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Abstract—As a new kind of vehicle with low fuel cost and
low emissions, the hybrid electric vehicle (HEV) has been paid
much attention in recent years. The key technique in the HEV is
adopting the optimal control strategy for the best performance. As
the premise, correct driving condition discrimination has an ex-
tremely important significance. This paper proposes an intelligent
multifeature statistical approach to automatically discriminate the
driving condition of the HEV. First, this approach periodically
samples the driving cycle. Then, it extracts multiple statistical
features and tests their significance by statistical analysis to select
effective features. Afterward, it applies a support vector machine
(SVM) and other machine-learning methods to intelligently and
automatically discriminate the driving conditions. Compared with
others, the proposed approach can compute fast and discrimi-
nate in real time during the whole HEV running mode. In our
experiments, it reaches an accuracy value of 95%. As a result,
our approach can completely mine the valid information from
the data and extract multiple features that have clear meanings
and significance. Finally, according to the prediction experiment
by a neural network, the fitting experiment by the autoregressive
moving average model, and the simulation results of the control
strategy, it turns out that our proposed approach raises the effi-
ciency of considerably controlling the HEV.

Index Terms—Driving condition, hybrid electric vehicle (HEV),
intelligent multifeature statistical discrimination (IMSD), neural
network, statistical feature.

I. INTRODUCTION

A T PRESENT, faced with increasingly more resource and
environmental problems, people have to pay more atten-

tion to the fuel economy (FE) and the emission of transportation
such as vehicles. Developing a vehicle with lower fuel cost
and lower emissions has become a goal of current vehicle
industry [1].
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Three ways can be taken to improve engine efficiency and
vehicle performance. The first way is to change the structure of
the traditional engine or add some improving apparatus. This
has the lowest cost because it does not change the process of ve-
hicle production. Consequently, the performance improvement
is limited. The second way is through an electric vehicle (EV)
and a fuel cell vehicle [2]. These two types of vehicles, which
substitute the traditional fuel with a battery and a fuel cell, and
the internal combustion engine with an electric motor, are the
cleanest vehicles. However, the high manufacturing cost limits
their development. Combining these two ways, a hybrid EV
(HEV) was developed after 1995 as the third way [3]. The HEV
combines the advantages of the traditional vehicle and the EV
to reach a good balance between the cost and the FE. As a way
with promising performance, the HEV has increasingly become
one of the main development trends in vehicle industry.

An HEV generally has two or more power sources, e.g., fuel
and electric power. Its engine combines the traditional internal
combustion engine, electric motor, and battery in different
ways [4]. Due to the highly efficient energy storage parts, the
internal combustion engine of the HEV could be smaller, more
efficient, and with lower emissions. Based on the combing ways
of parts, the HEV is classified into a series HEV, a parallel
HEV, and a hybrid HEV [5]. Whichever type is adopted, when
the HEV outputs the power, how to appropriately manage the
different power sources to improve its performance becomes an
extremely important problem. It is also the key problem in the
HEV research—the control strategy of the HEV [6].

The control strategies of the HEV can be classified into
three types. The first is the intelligent control strategy or
the heuristic control strategy. This strategy usually has some
predefined rules. The HEV will manage the power sources
following the rules [7]–[9]. This strategy is simple, fast, and
easy to implement, but its control result is often far from the
optimal point. The second is the static optimization strategy.
This strategy will compute the optimal power split based on the
inherent parameter of the HEV [10], [11]. This strategy is much
more efficient than the intelligent control strategy. However,
due to lack of consideration about the driving environment, it
usually performs well under some specific driving conditions,
whereas it might not be optimal under others. The third is the
dynamic optimization strategy. This strategy not only considers
the effect of the inherent parameter but also detects the change
in the external factors. Combining all the factors, the strategy
will compute the best power split to dynamically manage the
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power sources in real time [12]–[14]. This strategy is able
to continuously modify the control model and give a better
performance. However, enormous computation will be a great
burden and results in a lack of time.

Among the aforementioned control strategies, most of them
construct a uniform control model to manage the power
sources. However, the range of parameters in the control model
is wide, and the same parameter in different intervals will ex-
press the different system characteristics. As a result, a uniform
system model is not adequate to describe the driving process
of the HEV. To construct a more precise model, we need to
decompose the uniform model into a number of submodels
corresponding to the different parameter intervals [15].

The driving condition of the HEV is a complicated variable
that is determined by multiple factors. It will exert a significant
effect on the vehicle performance. The correct discrimination
of driving conditions will help decompose the uniform model
into a series of submodels corresponding to the different driving
conditions, which can improve the control performance. Mean-
while, there are lots of factors that influence driving conditions,
e.g., wetness of the road, resistance, terrain, traffic, and even
weather. The data on these factors may not be directly collected
because there is no exact numerical style. Thus, how to cor-
rectly discriminate the driving conditions based on the limited
data that we have collected becomes a key problem to solve.

II. RELATED WORK

To discriminate the driving conditions, the classification
standard of driving conditions should be defined first. Currently,
there is no uniform standard. Based on the actual requirements,
various classifications are adopted, e.g., based on the road
surface condition, the driving conditions are classified into dry,
wet, slushy, icy, and snowy [16]; based on the road level, they
can be classified into a highway, an urban road, and an extra
urban road [17]–[19]. The congestion level is also a factor
to classify the driving conditions [20]. Moreover, there are
some classifications by combining the aforementioned methods
[21], [22].

The driving condition is determined by various factors;
therefore, the data that are collected for driving condition
discrimination are also different. The common data contain the
following two types: The first type is an image or a video,
which supplies many details such as obstacles, pedestrians,
and other vehicles to distinguish the driving conditions [23]–
[25]. However, such data require complicated image processing
to give the result, and the enormous computation may be a
great burden. The second type is time series on velocity or
acceleration. Such data are most commonly used and easily
collected. Many research studies are based on it [19], [26], [27].
However, these data cannot supply enough details; thus, it is
not suitable for the discrimination of the complicated driving
conditions. In recent years, the data collected by the automotive
radar have been increasingly being used for the discrimination
of driving conditions [28]–[30].

According to the data type and the classification standard,
various approaches are proposed to discriminate the driving
conditions, e.g., based on the pictures captured in the vehicle,

Fig. 1. Framework of the model.

image processing and computer vision approaches are used
to determine the outside environment [16], [23]. Some rule-
based and fuzzy logical methods are also used to make the
results robust [20], [31]. In [17], the hidden Markov model
is adopted to predict the future driving conditions. In [32], a
neural network is also adopted.

When the driving conditions are discriminated, the control
strategy based on the driving conditions can be built. In [18],
six respective control rules are built on six driving conditions.
In [32], the multimode control strategy is built based on driving
patterns. In [33]–[35], various control strategies are proposed
under different driving conditions.

This paper proposed a new approach of intelligent multi-
feature statistical discrimination (IMSD). Based on the driving
data of the HEV, it uses statistical analysis to extract and
select multiple valid features. After the classifier learned the
information on these features, it can intelligently discriminate
the driving conditions in real time. This approach has simple
data processing, definite meaning, fast computation, and high
accuracy.

This paper will be organized as follows: In Section III, a
framework of our model will be proposed. In Section IV, the
classification standard of driving conditions will be discussed
in detail. In Section V, we will analyze the extracted statistical
features and their significance. In Section VI, the samples
will be classified based on statistical features and different
classifiers. In Section VII, the final discrimination approach will
be determined. In Section VIII, some experiments will show the
effectiveness of IMSD. Finally, Section IX concludes of this
paper.

III. FRAMEWORK OF OUR MODEL

The framework of IMSD is shown in Fig. 1, which consists
of the following five steps.

A. Generation of Driving Samples

The driving cycle of the HEV is usually a long time series.
In practical applications, we need to discriminate the current
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driving conditions in real time. Thus, we collect the driving data
by sampling periodically. According to the short samples, the
current driving condition can be quickly determined.

Suppose a long time series {S1, S2, . . . , Sn}, we need to
truncate k samples {s1, s2, . . . , sk} of length t from it. First,
we randomly select a start position n0, i.e.,

n0 = random(0, 1, . . . , t − 1). (1)

Then, the continuous m (m > k) samples of length t will be

si = {sij , j = 1, 2, . . . , t}, i = 1, 2, . . . , m (2)

where sij = Sn0+(i−1)t+j , n0 + mt ≤ n.
The k samples will be randomly selected from them.

B. Feature Extraction

After collecting the samples, we need to extract the features
that can describe the characteristics of driving conditions. Here,
we choose the features with statistical significance and definite
meaning as the elementary features, e.g., average speed and
maximum acceleration.

Suppose that the multiple extracted features are E1,
E2, . . . , Em and that the vector that consists of them is

E = (E1, E2, . . . , Em). (3)

If the sample for feature extraction is

s = (s1, s2, . . . , st) (4)

the process of feature extraction can be described as

E = extract(s)
= (extract1(s), extract2(s), . . . , extractm(s)) (5)

where extract(·) is a mapping from the sample to the elementary
features; extract1(s), extract2(s), . . . , extractm(s) are m com-
ponents of E. The specific forms of extract(·) can be various.
If we suppose that s is a speed sample of the HEV and E1

indicates the average speed, then

E1 = extract1(s) =
1
t

t∑
i=1

si. (6)

C. Feature Selection

Elementary features are usually of a large quantity. Some of
them may not be suitable to discriminate the driving conditions.
Thus, we need to filter the elementary features and convert them
into advanced features. The method for feature selection can be
principal component analysis (PCA), factor analysis (FA), and
so on. We will compare them in Section VI.

Suppose the advanced features after feature selection are
F1, F2, . . . , Fk and the vector that consists of them is

F = (F1, F2, . . . , Fk). (7)

The process of feature selection is described as

F = select(E) (8)

where select(·) indicates the operation of feature selection.
Based on the requirements, select(·) can be the different meth-
ods, e.g., PCA and FA. If we suppose that select(·) indicates the
operation of the PCA, then

F = (F1, F2, . . . , Fk) = PCA(E) (9)

where F1, F2, . . . , Fk are the first k principal components that
are selected.

Based on statistical analysis, we can also directly select k
features from m elementary features without transformation, as
we adopted in this paper. The process can be described as

F = select(E1, E2, . . . , Em) = (Ei1 , Ei2 , . . . , Eik
) (10)

where {Eik
} is a subsequence of {Em}.

