical and
information-theoretic feature in a manner of local
concentration on the byte-level file content. The gen-
erated feature vector of file segments is then given as
an input to standard data mining classification algo-
rithms that classify the file as virus or not.

The operating principle of generating ‘self’ de-
tector library and ‘nonself’ detector library is shown
in Figure 2. The concrete step is to divide all de-
tectors into two sets by their tendency value and to
calculate the detector importance, with important
detectors retained.
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Fig. 2 Detector library generating process

‘Self’ detector library are composed of detec-
tors most representative of benign files, and ‘non-

self’ detector library are composed of those detec-
tors most representative of viruses. Intuitively, the
fragment that appears most frequently in virus pro-
grams, while rarely in benign programs, is a good
representative of a virus.

The detectors in the library are a set of fixed-
length fragments. Here a fixed length L-bit fragment
of binary data, considered to contain appropriate
information of functional behaviors, is taken as the
detector to discriminate virus from benign program.
The length L is set not too short to discriminate
‘self’ and ‘nonself’ and too long to make virus-specific
data hidden in the binary data of files. Considering
that one meaningful computer instruction is 8 or 16
bits normally, it is reasonable to set ‘L’ as 16, 32,
or 64. A sliding window (shown in Figure 3, the
overlap of sliding window is [L/2] bits) is used to
count the document frequency of a detector in virus
programs and benign programs. The difference of
its document frequency in the virus programs and
benign programs can reflect the tendency to be a
virus or a benign file.

A segment in a program

01  B4  CD  21  C3  8E  C4  12  59... ...

d(j)=B4CD21C3

d(j+1)=21C38EC4

Fig. 3 Document frequency counting process,
L=32bits

After counting the document frequency of each
fragment, the tendency to be a virus T (X) of frag-
ment X is defined as in formula 1.

T (X) = P (X = 1|Cv)− P (X = 1|Cs) (1)

P (X = 1|Cv) means document frequency of frag-
ment X appearing in virus samples of training set;
P (X = 1|Cs) means document frequency of frag-
ment X appearing in benign samples of training set.
We defined the number of virus files as Nv, the num-
ber of benign files as Ns, the number of virus files
which contain fragment X as nv, and the number of
benign files which contain fragment X as ns, then:

P (X = 1|Cv) =
nv

Nv
(2)

P (X = 1|Cs) =
ns

Ns
(3)
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If each fragment is extracted to form a dictio-
nary, the size of this dictionary would become very
large. The detectors appearing in most of files are
not relevant to separate these files because all the
classes have instances that contain these detectors.
So with the number of detectors growing, the cost
of computing would increase, but the effect may not
be improved and made even worse. We reduce the
number of fragments to generate ‘self’ and ‘nonself’
detector libraries according to different importance
of each detectors. The importance of each detector
is calculated based on Information Gain (IG). The
detectors are sorted based on IG values in descend-
ing order, P% front of them are retained. More-
over, besides IG, other detector importance mea-
sures, such as document frequency, term-frequency
variance, and χ2 statistic, principal component anal-
ysis (PCA) can be applied to the model, endow it
with promising development. The preprocess of sta-
tistical and information-theoretic feature generation
is therefore achieved.

The generation of detector libraries is described
in Algorithm 2, in which m is a parameter to be
adjusted, and indicates proportional selection of all
the fragments. The information gain is defined in
formula 4.

IG(X, C) =
∑

x∈{0,1},c∈{Cv,Cs}
P (X = x ∧ C = c)

· log2

P (X = x ∧ C = c)
P (X = x) · P (C = c)

(4)

Where,
P (X = 1) means document frequency of fragment X
which appears in the training set;
P (X = 0) means document frequency of fragment X
which does not appear in the training set;
P (C = Cv) means document frequency of virus files;
P (C = Cs) means document frequency of benign
files;
P (X = 0|Cv) means document frequency of frag-
ment X which does not appear in virus samples of
training set;
P (X = 0|Cs) means document frequency of frag-
ment X which does not appear in benign samples of
training set.

P (X = 1) =
nv + nc

Nv + Nc
(5)

P (X = 0) =
Nv + Nc − nv − nc

Nv + Nc
(6)

P (C = Cv) =
Nv

Nv + Nc
(7)

P (C = Cs) =
Ns

Nv + Nc
(8)

P (X = 0|Cv) =
Nv − nv

Nv
(9)

P (X = 0|Cs) =
Ns − ns

Ns
(10)

Algorithm 2 Algorithm for Generation of Detector
Libraries
Initialize ‘self ’ and ‘nonself ’ detector libraries as
∅

while Algorithm is running do
for each fragment X in the sample of training
set do
Calculate the tendency of fragment X by for-
mula 1
Calculate the information gain of fragment X
by formula 2

end for

for each fragment X in the sample of training
set do
if IG(X) > m then
if T (X) < 0 then
add fragment X into ‘self ’ detector li-
brary

else
add fragment X into ‘nonself ’ detector
library

end if
end if

end for
end while

Extract P% front of fragments to form ‘self ’ de-
tector library and ‘nonself ’ detector library, P is
decided by parameter m
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4 Construction of feature vector

To construct a feature vector, a jumping win-
dow is moved to plot out several fixed length W-bit
segments. Inside a fixed length W-bit segment in the
program, a sliding window with [L/2] bits overlap is
used to obtain the ąőselfąŕ local concentration and
ąőnonselfąŕ local concentration (shown in Figure 4).
In every window the local concentration of segment
i is defined in formula 3 and 4.

V Ci =
V Ni ∗ L

W
(11)

BCi =
BNi ∗ L

W
(12)

Where V Ci and BCi denotes the ‘nonself’ and
‘self’ local concentration, respectively; V Ni is the
number of the detectors appearing in both detect-
ing segment of the file and ‘nonself’ detector library;
BNi is the number of the detectors appearing in both
detecting segment of the file and the ‘self’ detector
library.

Self
Detector
Library

Segment  i
Nonself
Detector
Library

Traversal
Matching

Traversal
Matching

Two-element
local concentration

Fig. 4 Local concentration construction

After ‘self’ and ‘nonself’ local concentration are
constructed in each window, these two-element local
concentrations of the program are connected to form
a feature vector
〈(V C1,BC1),(V C2,BC2),· · · ,(V Cn,BCn)〉 (shown in
Figure 5).

In order to serve these feature vectors as the
input of successive classifiers for detecting, the di-
mensionality of the vector should be consistent. In
this paper, truncated operation is applied and some
rear dimensionality is discarded. We use N ∗W bits
information of each program, where N is the number
of segments covered by the jumping window. The al-
gorithm 3 is for feature construction.

. . .
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local concentration
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local concentration

A ordered  concentration
vector

. . .

Classifier

Detecting
Set

A detecting
sample

Segment 1 Segment 2 Segment N

Virus
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Fig. 5 Feature vector construction

Algorithm 3 Algorithm for Feature Construction
For a program to be detected, truncate front N∗W
bits of the file and discard rear dimensionality of
the file

for each segment inside W-bit jumping windows
do
Traverse the segment i using a L-bit sliding win-
dow with [L/2] bits overlap

Initialize BNi=0, VNi=0
for each different L-bit fragment in the segment
i do
if it appears in ‘self ’ detector library then
BNi++;

else if it appears in ‘nonself ’ detector library
then
VNi++;

end if
end for

self-local concentration=BNi∗L/W
nonself-local concentration=VNi∗L/W

end for

Connect these ordered two-element local concen-
trations to construct a feature vector
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5 Data mining based classification

After characterizing the sample by a local con-
centration feature vector, one comes to the training
phase with different classifiers. Here we introduce
three simple but effective data mining methods used
in this work.