D. Classification

Based on the aforementioned advanced features, the driving
conditions of the HEV can be determined by the different
classifiers, e.g., k-nearest neighbor (kNN), neural network, and
support vector machine (SVM).

Suppose the corresponding driving condition R ∈ {R1,
R2, R3, R4}. R1, R2, R3, and R4 indicate the four driving
conditions of the HEV, respectively. Then, our classification
model will be

R = classify(F ) (11)

where classify(·) is the classification function.
When there is a new sample to discriminate, based on its

extracted feature F , the result of classification R will be the
current driving condition.

E. Four Driving Conditions

The aforementioned process is, in fact, a mapping from the
driving cycles S to the driving conditions R, i.e.,

f : S → R (12)

where S is the set consisting of the driving cycles {Sn},
and R = {R1, R2, R3, R4} is the set consisting of driving
conditions.

In this paper, we classify the driving conditions of the HEV
R into four types, including a highway (R = R1), a country
road (R = R2), an urban road (congested) (R = R3), and an
urban road (flowing) (R = R4). The detailed definition and
explanation will be discussed in Section IV.

F. Characteristics of Our Model

From the aforementioned framework, four characteristics of
the model can be seen.

1) Dynamic determination of driving conditions: Because
the model periodically samples the whole driving
process, the current driving condition can be decided in
real time based on the sample.
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Fig. 2. Two driving cycles of a highway.

Fig. 3. Two driving cycles of a country road.

2) Multiple features: The model extracts more than one
feature from a sample to provide accurately enough in-
formation to determine the driving condition.

3) Statistical method for feature extraction and selection:
We use the statistical analysis and test to obtain multi-
ple significant features, which have obvious meaning in
statistics and are convenient for feature explanation.

4) Intelligent discriminant: The classifier in the model
adopts various machine-learning algorithms, which make
the model automatically learn the features and intelli-
gently discriminate the current driving condition.

IV. DRIVING CONDITIONS OF THE HYBRID ELECTRIC

VEHICLE AND THEIR FEATURE ANALYSIS

We classify the driving conditions into four types, which is
the most common and representative.

A. Highway

A highway is a main road between important destinations,
such as cities and towns. It has a lower limit of the driving
speed and can afford the heavy traffic. In Fig. 2, the two speed
sequences are collected under the real highway condition. In the
figure, we can see the HEV keeps a high speed (above 50 mi/h)
and drives smoothly. There is no interval of stopping (0 speed)
in the cycle.

B. Country Road

A country road is a road that connects cities and countries.
Compared with the highway, its speed standard and traffic
capacity are lower. In Fig. 3, the sequences are collected under
the country road condition. Comparatively, the speed decreases
a lot (30–50 mi/h). The HEV periodically accelerates and
decelerates; thus, the driving cycle becomes a form of wave.

Fig. 4. Two driving cycles of an urban road (congested).

Fig. 5. Two driving cycles of an urban road (flowing).

C. Urban Road (Congested)

An urban road is the road in the city. There are numerous in-
tersections and vehicles on the urban roads. When the traffic is
heavy, the urban road usually congests. In Fig. 4, the sequences
show the state of the congested urban road. Compared with the
preceding two driving conditions, the HEV under this condition
not only has a low speed (below 25 mi/h) but also periodically
stops. Moreover, the stopping interval under this condition is
usually large.

D. Urban Road (Flowing)

Compared with the congested urban road, the speed of the
flowing urban road increases a little. However, due to the
numerous intersections, the HEV still periodically stops. Under
this condition, the speed of the HEV can keep for a while and
will not immediately decrease. From the sequences in Fig. 5,
the aforementioned characteristics are obvious.

E. Statistical Features of Different Driving Conditions

To find the features for discrimination, we extract the statisti-
cal features of driving cycles under the aforementioned driving
conditions.

Some standard driving cycles that are collected in real world
are adopted, including HWFET, US06-HWY, INDIA-HWY-
SAMPLE, HYZEM-URBAN, HYZEM-HWY, HYZEM-SUB,
CSC, WVUSUB, NYB, MANHATTAN, NYCC, CBD14,
INDIA-URBAN-SAMPLE, UDDS, and WVUCITY.1 Each
driving cycle is a long speed sequence that is collected under
one driving condition. The standard driving cycles belonging to
the same driving condition can be combined to form a new long
driving cycle under this driving condition. We create a 10 000-s

1More details about these cycles can be obtained from http://www.dieselnet.
com/standards/cycles/.

http://www.dieselnet.com/standards/cycles/
http://www.dieselnet.com/standards/cycles/
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TABLE I
STATISTICAL FEATURES OF DIFFERENT DRIVING CONDITIONS

driving cycle for each driving condition to statistically analyze
their features.

The result is shown in Table I, where various statistical
features are presented, including the maximum speed vmax;
the average speed vmean; the maximum acceleration amax; the
minimum (negative maximum) acceleration amin; the maxi-
mum, minimum, and average values of speed multiplied by
acceleration, i.e., (v ∗ a)max, (v ∗ a)min, and (v ∗ a)mean; their
standard deviations σv, σa, and σv∗a; and the idle rate (the
percent of the stopping interval) I . In addition, the four driving
conditions are indicated by Class 1 (highway), Class 2 (country
road), Class 3 (urban road (congested)), and Class 4 (urban road
(flowing)).

On the features vmean, amax, amin, and I , the differences
between classes are significant. Based on the features, the four
driving conditions of cycles can be distinguished. We mark
them in bold.

V. FEATURES OF SAMPLES AND THEIR SIGNIFICANCE

From the analysis of the driving cycles, we can obtain
some features. However, in our model, the collected data are
segments of the driving cycle. Thus, the features vmean, amax,
amin, and I may be not suitable. We need to generate some
driving samples to analyze their validation and significance.

A. Generation of Samples

We use the method in the framework to generate the samples.
Given a long driving cycle {S1, S2, . . . , Sn}, we need to gener-
ate some samples {s1, s2, . . . , sk} of length t from the driving
cycle. The algorithm is given here.
Step 1: Select a start position n0 = random(0, 1, . . . , t − 1),

i = 1.
Step 2: If n0 + t > n, turn to Step 5.
Step 3: Let sij = Sn0+j , j = 1, 2, . . . , t.
Step 4: n0 = n0 + t, i = i + 1, turn to Step 2.
Step 5: Select k samples randomly from i generated samples.

In the former research, we have learned that the driving
period of the HEV is about 3 min [36]. When the length of
the sample approaches or exceeds 3 min, it can reflect the
characteristic of the current driving condition. Thus, we choose
150 s as the length of each sample and generate 300 samples
under each driving condition. Then, we analyze the features of
these samples.

B. Histogram of Samples

A histogram is a basic method to analyze the distribution of
samples. It shows the frequency of samples at each interval on
a feature.

Fig. 6. Histograms on vmean under the four driving conditions. (a) Highway.
(b) Country road. (c) Urban road (congested). (d) Urban road (flowing).

Fig. 7. Histograms on amax under the four driving conditions. (a) Highway.
(b) Country road. (c) Urban road (congested). (d) Urban road (flowing).

The histograms in Fig. 6 show the distributions of the sam-
ples under different driving conditions on the feature vmean. In
the figure, the red line is the fitting curve of the distribution
density, which is obtained by the kernel density method and
represents the most probable distribution form of the samples.
We can see, under the four driving conditions, that the shapes
and positions of the fitting curves are completely different,
which means that, on the feature vmean, there are significant
differences in the distributions of the samples between driving
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Fig. 8. Histograms on amin under the four driving conditions. (a) Highway.
(b) Country road. (c) Urban road (congested). (d) Urban road (flowing).

Fig. 9. Histograms on I under the four driving conditions. (a) Highway.
(b) Country road. (c) Urban road (congested). (d) Urban road (flowing).

conditions. Thus, the feature vmean can be used to discriminate
the different driving conditions.

The histograms on the features amax, amin, and I are
shown in Figs. 7–9, which express a similar characteristic as
those on vmean. Thus, these features can be also adopted for
discrimination.

C. Boxplot and ANOVA

From the aforementioned histograms, we can see the basic
distribution of the samples. To test the significance of these
features, we adopt boxplot and analysis of variance (ANOVA)
for a further analysis.

In a boxplot, the middle line of a box indicates the median of
the samples, and the upper and lower edges of a box indicate

Fig. 10. Boxplots on four features, where the numbers on the horizontal axis
indicate the four different driving conditions. (a) vmean. (b) amax. (c) amin.
(d) I .

the upper and lower quartiles, respectively. The top and the
bottom of a whisker indicate the largest and smallest samples,
respectively. The spacings between the different parts of the
box help indicate the degree of dispersion and skewness in the
samples.

The boxplots in Fig. 10 display the distributions of the
samples under four driving conditions on the features vmean,
amax, amin, and I . It is obvious that, on each feature, the sam-
ples of different driving conditions have significant differences.
Most of them are distributed in different intervals. Thus, the
significance of these four features is obvious.

In addition, we use ANOVA to quantitatively analyze the sig-
nificance of the features. The Kruskal–Wallis one-way ANOVA
is adopted. The Kruskal–Wallis test is a nonparametric method
to test for differences among two or more groups [37]. It does
not assume a normal population, unlike the analogous one-way
ANOVA.

First, it ranks all data from 1 to N , ignoring group member-
ship. Then, the test statistic is given by

K = (N − 1)
∑g

i=1 ni(ri − r)2∑g
i=1

∑ni

j=1(rij − r)2
(13)

where

ri =

∑ni

j=1 rij

ni
(14)

r = (1/2)(N + 1) is the average of all the rij , ni is the number
of observations in group i, rij is the rank of observation j from
group i, and N is the total number of observations.

The p-value is approximated by Pr(χ2
g−1 ≥ K). When K is

large or the p-value is small enough (p < 0.01), the differences
between groups are significant. In our approach, the groups
are the driving conditions, and the Kruskal–Wallis test on each
feature is given in Table II. When the K-value is large or
p < 0.01, we can confirm that the feature is significant, and we
can differentiate the driving conditions.
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TABLE II
KRUSKAL–WALLIS ANOVA ON DIFFERENT FEATURES

TABLE III
CORRELATION OF DIFFERENT FEATURES

From the table, all the features are significant (p < 0.01);
thus, the features are compared according to the K-value.
vmean, vmax, I , amax, and amax give five largest K-values,
which should be adopted in our model. However, the correlation
coefficient between vmax and vmean is 0.91, which means a
high correlation. Thus, we drop vmax to reduce the correlation
between features. The K-values of (v ∗ a)min, σv , σa, and σv∗a
are close to each other. To reduce the feature number, both of
them are dropped. The experiment in Section VI-B will show
that it is unnecessary to keep them in our model. The remainder
of the features give small K-values; thus, all of them can be
dropped. Finally, we adopt four significant features, i.e., vmax,
amax, amin, and I , as the best features for the discrimination
of driving conditions. In Table III, we present their correlation
coefficients. Both of them keep a low correlation with other
features.