5.1 KNN

KNN is a lazy learning method based on the
closest training samples in the feature space. A sam-
ple is classified by a majority vote of its neighbors,
with the sample being assigned to the class most fre-
quent amongst its k nearest neighbors (k is a defined
positive integer). During the classification phase, a
detected feature vector is labeled by the class that
is the most common among the k training samples
nearest to that vector. Usually, Euclidean distance,
Hamming distance and etc. can be used as the dis-
tance metric depended on different situation.

KNN is simple and effective. The classification
with KNN is sensitive, however, to the data distri-
bution. The disequilibrium distribution tends to in-
fluence the classification result: classes with more
frequent samples tend to dominate the prediction
of the new vector. Another problem is that during
the training, all available data should be computed,
which leads to considerable overhead when the train-
ing set is large.

In the KNN algorithm, the selection of k should
be odd and small in order to avoid tie and misclassi-
fication. A good k can be optimized by some evolu-
tionary algorithms.

5.2 SVM

A support vector machine is a supervised learn-
ing algorithm. The algorithm constructs a hyper-
plane or set of hyperplanes in a high or infinite di-
mensional space, maps the samples as points into
a possibly high dimensional space and divides the
samples into separate classes by a clear gap that is
as wide as possible. An unlabeled sample is classi-
fied by the side of the separate hyperplane where the
sample lies when it is mapped to the feature space.

SVM is a kind of generalized linear classifiers. In
addtion, SVM can create non-linear classifiers with a
non-linear kernel function instead of dot product by
applying the kernel technique. This technique avoids
the computational burden of explicitly representing

the feature vectors.
In SVM training, cost parameter C and ker-

nel parameters can influence the position of optimal
hyperplane in the feature space and hence the per-
formance of classification.

5.3 RBF Neural Network

Neural network is an adaptive system that its
structure changes based on information that flows
through the network during the learning phase, try-
ing to simulate the functional aspects of biological
neural networks.

Radial basis network is embedded in a neural
network topology that uses radial basis function as
activation function. Like the architecture of stan-
dard feedforward backpropagation network, it typi-
cally has three layers: an input layer, a hidden layer
with a non-linear RBF activation function, and a lin-
ear output layer. In this paper, output layer is a sig-
moid function of a linear combination of hidden layer
values, representing a posterior probability, consist-
ing of only one node– the label of the detected file.

Radial basis network works best when enough
training vectors are available, and are more powerful
in multidimensional space. It tends to have several
times more neurons than a comparable feedforward
network in the hidden layer and each neurons only
respond to relatively small regions of the input space
compared with standard neurons that output over a
large region of the input space. The RBF network
would not suffer from local minima as the error sur-
face is quadratic. It is easy to find the minimum.
Moreover, RBF network takes much less time than
training a sigmoid/linear network(Chen et al., 1991).

In the RBF network, the spread parameter con-
trols the spread of the radial basis function. A larger
spread leads to smoother radial basis function and
more neurons responding to an input vector. A
smaller spread leads to steeper radial basis function,
so that the neuron with the weight vector closest to
the input will have a much larger output than other
neurons. The network tends to respond to the tar-
get vector associated with the nearest design input
vector. It is necessary that the spread parameter to
be large enough for the neurons to respond to over-
lapping regions of the input space, but not so large
that all the neurons respond in essentially the same
manner.
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6 Experimental results and Conclusion

Experiments are conducted on a public virus
data set in the pervious works(Wang et al.,
2009)(Chao and Tan, 2009). The “cilpku08”
data set, is obtained from a famous virus Web
site VX Heavens and from Computer-Forensic Ex-
perts of Anti-Virus Group in the Peking Uni-
versity, which can be get from the web site
http://www.cil.pku.edu.cn/resources/. The folder
includes 3547 malicious executables classified to 685
families based on their properties, comprising of six
different types: virus, trojan, worm, backdoor, con-
structor, and miscellaneous. The most common file
type for detection is virus, comprising more than
90% of all files; the remaining 10% of files are equally
divided among the other five types. Our legal files
are obtained from all folders of machines running the
Windows 2000 and XP operating systems. This data
set is divided into three subsets. The first data set
contains 538 programs with the ’self’ set of 284 legal
files and the ’nonself’ set of 254 virus files. The sec-
ond data set contains 1815 programs with the ’self’
set of 915 legal files and 900 virus files. The third
data set consists of the second set and 2647 extra
virus files, 4462 files in total. The training set is and
much smaller than and covered by the detecting set,
so that the expansibility and comprehensive ability
can be tested.