VI. EXPERIMENT OF CLASSIFICATION

After the features with an important significance are ex-
tracted, we use them to train the classifier and discriminate the
driving conditions. The experimental setup is discussed here.

vmean, amax, amin, and I are chosen as the input vari-
ables. The driving condition R is the output variable. One
thousand two hundred new samples are generated from the
driving cycles, among which there are 300 samples for each
driving condition. The length of the sample is a parameter of
classification. Fivefold cross validation is adopted to estimate
the classification. The original sample is randomly partitioned
into five subsamples. A single subsample is used for testing,
and the remaining four subsamples are used as training data.
The cross-validation process is then repeated five times, with
each subsample used for testing once. Their average result is
the final estimation.

A. Comparison of Feature Extraction Methods

In the framework of our model, the features are extracted and
selected by a statistical method. To illustrate the effectiveness
of our method, the common methods for feature extraction are
adopted for a comparison, which are the fast Fourier transform
(FFT), the discrete cosine transform (DCT), and the PCA.

1) OE: The experiment of classification with input features
vmean, amax, amin, and I is considered as the original ex-
periment (OE). The multilayer neural network (MLNN) with

one hidden layer is adopted as the standard classifier. Based
on the conclusion of the prior experiment, we set the number
of hidden nodes to 15, which will make the neural network
reach a good balance between performance and complexity.
In addition, according to Bishop’s work [38], the number
of training patterns should be around ten times as many as
the weights in the network. There are about 75 weights in the
network and 960 training samples, which is appropriate. The
training algorithm is a Levenberg–Marquardt algorithm, and
the maximum epoch is 500. The convergence goal is a mean-
square error (MSE) of 0.01.

2) FFT and DCT: The FFT and DCT are two methods that
are comprehensively used in digital signal processing, both
of which can be used to compress the data and extract the
frequency features of the data.

The FFT is the fast algorithm for the discrete Fourier trans-
form [39]. Suppose that the input signal is x(i), i = 1, . . . , N
and that the FFT of the input signal is given by

y(k) =
N∑

n=1

x(n)ω(n−1)(k−1)
N (15)

where k = 1, 2, . . . , N , and ωN is the N th root of unity, which
is defined as

ωN = e(−2πi)/N . (16)

By the FFT, the real input signal is converted into a complex
frequency domain.

The DCT is defined as

y(k) = w(k)
N∑

n=1

x(n) cos
π(2n − 1)(k − 1)

2N
(17)

where k = 1, 2, . . . , N , and w(k) is defined as

w(k) =

{ 1√
N

, k = 1√
2
N , 2 ≤ k ≤ N.

(18)

From (17) and (15), the DCT uses fewer bases to transform the
data. Thus, the information from the data will concentrate on a
space with lower dimensionality [40].

In our experiment, the FFT and DCT transform the driving
sample into a frequency domain and directly extract its fre-
quency features. To compare them with our method, the first
four dimensions of their output are chosen as the features of
classification. The classifier is the same as the OE.

3) PCA: The PCA is a feature transform often used to
reduce multidimensional data sets to lower dimensions for
analysis [41]. It orthogonalizes the components of the input
features; thus, output components are uncorrelated with each
other. It orders the resulting orthogonal components (principal
components) so that those with the largest variation come first.
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Fig. 11. Comparison of test errors by different feature extraction methods.

For a data matrix XT , where each row represents a different
repetition of the experiment and each column gives the results
of a particular feature, the PCA transformation is given by

YT = XT W = VΣ (19)

where VΣWT is the singular value decomposition of XT .
In the experiment, the PCA is adopted for feature selection.

It transforms 11 elementary features extracted from the samples
into 11 advanced features. To keep the feature number the same
as the OE, the first four principal components are chosen as the
features of classification. The classifier is the same as the OE.

4) Comparison: The test errors of classification are shown
in Fig. 11. We can see that the FFT and DCT obtain similar
classification accuracy and that the DCT is slightly better. The
test errors of the PCA and OE are much lower than those
of the FFT and DCT, which illustrates that the features in
the frequency domain are not enough for the classification of
driving conditions and that a statistical method is more suitable
for feature extraction. The test error of the OE is lower than
the PCA. Compared with the PCA, the OE is simpler, and the
features obtained by the OE all have clear meanings. Thus, our
approach is best for feature extraction and selection.

B. Comparison of Feature Numbers

In our approach, four features, i.e., vmax, amax, amin, and I ,
are adopted for classification. We change the number of features
to see if the result of classification is affected.

1) One Feature: Most approaches for the discrimination of
driving conditions of the HEV are only based on one feature,
i.e., vmean [17]. We repeat the OE with only one input, i.e.,
vmean. The result is shown in Fig. 12. Compared with our
approach (four features), the test error dramatically increases. It
illustrates that one feature cannot provide enough information
to discriminate the driving conditions. This is also why we
choose multiple features in our approach.

2) Two Features: In Section V-C, the significance of amax

and amin is not as good as that of vmean and I . We use the
MLNN to test if the features amax and amin are necessary
for our model. We repeat the OE with vmean and I as the
inputs. The result in Fig. 12 shows that the test error obviously

Fig. 12. Comparison of test errors under different feature numbers.

increases compared with the OE (four features). Thus, we can
confirm that amax and amin should not be dropped.

3) All Features: To test if four features are enough for our
classification, we repeat the OE with all 11 features. The test
error in Fig. 12 shows that its accuracy is similar to that of four
features. The classification result does not obviously improve.
Thus, there is no need to adopt more than four features.

4) Accuracy and Feature Number: From Fig. 12, the test
accuracy is significantly improved with the feature number
growing, which illustrates that the multiple-feature approach
will mine more information from the data. However, when the
feature number exceeds four, the accuracy improves not so
obviously. There is no need to adopt more than four features.

Then, we choose the features vmean, amax, amin, and I as the
input features to test the performance of different classifiers.

C. Comparison of Classifiers

We choose the MLNN, linear classifier (LC), quadratic clas-
sifier (QC), kNN, and SVM as the classifiers to compare their
capacities for the discrimination of driving conditions.

1) MLNN: In the OE, the MLNN with one hidden layer
is adopted. We use its result as the result of the MLNN (see
Fig. 13). We can see the test error decreases with the length of
the sample growing. When the length exceeds 150 s, the test
error becomes stable and remains below 12%. In fact, when
the length of the sample is small, the information supplied by
the sample is little, which cannot correctly reflect the driving
condition. When the samples reach a certain length, all of them
can reflect the current driving condition. Thus, the accuracy will
increase and become stable.

2) LC and QC: The LC and QC are characterized by a
simple structure and fast computation. It makes a classifica-
tion decision based on the value of the linear or quadratic
combination of the features. The operation of the LC or QC
can be visualized as splitting a high-dimensional sample space
with some hyperplanes. The samples belonging to the different
driving conditions can be separated by those hyperplanes in
the sample space. An LC or a QC is often used in situations
where the speed of classification is an issue, particularly when
the sample set is sparse. However, the LC generally cannot give
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Fig. 13. Comparison of the test errors of classifiers.

TABLE IV
ACCURACY OF THE kNN BASED ON DIFFERENT k-VALUES

a good result for the linear nonseparable samples. The capacity
of the QC is better than that of the LC. However, it still cannot
obtain high accuracy for the complicated linear nonseparable
samples.

From Fig. 13, the result of the LC and QC is obviously not
as good as that of the MLNN. The QC is slightly better than the
LC. It means that the samples are linear nonseparable.

3) kNN: The kNN is a basic method for classifying objects
based on closest training samples. An object is classified by a
majority vote of its k neighbors. The object will be assigned
to the most common class among its k-nearest neighbors. If
k = 1, then the object is simply assigned to the class of its
nearest neighbor [42]. The kNN is a classifier with a simple
structure and easy realization. It will give good classification
accuracy when the sample is numerous and the samples of
different classes are balanced. The accuracy of the kNN based
on different k-values is shown in Table IV. When the k-value
increases, the accuracy decreases. Thus, we set the parameter
k = 1 in our experiment.

The classification error of the kNN is shown in Fig. 13. From
the figure, the accuracy of the kNN is better than that of the LC
and QC. When the length of the sample is below 100 s, the kNN
is better than the MLNN. However, when the sample exceeds
100 s, the test error of the MLNN obviously decreases and
remains lower than the kNN. This means that the kNN cannot
mine more valid information as the sample length increases.

4) SVM: The SVM is a supervised learning method used for
classification. Given the samples of two classes, the SVM will
construct a separating hyperplane in the sample space, which
not only classifies the samples correctly but also maximizes
the margin between the two classes [43]. This is a quadratic
programming optimization problem as

min
w,ξ

{
1
2
‖w‖2 + C

n∑
i=1

ξi

}
(20)

TABLE V
CONFUSION MATRIX OF THE SVM WITH A SAMPLE LENGTH OF 150 S

subject to

ci(w · xi − b) ≥ 1 − ξi, ξi ≥ 0; i = 1, . . . , n (21)

where w and b are the parameters of the separating hyperplane,
ci is the class of the sample xi, ξ is the slack variable, and C is
the penalty parameter.

The previously constructed SVM is considered a linear clas-
sifier. To classify the linear nonseparable samples, a kernel
method is introduced. By mapping the samples into a feature
space, the SVM can correctly separate them [44], [45]. In the
experiment, we choose a radial basis function (RBF) kernel as
its kernel function, which is defined as

K(xi,xj) = e−
|xi−xj |2

δ2 (22)

where δ is the variance of the RBF, and xi and xj are two
samples. For the SVM, two parameters δ and C need to be set.
We search the optimal δ and C to reach the highest accuracy.

In Fig. 13, the SVM gives the best classification accuracy.
When the length of the sample exceeds 150, the test error is
below 5%, which is the best result. In addition, we give the
confusion matrix of the SVM with a sample length of 150 s
in Table V. From the table, the conditions of the highway and
urban road (congested) can be correctly discriminated by the
classifier relatively easily. The country road and urban road
(flowing) are usually incorrectly discriminated. Both of them
are most likely to be incorrectly classified into a highway.

5) Comparison: The comparison of the test errors of differ-
ent classifiers is shown in Fig. 13, which shows that the SVM
gives the smallest error. The result of the MLNN is slightly
worse than that of the SVM. When the sample length exceeds
100 s, the accuracy of the MLNN is better than that of the kNN.
The LC and GC are both worse than the kNN. The LC gives the
biggest test error.

Moreover, we compare the classifiers based on the receiver
operating characteristic (ROC) curve in Fig. 14. The ROC curve
is a plot of the true positive rate versus the false positive rate for
a classifier as its discrimination threshold is varied, which can
be used to possibly select an optimal classifier by the area under
the curve (AUC). An optimal classifier will give the biggest
AUC. The curves of different colors in the figure are based on
the different driving conditions. From the figure, the SVM gives
the biggest AUC. The other classifiers in descending order
of the AUC are the MLNN, the kNN, and the QC. The LC can
be regarded as a special case of the QC and is worse than the
QC. Therefore, we did not show its curves in the figure.

In Fig. 15, the time costs of five classifiers are presented. The
QC and LC give a similar result, which is the lowest time cost.
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Fig. 14. ROC curves of classifiers.

Fig. 15. Comparison of the time costs of classifiers.

The MLNN gives the highest time cost. The time cost of the
SVM is slightly higher than that of the kNN. Their time costs
are both between the LC and the MLNN.

From the aforementioned results, the SVM is undoubtedly
the ideal classifier for the discrimination of driving conditions
of the HEV.

VII. INTELLIGENT MULTIFEATURE STATISTICAL

DISCRIMINATION APPROACH FOR THE

DISCRIMINATION OF DRIVING CONDITIONS

According to the preceding statistical analysis and classifi-
cation experiments, we adopt the IMSD approach for driving
condition discrimination.

• The length of the sample should be 150 s. When the HEV
is running, it samples the driving cycle and determines the
current driving condition every 150 s. As aforementioned,

when the length of the sample exceeds 150 s, the classi-
fication will be robust and of high accuracy. On the other
hand, to detect the change in the driving condition as soon
as possible, the length of the sample should be reduced.
Considering the foregoing reasons, 150 s is the best choice.

• Four features (i.e., vmean, amax, amin, and I) are extracted
from the sample to discriminate the current driving con-
dition. These four features can be directly computed by a
statistical method and have a clear statistical meaning. The
features are suitable for discrimination.

• The SVM will be adopted as an ideal classifier. The SVM
can give the smallest classification error. The time cost for
classification is also the lowest, except for the QC and LC.
By the SVM, the driving condition R will be correctly and
efficiently discriminated.

• The classifier will be trained first based on these four fea-
tures. Then, during the HEV running mode, the classifier
will automatically discriminate the driving condition in
real time.

VIII. EFFECTIVENESS OF INTELLIGENT MULTIFEATURE

STATISTICAL DISCRIMINATION

After IMSD was defined, it could be used in HEV control.
We use the following experiments to illustrate the effectiveness
of IMSD in HEV control.

A. Neural Network Model for Prediction

In the HEV control model, driving load prediction or velocity
prediction is usually adopted to improve the vehicle perfor-
mance [36]. There is a high correlation between the accuracy
of prediction and the FE of the HEV. Thus, we adopted IMSD
to improve the accuracy of prediction as follows.

The samples are generated from driving cycles. The length
of each sample is 200 s. There are 100 samples for each driving
condition in both the training and test sets. We hope to predict
the average speed of the following 50 s based on the speed of
the previous 150 s. Two methods are used for comparison.

1) M1: A uniform neural network model with one hidden
layer for prediction is built. The input layer has 150
nodes, which are the speeds of the previous 150 s. The
output layer has one node, which is the average speed of
the following 50 s. The hidden layer has 40 nodes. The
training algorithm is a Levenberg–Marquardt algorithm,
and the maximum epoch is 500.

2) M2: Before prediction, we classify the samples into four
classes by IMSD. For each class, we adopt one neural net-
work for modeling and prediction. The structure of each
neural network model is the same as the model in M1.

The result of the prediction experiment is given in Fig. 16.
From the figure, M1 obtains the largest MSEs for prediction,
which are 183.43 and 189.60 in the training and test sets,
respectively. M2 obtains results of 60.17 and 81.20, respec-
tively. It is obvious that the prediction accuracy is improved by
adopting IMSD. From Fig. 16, in each class of M2, the obtained
MSE is smaller than that of M1. As a result, M2 gives a smaller
MSE than M1.
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Fig. 16. Result of the prediction experiment. M1 indicates the MSE obtained
by M1. M2 indicates the MSE obtained by M2. Class 1 to Class 4 indicate the
MSE obtained from the samples under the four driving conditions of M2.

Fig. 17. Fitting result of the ARMA model. (Red line) Original data. (Black
dotted line) Fitting curve obtained by M1. (Blue dashed line) Fitting curve
obtained by M2.

B. ARMA Model for Fitting

In the simulation process of the HEV, we usually build a
simple model to simulate the complicated process. Here, we use
the autoregressive moving average (ARMA) model and IMSD
to fit the driving cycle of the HEV.

The ARMA model is usually used to fit the time series. It
uses the past p-values to approximate the current value of the
time series, which is described as follows:

Yt = c +
p∑

i=1

biYt−i +
q∑

j=1

ajεt−j (23)

where {Yt} is the time series for fitting, {εt} is a random noise,
and ai (i = 1, 2, . . . , p), bj (j = 1, 2, . . . , q), and c are the
parameters. A big p or q usually means a complicated model.

In Fig. 17, the red solid line indicates a driving cycle combin-
ing the driving cycles under urban road and highway conditions.
Two methods are adopted to fit it.

1) M1: A uniform ARMA(p, q) model is built. The val-
ues of p and q are both 200; thus, the model will be
ARMA(200,200). The fitting result is shown by the black
dotted line in Fig. 17.

2) M2: IMSD is used to determine the driving condition of
each driving part first. Then, we build the different fitting
models for the driving parts under different driving con-

ditions. The urban part (previous 1100 s) and the highway
part (following 750 s) are fitted by ARMA(50,50) and
ARMA(100,100), respectively, which is shown by a blue
dashed line in Fig. 17.

Obviously, from Fig. 17, M2 is closer to the original data
than M1. The model of M2 is simpler than that of M1 because
it uses less parameters. The accuracy of M2 is also better than
that of M1. The MSE of fitting obtained by M1 is 54.96. M2
obtains an MSE of 27.08. The result of M2 is only half of
that of M1. It is obvious that the fitting accuracy increases by
using IMSD.

C. Control Strategy Based on IMSD

Based on IMSD, we can build different control rules accord-
ing to the different driving conditions of the HEV. The control
strategy in our experiment is based on two basic control strate-
gies for a parallel HEV, namely, the motor assistant control
strategy (MACS) [46] and the real-time optimization control
strategy (RTOCS) [47].

In the MACS, the engine outputs the torque request of
the vehicle when the torque request is below the maximum
engine torque. The motor assists the torque if the required
torque exceeds the maximum engine torque. The engine in this
control strategy usually runs in low efficiency; thus, the control
performance is not optimal. In the RTOCS, the engine will
output the optimal engine torque based on the current engine
speed and the engine efficiency map. When the engine torque
exceeds the torque request of the vehicle, the excess torque will
be recycled to charge the battery. The fuel efficiency of the
engine in this control strategy is much better than that in the
MACS. However, when the HEV is in an urban condition,
the vehicle will keep a low driving load and a frequent change in
the torque request. The optimal engine torque is usually much
larger than the torque request. Thus, the excess energy should
be recycled into the battery, and there will be an energy loss in
the process of energy conversion. In this case, the performance
of the RTOCS is worse than that of the MACS.

We build a mixed control strategy (MCS) based on them.
The control strategy will first discriminate the current driving
condition by IMSD. For the driving condition of an urban
road (congested or flowing), the HEV will be controlled by the
MACS. When the driving condition is a highway or a country
road, the HEV will be controlled by the RTOCS.

The aforementioned control strategies were simulated on
the software of ADVISOR [48]. In the simulation, the default
parallel HEV model was adopted, and the vehicle ran over
a driving cycle that is composed of standard driving cycles,
including US06, NYCC, and NEDC.

The control results are presented in Table VI. In the table,
the FE and the emissions are shown. The emissions contain
three regular emissions, which are hydrocarbons (HC), carbon
monoxide (CO), and nitrous oxides (NOx). We can see that
the FE of the MCS is higher than that of both the RTOCS
and the MACS, and the emission of the MCS is close to their
lowest value. This means that the MCS gives a better control
performance.
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TABLE VI
COMPARISON OF THE FE AND THE EMISSIONS BASED

ON DIFFERENT CONTROL STRATEGIES

According to the aforementioned experiments in HEV con-
trol, it can be seen that by using IMSD, the complicated model
can be decomposed into multiple simple submodels. These
submodels are specific and precise, which are helpful to reach
a higher control performance.

IX. CONCLUSION

This paper has proposed a new IMSD approach. Combining
statistical analysis and machine learning, this approach can
automatically analyze the HEV driving data, extract multiple
features, and dynamically discriminate the driving conditions,
which is helpful for the best control strategy of the HEV.

During the HEV running mode, this approach periodically
samples the driving cycle. Based on the samples, multiple
features for the discrimination of driving conditions are ex-
tracted. Their significance is proved by histogram, boxplot, and
ANOVA. Based on the extracted features, IMSD learns the
information on the labeled samples by machine learning. Then,
it can automatically discriminate the current driving condition
of the HEV.

Compared with the current methods, the IMSD approach
extracts more features to obtain more information about the
driving conditions. It can accurately and dynamically discrimi-
nate the driving condition with a fast speed.