The test platform for experiments is shown in
Table 1.

6.1 Experiments for Different Window Size
and Number of Windows

In this part, different window size W and num-
ber of windows N, correspond to dimension of the
feature vector, are tested using three different clas-
sifiers, to find the parameters with the best perfor-
mance. The tested W ranges from 100 to 500 with
a step size 100 and N ranges 20 to 60 with a step
size 10. The average results of ten experiments with
different partitions of the second data set are used to
measure the performance.

Figure 6,7,8 show that whenW=400 and N=50
the results perform considerably stable and well on
the data set. Thus these two parameters are fixed in
the following of this paper.

6.2 Experiments for Different Proportional
Selection of all the fragments

The size of the detector dictionary is decided by
the proportional selection of the fragments. A suit-
able chosen proportional selection parameter m may
reduce much the computing cost without losing its
discriminatory power. The experiments for different
m are also conducted on the second data set, m is
chosen from 10% to 100% with a step size 10%. The
results is shown in Figure 9.
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When m=10%, the detecting rate has the best
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Table 1 The test platform

Operating System Windows XP
Computer Hardware CPU: Pentium IV 1.5GHz RAM: 512M

Programming Language C & Matlab language
Compiling Environment Microsoft Visual C++ 6.0 & Matlab R2007a
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Fig. 8 Accuracy with different window size and
number of windows on the second data set by
RBF NN
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Fig. 9 Accuracy with different proportional se-
lection of the fragments on the second data set

performance, where, the size of detector dictionary
is smallest.

6.3 Length of the Detector

The length of the chosen detector L-bit is crit-
ical to discriminate viruses from benign programs.
As the length of a meaningful program instruction
is usually 16 bits, 32 bits, or 64 bits, L is not nec-
essary bigger than 64 to contain at least one entire
instruction. The length of the detector is taken as
32 or 64 in this paper in order to make it not too
long to include some hidden viral information and
not too short to obtain enough representative viral
information. The overlap of sliding window is [L/2]
bits. The accuracy rates using SVM classifier with
different length of the detector are shown in table 2.

6.4 Contrast Experiments

In order to assess the performance and to show
possible advantages of the proposed approach, nine
contrast experiments against the method in (Wang
et al., 2009) were performed on these three practi-
cal data sets under windows operating system. The
same partitions are made using the same data. Test
1, 2, and 3 were performed on the first data set with
a partition ratio of 4:1,1:1,1:4 for the training set and
the detecting set. Test 4, 5, and 6 were performed on
it with a partition ratio of 2:1,1:1,1:2 for the training
set and the detecting set. Test 7, 8, and 9 were per-
formed on the second data set with a partition ratio
of 2:1,1:1,1:2 for the training set and the detecting
set.

As shown in Figure 10, and 11, our proposed
method outclassed the hierarchical AIS method in
all the tests, and achieved an accuracy rate of more
than 97% on the detecting set. The proposed method
did not appear to lose performance as the set size
were growing. The runtime performance of our
method also performed better than the hierarchi-
cal AIS method. In Figure 12, the training time of
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Table 2 Average accuracy rate by SVM when L=64 or 32

Accuracy rate with 64-bit Detector(%) Accuracy rate with 32-bit Detector(%)