From the prediction experiment by a neural network, the fit-
ting experiment by the ARMA model, and the control strategy
by IMSD, the IMSD approach can be used to decompose the
uniform model into multiple submodels, which can improve the
efficiency and accuracy of the model and obtain the best control
effect.
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An Intelligent Multifeature Statistical Approach for
the Discrimination of Driving Conditions

of a Hybrid Electric Vehicle
Xi Huang, Ying Tan, Senior Member, IEEE, and Xingui He

Abstract—As a new kind of vehicle with low fuel cost and
low emissions, the hybrid electric vehicle (HEV) has been paid
much attention in recent years. The key technique in the HEV is
adopting the optimal control strategy for the best performance. As
the premise, correct driving condition discrimination has an ex-
tremely important significance. This paper proposes an intelligent
multifeature statistical approach to automatically discriminate the
driving condition of the HEV. First, this approach periodically
samples the driving cycle. Then, it extracts multiple statistical
features and tests their significance by statistical analysis to select
effective features. Afterward, it applies a support vector machine
(SVM) and other machine-learning methods to intelligently and
automatically discriminate the driving conditions. Compared with
others, the proposed approach can compute fast and discrimi-
nate in real time during the whole HEV running mode. In our
experiments, it reaches an accuracy value of 95%. As a result,
our approach can completely mine the valid information from
the data and extract multiple features that have clear meanings
and significance. Finally, according to the prediction experiment
by a neural network, the fitting experiment by the autoregressive
moving average model, and the simulation results of the control
strategy, it turns out that our proposed approach raises the effi-
ciency of considerably controlling the HEV.

Index Terms—Driving condition, hybrid electric vehicle (HEV),
intelligent multifeature statistical discrimination (IMSD), neural
network, statistical feature.

I. INTRODUCTION

A T PRESENT, faced with increasingly more resource and
environmental problems, people have to pay more atten-

tion to the fuel economy (FE) and the emission of transportation
such as vehicles. Developing a vehicle with lower fuel cost
and lower emissions has become a goal of current vehicle
industry [1].
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Three ways can be taken to improve engine efficiency and
vehicle performance. The first way is to change the structure of
the traditional engine or add some improving apparatus. This
has the lowest cost because it does not change the process of ve-
hicle production. Consequently, the performance improvement
is limited. The second way is through an electric vehicle (EV)
and a fuel cell vehicle [2]. These two types of vehicles, which
substitute the traditional fuel with a battery and a fuel cell, and
the internal combustion engine with an electric motor, are the
cleanest vehicles. However, the high manufacturing cost limits
their development. Combining these two ways, a hybrid EV
(HEV) was developed after 1995 as the third way [3]. The HEV
combines the advantages of the traditional vehicle and the EV
to reach a good balance between the cost and the FE. As a way
with promising performance, the HEV has increasingly become
one of the main development trends in vehicle industry.

An HEV generally has two or more power sources, e.g., fuel
and electric power. Its engine combines the traditional internal
combustion engine, electric motor, and battery in different
ways [4]. Due to the highly efficient energy storage parts, the
internal combustion engine of the HEV could be smaller, more
efficient, and with lower emissions. Based on the combing ways
of parts, the HEV is classified into a series HEV, a parallel
HEV, and a hybrid HEV [5]. Whichever type is adopted, when
the HEV outputs the power, how to appropriately manage the
different power sources to improve its performance becomes an
extremely important problem. It is also the key problem in the
HEV research—the control strategy of the HEV [6].

The control strategies of the HEV can be classified into
three types. The first is the intelligent control strategy or
the heuristic control strategy. This strategy usually has some
predefined rules. The HEV will manage the power sources
following the rules [7]–[9]. This strategy is simple, fast, and
easy to implement, but its control result is often far from the
optimal point. The second is the static optimization strategy.
This strategy will compute the optimal power split based on the
inherent parameter of the HEV [10], [11]. This strategy is much
more efficient than the intelligent control strategy. However,
due to lack of consideration about the driving environment, it
usually performs well under some specific driving conditions,
whereas it might not be optimal under others. The third is the
dynamic optimization strategy. This strategy not only considers
the effect of the inherent parameter but also detects the change
in the external factors. Combining all the factors, the strategy
will compute the best power split to dynamically manage the

1524-9050/$26.00 © 2010 IEEE
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power sources in real time [12]–[14]. This strategy is able
to continuously modify the control model and give a better
performance. However, enormous computation will be a great
burden and results in a lack of time.

Among the aforementioned control strategies, most of them
construct a uniform control model to manage the power
sources. However, the range of parameters in the control model
is wide, and the same parameter in different intervals will ex-
press the different system characteristics. As a result, a uniform
system model is not adequate to describe the driving process
of the HEV. To construct a more precise model, we need to
decompose the uniform model into a number of submodels
corresponding to the different parameter intervals [15].

The driving condition of the HEV is a complicated variable
that is determined by multiple factors. It will exert a significant
effect on the vehicle performance. The correct discrimination
of driving conditions will help decompose the uniform model
into a series of submodels corresponding to the different driving
conditions, which can improve the control performance. Mean-
while, there are lots of factors that influence driving conditions,
e.g., wetness of the road, resistance, terrain, traffic, and even
weather. The data on these factors may not be directly collected
because there is no exact numerical style. Thus, how to cor-
rectly discriminate the driving conditions based on the limited
data that we have collected becomes a key problem to solve.

II. RELATED WORK

To discriminate the driving conditions, the classification
standard of driving conditions should be defined first. Currently,
there is no uniform standard. Based on the actual requirements,
various classifications are adopted, e.g., based on the road
surface condition, the driving conditions are classified into dry,
wet, slushy, icy, and snowy [16]; based on the road level, they
can be classified into a highway, an urban road, and an extra
urban road [17]–[19]. The congestion level is also a factor
to classify the driving conditions [20]. Moreover, there are
some classifications by combining the aforementioned methods
[21], [22].

The driving condition is determined by various factors;
therefore, the data that are collected for driving condition
discrimination are also different. The common data contain the
following two types: The first type is an image or a video,
which supplies many details such as obstacles, pedestrians,
and other vehicles to distinguish the driving conditions [23]–
[25]. However, such data require complicated image processing
to give the result, and the enormous computation may be a
great burden. The second type is time series on velocity or
acceleration. Such data are most commonly used and easily
collected. Many research studies are based on it [19], [26], [27].
However, these data cannot supply enough details; thus, it is
not suitable for the discrimination of the complicated driving
conditions. In recent years, the data collected by the automotive
radar have been increasingly being used for the discrimination
of driving conditions [28]–[30].

According to the data type and the classification standard,
various approaches are proposed to discriminate the driving
conditions, e.g., based on the pictures captured in the vehicle,

Fig. 1. Framework of the model.

image processing and computer vision approaches are used
to determine the outside environment [16], [23]. Some rule-
based and fuzzy logical methods are also used to make the
results robust [20], [31]. In [17], the hidden Markov model
is adopted to predict the future driving conditions. In [32], a
neural network is also adopted.

When the driving conditions are discriminated, the control
strategy based on the driving conditions can be built. In [18],
six respective control rules are built on six driving conditions.
In [32], the multimode control strategy is built based on driving
patterns. In [33]–[35], various control strategies are proposed
under different driving conditions.

This paper proposed a new approach of intelligent multi-
feature statistical discrimination (IMSD). Based on the driving
data of the HEV, it uses statistical analysis to extract and
select multiple valid features. After the classifier learned the
information on these features, it can intelligently discriminate
the driving conditions in real time. This approach has simple
data processing, definite meaning, fast computation, and high
accuracy.

This paper will be organized as follows: In Section III, a
framework of our model will be proposed. In Section IV, the
classification standard of driving conditions will be discussed
in detail. In Section V, we will analyze the extracted statistical
features and their significance. In Section VI, the samples
will be classified based on statistical features and different
classifiers. In Section VII, the final discrimination approach will
be determined. In Section VIII, some experiments will show the
effectiveness of IMSD. Finally, Section IX concludes of this
paper.

III. FRAMEWORK OF OUR MODEL

The framework of IMSD is shown in Fig. 1, which consists
of the following five steps.

A. Generation of Driving Samples

The driving cycle of the HEV is usually a long time series.
In practical applications, we need to discriminate the current
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driving conditions in real time. Thus, we collect the driving data
by sampling periodically. According to the short samples, the
current driving condition can be quickly determined.

Suppose a long time series {S1, S2, . . . , Sn}, we need to
truncate k samples {s1, s2, . . . , sk} of length t from it. First,
we randomly select a start position n0, i.e.,

n0 = random(0, 1, . . . , t − 1). (1)

Then, the continuous m (m > k) samples of length t will be

si = {sij , j = 1, 2, . . . , t}, i = 1, 2, . . . , m (2)

where sij = Sn0+(i−1)t+j , n0 + mt ≤ n.
The k samples will be randomly selected from them.

B. Feature Extraction

After collecting the samples, we need to extract the features
that can describe the characteristics of driving conditions. Here,
we choose the features with statistical significance and definite
meaning as the elementary features, e.g., average speed and
maximum acceleration.

Suppose that the multiple extracted features are E1,
E2, . . . , Em and that the vector that consists of them is

E = (E1, E2, . . . , Em). (3)

If the sample for feature extraction is

s = (s1, s2, . . . , st) (4)

the process of feature extraction can be described as

E = extract(s)
= (extract1(s), extract2(s), . . . , extractm(s)) (5)

where extract(·) is a mapping from the sample to the elementary
features; extract1(s), extract2(s), . . . , extractm(s) are m com-
ponents of E. The specific forms of extract(·) can be various.
If we suppose that s is a speed sample of the HEV and E1

indicates the average speed, then

E1 = extract1(s) =
1
t

t∑
i=1

si. (6)

C. Feature Selection

Elementary features are usually of a large quantity. Some of
them may not be suitable to discriminate the driving conditions.
Thus, we need to filter the elementary features and convert them
into advanced features. The method for feature selection can be
principal component analysis (PCA), factor analysis (FA), and
so on. We will compare them in Section VI.

Suppose the advanced features after feature selection are
F1, F2, . . . , Fk and the vector that consists of them is

F = (F1, F2, . . . , Fk). (7)

The process of feature selection is described as

F = select(E) (8)

where select(·) indicates the operation of feature selection.
Based on the requirements, select(·) can be the different meth-
ods, e.g., PCA and FA. If we suppose that select(·) indicates the
operation of the PCA, then

F = (F1, F2, . . . , Fk) = PCA(E) (9)

where F1, F2, . . . , Fk are the first k principal components that
are selected.

Based on statistical analysis, we can also directly select k
features from m elementary features without transformation, as
we adopted in this paper. The process can be described as

F = select(E1, E2, . . . , Em) = (Ei1 , Ei2 , . . . , Eik
) (10)

where {Eik
} is a subsequence of {Em}.

D. Classification

Based on the aforementioned advanced features, the driving
conditions of the HEV can be determined by the different
classifiers, e.g., k-nearest neighbor (kNN), neural network, and
support vector machine (SVM).

Suppose the corresponding driving condition R ∈ {R1,
R2, R3, R4}. R1, R2, R3, and R4 indicate the four driving
conditions of the HEV, respectively. Then, our classification
model will be

R = classify(F ) (11)

where classify(·) is the classification function.
When there is a new sample to discriminate, based on its

extracted feature F , the result of classification R will be the
current driving condition.

E. Four Driving Conditions

The aforementioned process is, in fact, a mapping from the
driving cycles S to the driving conditions R, i.e.,

f : S → R (12)

where S is the set consisting of the driving cycles {Sn},
and R = {R1, R2, R3, R4} is the set consisting of driving
conditions.

In this paper, we classify the driving conditions of the HEV
R into four types, including a highway (R = R1), a country
road (R = R2), an urban road (congested) (R = R3), and an
urban road (flowing) (R = R4). The detailed definition and
explanation will be discussed in Section IV.

F. Characteristics of Our Model

From the aforementioned framework, four characteristics of
the model can be seen.

1) Dynamic determination of driving conditions: Because
the model periodically samples the whole driving
process, the current driving condition can be decided in
real time based on the sample.
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Fig. 2. Two driving cycles of a highway.

Fig. 3. Two driving cycles of a country road.

2) Multiple features: The model extracts more than one
feature from a sample to provide accurately enough in-
formation to determine the driving condition.

3) Statistical method for feature extraction and selection:
We use the statistical analysis and test to obtain multi-
ple significant features, which have obvious meaning in
statistics and are convenient for feature explanation.

4) Intelligent discriminant: The classifier in the model
adopts various machine-learning algorithms, which make
the model automatically learn the features and intelli-
gently discriminate the current driving condition.

IV. DRIVING CONDITIONS OF THE HYBRID ELECTRIC

VEHICLE AND THEIR FEATURE ANALYSIS

We classify the driving conditions into four types, which is
the most common and representative.

A. Highway

A highway is a main road between important destinations,
such as cities and towns. It has a lower limit of the driving
speed and can afford the heavy traffic. In Fig. 2, the two speed
sequences are collected under the real highway condition. In the
figure, we can see the HEV keeps a high speed (above 50 mi/h)
and drives smoothly. There is no interval of stopping (0 speed)
in the cycle.

B. Country Road

A country road is a road that connects cities and countries.
Compared with the highway, its speed standard and traffic
capacity are lower. In Fig. 3, the sequences are collected under
the country road condition. Comparatively, the speed decreases
a lot (30–50 mi/h). The HEV periodically accelerates and
decelerates; thus, the driving cycle becomes a form of wave.

Fig. 4. Two driving cycles of an urban road (congested).

Fig. 5. Two driving cycles of an urban road (flowing).

C. Urban Road (Congested)

An urban road is the road in the city. There are numerous in-
tersections and vehicles on the urban roads. When the traffic is
heavy, the urban road usually congests. In Fig. 4, the sequences
show the state of the congested urban road. Compared with the
preceding two driving conditions, the HEV under this condition
not only has a low speed (below 25 mi/h) but also periodically
stops. Moreover, the stopping interval under this condition is
usually large.

D. Urban Road (Flowing)

Compared with the congested urban road, the speed of the
flowing urban road increases a little. However, due to the
numerous intersections, the HEV still periodically stops. Under
this condition, the speed of the HEV can keep for a while and
will not immediately decrease. From the sequences in Fig. 5,
the aforementioned characteristics are obvious.

E. Statistical Features of Different Driving Conditions

To find the features for discrimination, we extract the statisti-
cal features of driving cycles under the aforementioned driving
conditions.

Some standard driving cycles that are collected in real world
are adopted, including HWFET, US06-HWY, INDIA-HWY-
SAMPLE, HYZEM-URBAN, HYZEM-HWY, HYZEM-SUB,
CSC, WVUSUB, NYB, MANHATTAN, NYCC, CBD14,
INDIA-URBAN-SAMPLE, UDDS, and WVUCITY.1 Each
driving cycle is a long speed sequence that is collected under
one driving condition. The standard driving cycles belonging to
the same driving condition can be combined to form a new long
driving cycle under this driving condition. We create a 10 000-s

1More details about these cycles can be obtained from http://www.dieselnet.
com/standards/cycles/.
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TABLE I
STATISTICAL FEATURES OF DIFFERENT DRIVING CONDITIONS

driving cycle for each driving condition to statistically analyze
their features.

The result is shown in Table I, where various statistical
features are presented, including the maximum speed vmax;
the average speed vmean; the maximum acceleration amax; the
minimum (negative maximum) acceleration amin; the maxi-
mum, minimum, and average values of speed multiplied by
acceleration, i.e., (v ∗ a)max, (v ∗ a)min, and (v ∗ a)mean; their
standard deviations σv, σa, and σv∗a; and the idle rate (the
percent of the stopping interval) I . In addition, the four driving
conditions are indicated by Class 1 (highway), Class 2 (country
road), Class 3 (urban road (congested)), and Class 4 (urban road
(flowing)).

On the features vmean, amax, amin, and I , the differences
between classes are significant. Based on the features, the four
driving conditions of cycles can be distinguished. We mark
them in bold.

V. FEATURES OF SAMPLES AND THEIR SIGNIFICANCE

From the analysis of the driving cycles, we can obtain
some features. However, in our model, the collected data are
segments of the driving cycle. Thus, the features vmean, amax,
amin, and I may be not suitable. We need to generate some
driving samples to analyze their validation and significance.

A. Generation of Samples

We use the method in the framework to generate the samples.
Given a long driving cycle {S1, S2, . . . , Sn}, we need to gener-
ate some samples {s1, s2, . . . , sk} of length t from the driving
cycle. The algorithm is given here.
Step 1: Select a start position n0 = random(0, 1, . . . , t − 1),

i = 1.
Step 2: If n0 + t > n, turn to Step 5.
Step 3: Let sij = Sn0+j , j = 1, 2, . . . , t.
Step 4: n0 = n0 + t, i = i + 1, turn to Step 2.
Step 5: Select k samples randomly from i generated samples.

In the former research, we have learned that the driving
period of the HEV is about 3 min [36]. When the length of
the sample approaches or exceeds 3 min, it can reflect the
characteristic of the current driving condition. Thus, we choose
150 s as the length of each sample and generate 300 samples
under each driving condition. Then, we analyze the features of
these samples.

B. Histogram of Samples

A histogram is a basic method to analyze the distribution of
samples. It shows the frequency of samples at each interval on
a feature.

Fig. 6. Histograms on vmean under the four driving conditions. (a) Highway.
(b) Country road. (c) Urban road (congested). (d) Urban road (flowing).

Fig. 7. Histograms on amax under the four driving conditions. (a) Highway.
(b) Country road. (c) Urban road (congested). (d) Urban road (flowing).

The histograms in Fig. 6 show the distributions of the sam-
ples under different driving conditions on the feature vmean. In
the figure, the red line is the fitting curve of the distribution
density, which is obtained by the kernel density method and
represents the most probable distribution form of the samples.
We can see, under the four driving conditions, that the shapes
and positions of the fitting curves are completely different,
which means that, on the feature vmean, there are significant
differences in the distributions of the samples between driving
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Fig. 8. Histograms on amin under the four driving conditions. (a) Highway.
(b) Country road. (c) Urban road (congested). (d) Urban road (flowing).

Fig. 9. Histograms on I under the four driving conditions. (a) Highway.
(b) Country road. (c) Urban road (congested). (d) Urban road (flowing).

conditions. Thus, the feature vmean can be used to discriminate
the different driving conditions.

The histograms on the features amax, amin, and I are
shown in Figs. 7–9, which express a similar characteristic as
those on vmean. Thus, these features can be also adopted for
discrimination.

C. Boxplot and ANOVA

From the aforementioned histograms, we can see the basic
distribution of the samples. To test the significance of these
features, we adopt boxplot and analysis of variance (ANOVA)
for a further analysis.

In a boxplot, the middle line of a box indicates the median of
the samples, and the upper and lower edges of a box indicate

Fig. 10. Boxplots on four features, where the numbers on the horizontal axis
indicate the four different driving conditions. (a) vmean. (b) amax. (c) amin.
(d) I .

the upper and lower quartiles, respectively. The top and the
bottom of a whisker indicate the largest and smallest samples,
respectively. The spacings between the different parts of the
box help indicate the degree of dispersion and skewness in the
samples.

The boxplots in Fig. 10 display the distributions of the
samples under four driving conditions on the features vmean,
amax, amin, and I . It is obvious that, on each feature, the sam-
ples of different driving conditions have significant differences.
Most of them are distributed in different intervals. Thus, the
significance of these four features is obvious.

In addition, we use ANOVA to quantitatively analyze the sig-
nificance of the features. The Kruskal–Wallis one-way ANOVA
is adopted. The Kruskal–Wallis test is a nonparametric method
to test for differences among two or more groups [37]. It does
not assume a normal population, unlike the analogous one-way
ANOVA.

First, it ranks all data from 1 to N , ignoring group member-
ship. Then, the test statistic is given by

K = (N − 1)
∑g

i=1 ni(ri − r)2∑g
i=1

∑ni

j=1(rij − r)2
(13)

where

ri =

∑ni

j=1 rij

ni
(14)

r = (1/2)(N + 1) is the average of all the rij , ni is the number
of observations in group i, rij is the rank of observation j from
group i, and N is the total number of observations.