Exp. Training Set Detecting Set Training Set Detecting Set

All V irus Benign All V irus Benign All V irus Benign All V irus Benign

Test1 100.00 100.00 100.00 97.22 96.08 98.25 99.53 99.51 99.56 95.37 98.04 92.98
Test2 100.00 100.00 100.00 97.40 95.28 99.30 99.63 99.21 100.00 98.51 96.85 100.00
Test3 100.00 100.00 100.00 94.19 87.68 100.00 99.07 98.04 100.00 96.74 95.57 97.80
Test4 100.00 100.00 100.00 97.75 96.43 98.94 99.44 98.82 100.00 96.07 92.86 98.94
Test5 100.00 100.00 100.00 97.03 94.49 99.30 100.00 100.00 100.00 97.03 98.43 95.77
Test6 100.00 100.00 100.00 95.56 90.59 100.00 100.00 100.00 100.00 95.00 90.59 98.95
Test7 99.92 100.00 99.84 98.02 97.67 98.36 99.09 99.50 98.69 98.02 97.67 98.36
Test8 100.00 100.00 100.00 96.04 94.00 98.03 99.78 99.56 100.00 97.91 97.33 98.47
Test9 100.00 100.00 100.00 95.12 91.83 98.36 99.67 99.33 100.00 97.27 95.83 98.69
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Fig. 10 Accuracy rate on the detecting sets of
Contrast Experiments

1 2 3 4 5 6 7 8 9
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Test

A
cc

ur
ac

y

Accuracy of classification on training set
(m−10%,Window size−400,Window number−50)

 

 

Our method
H−AIS method

Fig. 11 Accuracy rate on the training sets of Con-
trast Experiments

new method varies linearly with the number of files,
unlike H-AIS method whose training time grew ex-
ponentially with the file number. Furthermore, the
runtime of new method (several minutes) and H-AIS
method (several hours) are not of the same order of
magnitude.

Fig. 12 Training runtime of two methods

Experiments on the third data set confirmed the
model’s expansibility, and the training set is much
smaller than the detecting set. The results are shown
in Figure 13.
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Fig. 13 Accuracy rate on the detecting sets of
expanded Contrast Experiments by SVM

6.5 Parameters optimization

The feature vector constructed by an ordered
two-element local concentration is the input of a clas-
sifier, and the binary value is the output. The gen-
eration of ‘self’ and ‘nonself’ detector libraries, the
jumping window size W setting, the window num-
ber N setting, which in turn determine the feature
vector, is here an optimization problem.

The vector that needs to optimize P ∗ =
{m,W,N,P ∗1 , P ∗2 , · · · , P ∗n} is composed of the de-
tector library determinant m, the jumping window
size W, the window number N and the parameters
P ∗1 , P ∗2 , · · · , P ∗m associated with a certain classifier.

When m is set to different values, P would take
different values, and different detector libraries are
obtained. An unique feature vector can be con-
structed when different W and N, for a file to be
characterized, ‘self’ local concentrations that repre-
sent their similarity to benign program and ‘nonself’
local concentrations that represent their similarity
to virus are different. P ∗1 , P ∗2 , · · · , P ∗m are classifier-
related parameters that influence the performance of
a certain classifier. Different classifiers hold different
parameters and lead to varied performances. For ex-
amples, parameters associated with KNN include a
number of nearest neighbors and the ways of distance
measures. SVM-related parameters that determine
the position of optimal hyperplane in feature space,
include cost parameter C and kernel parameters.

The optimal vector is the one whose cost
function associated with classification is minimum,
namely the one which make the accuracy of classifi-

cation maximum. The cost function CF (P ) can be
defined as:

CF (P ) = Err(P ) (13)

where Err(P ) is the classification error on the train-
ing set.

Input vector is composed of two parts:
LC feature vector determinant m, W, N and
P ∗1 , P ∗2 , · · · , P ∗m these classifier-related parameters.
Output is to find a P ∗, hence:

CF (P ∗) = Err(P ∗) = min
{m,W,N,P∗1 ,P∗2 ,··· ,P∗m}

Err(P )

(14)
Several robust optimization approaches can be

employed to optimize the input vector, such as parti-
cle swarm optimization (PSO) and genetic algorithm
(GA). Here we use a CPSO (as shown in Figure 14)
to design the LC feature vector and the correspond-
ing classifier. The detailed optimization process is
referred to in (Tan and Xiao, 2007).