The p-value is approximated by Pr(χ2
g−1 ≥ K). When K is

large or the p-value is small enough (p < 0.01), the differences
between groups are significant. In our approach, the groups
are the driving conditions, and the Kruskal–Wallis test on each
feature is given in Table II. When the K-value is large or
p < 0.01, we can confirm that the feature is significant, and we
can differentiate the driving conditions.
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TABLE II
KRUSKAL–WALLIS ANOVA ON DIFFERENT FEATURES

TABLE III
CORRELATION OF DIFFERENT FEATURES

From the table, all the features are significant (p < 0.01);
thus, the features are compared according to the K-value.
vmean, vmax, I , amax, and amax give five largest K-values,
which should be adopted in our model. However, the correlation
coefficient between vmax and vmean is 0.91, which means a
high correlation. Thus, we drop vmax to reduce the correlation
between features. The K-values of (v ∗ a)min, σv , σa, and σv∗a
are close to each other. To reduce the feature number, both of
them are dropped. The experiment in Section VI-B will show
that it is unnecessary to keep them in our model. The remainder
of the features give small K-values; thus, all of them can be
dropped. Finally, we adopt four significant features, i.e., vmax,
amax, amin, and I , as the best features for the discrimination
of driving conditions. In Table III, we present their correlation
coefficients. Both of them keep a low correlation with other
features.

VI. EXPERIMENT OF CLASSIFICATION

After the features with an important significance are ex-
tracted, we use them to train the classifier and discriminate the
driving conditions. The experimental setup is discussed here.

vmean, amax, amin, and I are chosen as the input vari-
ables. The driving condition R is the output variable. One
thousand two hundred new samples are generated from the
driving cycles, among which there are 300 samples for each
driving condition. The length of the sample is a parameter of
classification. Fivefold cross validation is adopted to estimate
the classification. The original sample is randomly partitioned
into five subsamples. A single subsample is used for testing,
and the remaining four subsamples are used as training data.
The cross-validation process is then repeated five times, with
each subsample used for testing once. Their average result is
the final estimation.

A. Comparison of Feature Extraction Methods

In the framework of our model, the features are extracted and
selected by a statistical method. To illustrate the effectiveness
of our method, the common methods for feature extraction are
adopted for a comparison, which are the fast Fourier transform
(FFT), the discrete cosine transform (DCT), and the PCA.

1) OE: The experiment of classification with input features
vmean, amax, amin, and I is considered as the original ex-
periment (OE). The multilayer neural network (MLNN) with

one hidden layer is adopted as the standard classifier. Based
on the conclusion of the prior experiment, we set the number
of hidden nodes to 15, which will make the neural network
reach a good balance between performance and complexity.
In addition, according to Bishop’s work [38], the number
of training patterns should be around ten times as many as
the weights in the network. There are about 75 weights in the
network and 960 training samples, which is appropriate. The
training algorithm is a Levenberg–Marquardt algorithm, and
the maximum epoch is 500. The convergence goal is a mean-
square error (MSE) of 0.01.

2) FFT and DCT: The FFT and DCT are two methods that
are comprehensively used in digital signal processing, both
of which can be used to compress the data and extract the
frequency features of the data.

The FFT is the fast algorithm for the discrete Fourier trans-
form [39]. Suppose that the input signal is x(i), i = 1, . . . , N
and that the FFT of the input signal is given by

y(k) =
N∑

n=1

x(n)ω(n−1)(k−1)
N (15)

where k = 1, 2, . . . , N , and ωN is the N th root of unity, which
is defined as

ωN = e(−2πi)/N . (16)

By the FFT, the real input signal is converted into a complex
frequency domain.

The DCT is defined as

y(k) = w(k)
N∑

n=1

x(n) cos
π(2n − 1)(k − 1)

2N
(17)

where k = 1, 2, . . . , N , and w(k) is defined as

w(k) =

{ 1√
N

, k = 1√
2
N , 2 ≤ k ≤ N.

(18)

From (17) and (15), the DCT uses fewer bases to transform the
data. Thus, the information from the data will concentrate on a
space with lower dimensionality [40].

In our experiment, the FFT and DCT transform the driving
sample into a frequency domain and directly extract its fre-
quency features. To compare them with our method, the first
four dimensions of their output are chosen as the features of
classification. The classifier is the same as the OE.

3) PCA: The PCA is a feature transform often used to
reduce multidimensional data sets to lower dimensions for
analysis [41]. It orthogonalizes the components of the input
features; thus, output components are uncorrelated with each
other. It orders the resulting orthogonal components (principal
components) so that those with the largest variation come first.
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Fig. 11. Comparison of test errors by different feature extraction methods.

For a data matrix XT , where each row represents a different
repetition of the experiment and each column gives the results
of a particular feature, the PCA transformation is given by

YT = XT W = VΣ (19)

where VΣWT is the singular value decomposition of XT .
In the experiment, the PCA is adopted for feature selection.

It transforms 11 elementary features extracted from the samples
into 11 advanced features. To keep the feature number the same
as the OE, the first four principal components are chosen as the
features of classification. The classifier is the same as the OE.

4) Comparison: The test errors of classification are shown
in Fig. 11. We can see that the FFT and DCT obtain similar
classification accuracy and that the DCT is slightly better. The
test errors of the PCA and OE are much lower than those
of the FFT and DCT, which illustrates that the features in
the frequency domain are not enough for the classification of
driving conditions and that a statistical method is more suitable
for feature extraction. The test error of the OE is lower than
the PCA. Compared with the PCA, the OE is simpler, and the
features obtained by the OE all have clear meanings. Thus, our
approach is best for feature extraction and selection.

B. Comparison of Feature Numbers

In our approach, four features, i.e., vmax, amax, amin, and I ,
are adopted for classification. We change the number of features
to see if the result of classification is affected.

1) One Feature: Most approaches for the discrimination of
driving conditions of the HEV are only based on one feature,
i.e., vmean [17]. We repeat the OE with only one input, i.e.,
vmean. The result is shown in Fig. 12. Compared with our
approach (four features), the test error dramatically increases. It
illustrates that one feature cannot provide enough information
to discriminate the driving conditions. This is also why we
choose multiple features in our approach.

2) Two Features: In Section V-C, the significance of amax

and amin is not as good as that of vmean and I . We use the
MLNN to test if the features amax and amin are necessary
for our model. We repeat the OE with vmean and I as the
inputs. The result in Fig. 12 shows that the test error obviously

Fig. 12. Comparison of test errors under different feature numbers.

increases compared with the OE (four features). Thus, we can
confirm that amax and amin should not be dropped.

3) All Features: To test if four features are enough for our
classification, we repeat the OE with all 11 features. The test
error in Fig. 12 shows that its accuracy is similar to that of four
features. The classification result does not obviously improve.
Thus, there is no need to adopt more than four features.

4) Accuracy and Feature Number: From Fig. 12, the test
accuracy is significantly improved with the feature number
growing, which illustrates that the multiple-feature approach
will mine more information from the data. However, when the
feature number exceeds four, the accuracy improves not so
obviously. There is no need to adopt more than four features.

Then, we choose the features vmean, amax, amin, and I as the
input features to test the performance of different classifiers.

C. Comparison of Classifiers

We choose the MLNN, linear classifier (LC), quadratic clas-
sifier (QC), kNN, and SVM as the classifiers to compare their
capacities for the discrimination of driving conditions.

1) MLNN: In the OE, the MLNN with one hidden layer
is adopted. We use its result as the result of the MLNN (see
Fig. 13). We can see the test error decreases with the length of
the sample growing. When the length exceeds 150 s, the test
error becomes stable and remains below 12%. In fact, when
the length of the sample is small, the information supplied by
the sample is little, which cannot correctly reflect the driving
condition. When the samples reach a certain length, all of them
can reflect the current driving condition. Thus, the accuracy will
increase and become stable.

2) LC and QC: The LC and QC are characterized by a
simple structure and fast computation. It makes a classifica-
tion decision based on the value of the linear or quadratic
combination of the features. The operation of the LC or QC
can be visualized as splitting a high-dimensional sample space
with some hyperplanes. The samples belonging to the different
driving conditions can be separated by those hyperplanes in
the sample space. An LC or a QC is often used in situations
where the speed of classification is an issue, particularly when
the sample set is sparse. However, the LC generally cannot give
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Fig. 13. Comparison of the test errors of classifiers.

TABLE IV
ACCURACY OF THE kNN BASED ON DIFFERENT k-VALUES

a good result for the linear nonseparable samples. The capacity
of the QC is better than that of the LC. However, it still cannot
obtain high accuracy for the complicated linear nonseparable
samples.

From Fig. 13, the result of the LC and QC is obviously not
as good as that of the MLNN. The QC is slightly better than the
LC. It means that the samples are linear nonseparable.

3) kNN: The kNN is a basic method for classifying objects
based on closest training samples. An object is classified by a
majority vote of its k neighbors. The object will be assigned
to the most common class among its k-nearest neighbors. If
k = 1, then the object is simply assigned to the class of its
nearest neighbor [42]. The kNN is a classifier with a simple
structure and easy realization. It will give good classification
accuracy when the sample is numerous and the samples of
different classes are balanced. The accuracy of the kNN based
on different k-values is shown in Table IV. When the k-value
increases, the accuracy decreases. Thus, we set the parameter
k = 1 in our experiment.

The classification error of the kNN is shown in Fig. 13. From
the figure, the accuracy of the kNN is better than that of the LC
and QC. When the length of the sample is below 100 s, the kNN
is better than the MLNN. However, when the sample exceeds
100 s, the test error of the MLNN obviously decreases and
remains lower than the kNN. This means that the kNN cannot
mine more valid information as the sample length increases.

4) SVM: The SVM is a supervised learning method used for
classification. Given the samples of two classes, the SVM will
construct a separating hyperplane in the sample space, which
not only classifies the samples correctly but also maximizes
the margin between the two classes [43]. This is a quadratic
programming optimization problem as

min
w,ξ

{
1
2
‖w‖2 + C

n∑
i=1

ξi

}
(20)

TABLE V
CONFUSION MATRIX OF THE SVM WITH A SAMPLE LENGTH OF 150 S

subject to

ci(w · xi − b) ≥ 1 − ξi, ξi ≥ 0; i = 1, . . . , n (21)

where w and b are the parameters of the separating hyperplane,
ci is the class of the sample xi, ξ is the slack variable, and C is
the penalty parameter.

The previously constructed SVM is considered a linear clas-
sifier. To classify the linear nonseparable samples, a kernel
method is introduced. By mapping the samples into a feature
space, the SVM can correctly separate them [44], [45]. In the
experiment, we choose a radial basis function (RBF) kernel as
its kernel function, which is defined as

K(xi,xj) = e−
|xi−xj |2

δ2 (22)

where δ is the variance of the RBF, and xi and xj are two
samples. For the SVM, two parameters δ and C need to be set.
We search the optimal δ and C to reach the highest accuracy.