Classifier
parameters

Detector
library

determinant

Determine the
dimensionality
& threshold of

particle

Initialize the particle
swarm, including

number & position of
each particle

Compute fitness value
CF(P)  of each particle, find
personal best & global best,

record testing  error

Update the position &
velocity according to SPSO

Clone & mutation
processes should be

performed?

Perform clone &
mutations processes,

then selection to
maintain swarm stable

Terminate?
Output the
global best

particle

Yes

No

YesNo

Fig. 14 CPSO-based classification process

The selection of the LC feature vector determi-
nant m, W, N and the classifier-related parameters,
P ∗1 ,P ∗2 ,· · · ,P ∗m, is a dynamic optimization process.
Parameters associated with KNN include a number
of nearest neighbors K and the ways of distance mea-
sures, K is optimized in the integer number interval
[1, 20], and the ways of distance measures are cho-
sen among euclidean, cityblock, cosine, correlation.
For SVM, the cost parameter C is optimized in real
number interval [1, 200]. For RBF neural network,
the spread σ in real number interval [1, 5] is opti-
mized. m is optimized in the integer number inter-
val [5, 100], W, N range in [100, 600] and [10, 100],
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Table 3 Average accuracy rates on the detect-
ing set with empirical & optimized classification
designs under optimum conditions by SVM

Optimized designs Empirical designs
EXP. All(%) FP (%) All(%) FP (%)

Test1 97.83 4.37 97.83 4.37
Test2 98.51 0.00 96.59 2.95
Test3 96.74 2.20 96.30 3.61
Test4 97.75 1.06 97.13 3.17
Test5 97.56 3.93 97.56 3.93
Test6 96.15 3.17 96.15 3.17
Test7 98.03 1.64 98.03 1.64
Test8 97.91 1.53 97.20 1.09
Test9 97.27 1.31 96.80 1.20

Average 97.53 2.14 97.06 2.79

Table 4 Average accuracy rates on the detect-
ing set with empirical & optimized classification
designs under optimum conditions by KNN

Optimized designs Empirical designs
EXP. All(%) FP (%) All(%) FP (%)

Test1 97.78 4.04 97.78 4.04
Test2 97.77 0.70 96.08 2.84
Test3 97.91 0.00 96.23 3.06
Test4 98.88 1.06 97.69 4.04
Test5 96.65 0.00 96.12 2.73
Test6 95.94 3.61 95.94 3.61
Test7 97.02 0.00 96.68 0.44
Test8 97.47 1.31 96.30 1.20
Test9 96.94 1.15 95.47 0.87

Average 97.37 1.32 96.48 2.54

respectively. The maximum number of generation is
set to be 200 as the stop criterion, the number of
particles in a swarm is 20.

The randomness of CPSO leads to slightly vari-
ation in the performance and obtained parameters.
Therefore the results of nine independent classes of
experiments on the expended third data set were
used to evaluate tests, which is more reasonable.
The average performance of empirical and optimized
classification designs is reported in Table 3 & 4. FP

means false positive rate, the rate of legal files mis-
takenly classified as malicious executables.

The results show that the optimized classifica-
tion design resulted in a 1% increase in accuracy
rate compared with the empirical classification de-
sign. The CPSO method has improved the accuracy
and reduced the false positive rate. However, a trade-
off decision has to be made between the better result

and a much longer training time.

6.6 Conclusion

In this paper we have proposed an non-signature
based approach that analyzes the byte-level file con-
tent. Instead of traditional binary data mining meth-
ods, our method first establishes a uniform frame-
work for a general and systematic approach to fea-
ture construction. Second, it reduces the dimension-
ality resulting in faster training process. Also, the
proposed feature extraction approach attains better
or at least comparable results. The new method
is easier without sacrificing performance, and pro-
vides implicit robustness against common obfusca-
tion techniques.
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