In Fig. 13, the SVM gives the best classification accuracy.
When the length of the sample exceeds 150, the test error is
below 5%, which is the best result. In addition, we give the
confusion matrix of the SVM with a sample length of 150 s
in Table V. From the table, the conditions of the highway and
urban road (congested) can be correctly discriminated by the
classifier relatively easily. The country road and urban road
(flowing) are usually incorrectly discriminated. Both of them
are most likely to be incorrectly classified into a highway.

5) Comparison: The comparison of the test errors of differ-
ent classifiers is shown in Fig. 13, which shows that the SVM
gives the smallest error. The result of the MLNN is slightly
worse than that of the SVM. When the sample length exceeds
100 s, the accuracy of the MLNN is better than that of the kNN.
The LC and GC are both worse than the kNN. The LC gives the
biggest test error.

Moreover, we compare the classifiers based on the receiver
operating characteristic (ROC) curve in Fig. 14. The ROC curve
is a plot of the true positive rate versus the false positive rate for
a classifier as its discrimination threshold is varied, which can
be used to possibly select an optimal classifier by the area under
the curve (AUC). An optimal classifier will give the biggest
AUC. The curves of different colors in the figure are based on
the different driving conditions. From the figure, the SVM gives
the biggest AUC. The other classifiers in descending order
of the AUC are the MLNN, the kNN, and the QC. The LC can
be regarded as a special case of the QC and is worse than the
QC. Therefore, we did not show its curves in the figure.

In Fig. 15, the time costs of five classifiers are presented. The
QC and LC give a similar result, which is the lowest time cost.



10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 14. ROC curves of classifiers.

Fig. 15. Comparison of the time costs of classifiers.

The MLNN gives the highest time cost. The time cost of the
SVM is slightly higher than that of the kNN. Their time costs
are both between the LC and the MLNN.

From the aforementioned results, the SVM is undoubtedly
the ideal classifier for the discrimination of driving conditions
of the HEV.

VII. INTELLIGENT MULTIFEATURE STATISTICAL

DISCRIMINATION APPROACH FOR THE

DISCRIMINATION OF DRIVING CONDITIONS

According to the preceding statistical analysis and classifi-
cation experiments, we adopt the IMSD approach for driving
condition discrimination.

• The length of the sample should be 150 s. When the HEV
is running, it samples the driving cycle and determines the
current driving condition every 150 s. As aforementioned,

when the length of the sample exceeds 150 s, the classi-
fication will be robust and of high accuracy. On the other
hand, to detect the change in the driving condition as soon
as possible, the length of the sample should be reduced.
Considering the foregoing reasons, 150 s is the best choice.

• Four features (i.e., vmean, amax, amin, and I) are extracted
from the sample to discriminate the current driving con-
dition. These four features can be directly computed by a
statistical method and have a clear statistical meaning. The
features are suitable for discrimination.

• The SVM will be adopted as an ideal classifier. The SVM
can give the smallest classification error. The time cost for
classification is also the lowest, except for the QC and LC.
By the SVM, the driving condition R will be correctly and
efficiently discriminated.

• The classifier will be trained first based on these four fea-
tures. Then, during the HEV running mode, the classifier
will automatically discriminate the driving condition in
real time.

VIII. EFFECTIVENESS OF INTELLIGENT MULTIFEATURE

STATISTICAL DISCRIMINATION

After IMSD was defined, it could be used in HEV control.
We use the following experiments to illustrate the effectiveness
of IMSD in HEV control.

A. Neural Network Model for Prediction

In the HEV control model, driving load prediction or velocity
prediction is usually adopted to improve the vehicle perfor-
mance [36]. There is a high correlation between the accuracy
of prediction and the FE of the HEV. Thus, we adopted IMSD
to improve the accuracy of prediction as follows.

The samples are generated from driving cycles. The length
of each sample is 200 s. There are 100 samples for each driving
condition in both the training and test sets. We hope to predict
the average speed of the following 50 s based on the speed of
the previous 150 s. Two methods are used for comparison.

1) M1: A uniform neural network model with one hidden
layer for prediction is built. The input layer has 150
nodes, which are the speeds of the previous 150 s. The
output layer has one node, which is the average speed of
the following 50 s. The hidden layer has 40 nodes. The
training algorithm is a Levenberg–Marquardt algorithm,
and the maximum epoch is 500.

2) M2: Before prediction, we classify the samples into four
classes by IMSD. For each class, we adopt one neural net-
work for modeling and prediction. The structure of each
neural network model is the same as the model in M1.

The result of the prediction experiment is given in Fig. 16.
From the figure, M1 obtains the largest MSEs for prediction,
which are 183.43 and 189.60 in the training and test sets,
respectively. M2 obtains results of 60.17 and 81.20, respec-
tively. It is obvious that the prediction accuracy is improved by
adopting IMSD. From Fig. 16, in each class of M2, the obtained
MSE is smaller than that of M1. As a result, M2 gives a smaller
MSE than M1.
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Fig. 16. Result of the prediction experiment. M1 indicates the MSE obtained
by M1. M2 indicates the MSE obtained by M2. Class 1 to Class 4 indicate the
MSE obtained from the samples under the four driving conditions of M2.

Fig. 17. Fitting result of the ARMA model. (Red line) Original data. (Black
dotted line) Fitting curve obtained by M1. (Blue dashed line) Fitting curve
obtained by M2.

B. ARMA Model for Fitting

In the simulation process of the HEV, we usually build a
simple model to simulate the complicated process. Here, we use
the autoregressive moving average (ARMA) model and IMSD
to fit the driving cycle of the HEV.

The ARMA model is usually used to fit the time series. It
uses the past p-values to approximate the current value of the
time series, which is described as follows:

Yt = c +
p∑

i=1

biYt−i +
q∑

j=1

ajεt−j (23)

where {Yt} is the time series for fitting, {εt} is a random noise,
and ai (i = 1, 2, . . . , p), bj (j = 1, 2, . . . , q), and c are the
parameters. A big p or q usually means a complicated model.

In Fig. 17, the red solid line indicates a driving cycle combin-
ing the driving cycles under urban road and highway conditions.
Two methods are adopted to fit it.

1) M1: A uniform ARMA(p, q) model is built. The val-
ues of p and q are both 200; thus, the model will be
ARMA(200,200). The fitting result is shown by the black
dotted line in Fig. 17.

2) M2: IMSD is used to determine the driving condition of
each driving part first. Then, we build the different fitting
models for the driving parts under different driving con-

ditions. The urban part (previous 1100 s) and the highway
part (following 750 s) are fitted by ARMA(50,50) and
ARMA(100,100), respectively, which is shown by a blue
dashed line in Fig. 17.

Obviously, from Fig. 17, M2 is closer to the original data
than M1. The model of M2 is simpler than that of M1 because
it uses less parameters. The accuracy of M2 is also better than
that of M1. The MSE of fitting obtained by M1 is 54.96. M2
obtains an MSE of 27.08. The result of M2 is only half of
that of M1. It is obvious that the fitting accuracy increases by
using IMSD.

C. Control Strategy Based on IMSD

Based on IMSD, we can build different control rules accord-
ing to the different driving conditions of the HEV. The control
strategy in our experiment is based on two basic control strate-
gies for a parallel HEV, namely, the motor assistant control
strategy (MACS) [46] and the real-time optimization control
strategy (RTOCS) [47].

In the MACS, the engine outputs the torque request of
the vehicle when the torque request is below the maximum
engine torque. The motor assists the torque if the required
torque exceeds the maximum engine torque. The engine in this
control strategy usually runs in low efficiency; thus, the control
performance is not optimal. In the RTOCS, the engine will
output the optimal engine torque based on the current engine
speed and the engine efficiency map. When the engine torque
exceeds the torque request of the vehicle, the excess torque will
be recycled to charge the battery. The fuel efficiency of the
engine in this control strategy is much better than that in the
MACS. However, when the HEV is in an urban condition,
the vehicle will keep a low driving load and a frequent change in
the torque request. The optimal engine torque is usually much
larger than the torque request. Thus, the excess energy should
be recycled into the battery, and there will be an energy loss in
the process of energy conversion. In this case, the performance
of the RTOCS is worse than that of the MACS.

We build a mixed control strategy (MCS) based on them.
The control strategy will first discriminate the current driving
condition by IMSD. For the driving condition of an urban
road (congested or flowing), the HEV will be controlled by the
MACS. When the driving condition is a highway or a country
road, the HEV will be controlled by the RTOCS.

The aforementioned control strategies were simulated on
the software of ADVISOR [48]. In the simulation, the default
parallel HEV model was adopted, and the vehicle ran over
a driving cycle that is composed of standard driving cycles,
including US06, NYCC, and NEDC.

The control results are presented in Table VI. In the table,
the FE and the emissions are shown. The emissions contain
three regular emissions, which are hydrocarbons (HC), carbon
monoxide (CO), and nitrous oxides (NOx). We can see that
the FE of the MCS is higher than that of both the RTOCS
and the MACS, and the emission of the MCS is close to their
lowest value. This means that the MCS gives a better control
performance.
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TABLE VI
COMPARISON OF THE FE AND THE EMISSIONS BASED

ON DIFFERENT CONTROL STRATEGIES

According to the aforementioned experiments in HEV con-
trol, it can be seen that by using IMSD, the complicated model
can be decomposed into multiple simple submodels. These
submodels are specific and precise, which are helpful to reach
a higher control performance.

IX. CONCLUSION

This paper has proposed a new IMSD approach. Combining
statistical analysis and machine learning, this approach can
automatically analyze the HEV driving data, extract multiple
features, and dynamically discriminate the driving conditions,
which is helpful for the best control strategy of the HEV.

During the HEV running mode, this approach periodically
samples the driving cycle. Based on the samples, multiple
features for the discrimination of driving conditions are ex-
tracted. Their significance is proved by histogram, boxplot, and
ANOVA. Based on the extracted features, IMSD learns the
information on the labeled samples by machine learning. Then,
it can automatically discriminate the current driving condition
of the HEV.

Compared with the current methods, the IMSD approach
extracts more features to obtain more information about the
driving conditions. It can accurately and dynamically discrimi-
nate the driving condition with a fast speed.

From the prediction experiment by a neural network, the fit-
ting experiment by the ARMA model, and the control strategy
by IMSD, the IMSD approach can be used to decompose the
uniform model into multiple submodels, which can improve the
efficiency and accuracy of the model and obtain the best control
effect.
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