
Payman Arabshahi, U. of Washington, USA
Maurice Clerc, Consultant, France
Leandro dos Santos Coelho, Pontifical Catholic U. of
 Parana, Brazil
Oscar Cordon, European Centre for Soft Computing,
 Spain
Arindam Das, U. of Washington, USA
Prithviraj Dasgupta, U. of Nebraska, USA
Yongsheng Ding, Donghua U., China
Haibin Duan, Beihang Univeristy, China
Zhen Ji, Shenzhen U., China
Yaochu Jin, Honda Research Institute Europe, Germany
Colin Johnson, U. of Kent at Canterbury, UK

Arun Khosla, National Insitute of Technology Jalandhar,
 India
Ziad Kobti, U. of Windsor, Canada
Yongming Li, Chongqing U., China
Ju Liu, Shandong U., China
Ann Nowe, Vrije Universiteit Brussel, Belgium
Mahamed G. H. Omran, Gulf U. for Science &
 Technology, Kuwait
Kevin M. Passino, The Ohio State U., USA
William Spears, U. of Wyoming, USA
Ke Tang, U. of Science and Technology of China, China
Lei Wang, Tongji U., China
Yanqing Zhang, Georgia State U., USA

Editor-in-Chief:	 Yuhui Shi, Xi’an Jiaotong-Liverpool U., China

Associate	Editors:		 Tim Blackwell, U. of London, UK
 Carlos A. Coello Coello, CINVESTAV-IPN, Mexico
 Russell C Eberhart, Indiana U.-Purdue U. Indianapolis, USA
 Xiaodong Li, RMIT U., Australia
 Bob Reynolds, Wayne State U., USA
 Ponnuthurai N. Suganthan, Nanyang Technological U., Singapore
 Changyin Sun, Southeast U., China
 Kay Chen Tan, National U. of Singapore, Singapore
 Ying Tan, Peking U., China
 Gary Yen, Oklahoma State U., USA
 Jun Zhang, Sun Yat-sen U., China
 Qingfu Zhang, U. of Essex, UK

IGI	Editorial: Heather A. Probst, Senior Editorial Director
 Jamie M. Wilson, Assistant Director of Journal Publications
 Chris Hrobak, Journal Production Manager

International	Editorial	Review	Board:

IGI PublIshInG
www.igi-global.com

IGIP

IJSIR	Editorial	Board

IGI GLOBAL PROOF

The Editor-in-Chief of the International Journal of Swarm Intelligence Research (IJSIR) would like to invite you to consider
submitting a manuscript for inclusion in this scholarly journal.

mission
The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to be-
come a leading international and well-referred journal in swarm intelligence, nature-inspired
optimization algorithms, and their applications. This journal publishes original and previously
unpublished articles including research papers, survey papers, and application papers, to serve
as a platform for facilitating and enhancing the information shared among researchers in swarm
intelligence research areas ranging from algorithm developments to real-world applications.

Topics of inTeresT (include buT are noT limiTed To):
• Ant colony optimization
• Applications in bioengineering
• Applications in bioinformatics
• Applications in business
• Applications in control systems
• Applications in data mining and data clustering
• Applications in decision making
• Applications in distributed computing
• Applications in evolvable hardware
• Applications in finance and economics
• Applications in games
• Applications in graph partitioning
• Applications in information security
• Applications in machine learning
• Applications in planning and operations in industrial systems,

transportation systems, and other systems
• Applications in power system
• Applications in supply-chain management
• Applications in wireless sensor networks
• Artificial immune system
• Constrained optimization
• Culture algorithm
• Differential Evolution

All	submissions	should	be	e-mailed	to:
Yuhui	Shi,	Editor-in-Chief
yuhui.shi@xjtlu.edu.cn

An official publication of the Information Resources Management Association

International	Journal	of	Swarm
Intelligence	Research

Please recommend this publication to your librarian. For a convenient
easy-to-use library recommendation form, please visit:

http://www.igi-global.com/ijsir

Ideas for Special Theme Issues may be submitted to the Editor-in-Chief.

• Foraging algorithm
• Large scale optimization problems
• Modeling and analysis of biological collective systems such as

social insects colonies, school, and flocking vertebrates
• Multi-objective optimization
• Optimization in dynamic and uncertain environment
• Other nature-inspired optimization algorithms
• Particle swarm optimization
• Scheduling and timetabling
• Swarm Robotics
• Other nature-inspired optimization algorithms

CALL FOR ARTICLES

ISSN 1947-9263
eISSN 1947-9271

Published quarterlyIGI GLOBAL PROOF

October-December 2011, Vol. 2, No. 4

	 Research	Articles	

1	 Chaos-Enhanced	Firefly	Algorithm	with	Automatic	Parameter	Tuning
	 Xin-She	Yang,	National	Physical	Lab,	UK

12	 Swarm	Intelligence	for	Non-Negative	Matrix	Factorization
	 Andreas	Janecek,	University	of	Vienna,	Austria
	 Ying	Tan,	Peking	University,	China
	
35	 An	Optimization	Algorithm	Based	on	Brainstorming	Process
	 Yuhui	Shi,	Xi’an	Jiaotong-Liverpool	University,	China

InternatIonal Journal of Swarm
IntellIgence reSearch

Table of Contents

IGI GLOBAL PROOF

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011 1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Algorithm, Automatic Parameter Tuning, Chaos, Firefly Algorithm, Metaheuristics, Optimization,
Particle Swarm Optimization

1. INTRODUCTION

Search for optimality in many optimization
applications is a challenging task, and search
efficiency is one of the most important measure
for an optimization algorithm. In addition, an
efficient algorithm does not necessarily guar-
antee the global optimality is reachable. In
fact, many optimization algorithms are only
efficient in finding local optima. For example,
classic hill-climbing or steepest descent method
is very efficient for local optimization. Global
optimization typically involves objective func-
tions which can be multimodal and highly
nonlinear. Thus, it is often very challenging to
find global optimality, especially for large-scale

optimization problems. Recent studies suggest
that metaheuristic algorithms such as particle
swarm optimization are promising in solving
these tough optimization problems (Kennedy
& Eberhart, 1995; Kennedy et al., 2001; Shi &
Eberhart, 1998; Eberhart & Shi, 2000; Yang,
2008).

Most metaheuristic algorithms are nature-
inspired, from simulated annealing (Kirkpatrick
et al., 1983) to firefly algorithm (Yang, 2008,
2010a), and from particle swarm optimization
(Kennedy & Eberhart, 1995; Kennedy et al.,
2001) to cuckoo search (Yang & Deb, 2010).
These algorithms have been applied to almost
all areas of optimization, design, scheduling and
planning, data mining, machine intelligence,
and many others (Gandomi et al., in press;
Talbi, 2009; Yang, 2010a). On the other hand,

Chaos-Enhanced Firefly
Algorithm with Automatic

Parameter Tuning
Xin-She Yang, National Physical Lab, UK

ABSTRACT
Many metaheuristic algorithms are nature-inspired, and most are population-based. Particle swarm opti-
mization is a good example as an efficient metaheuristic algorithm. Inspired by PSO, many new algorithms
have been developed in recent years. For example, firefly algorithm was inspired by the flashing behaviour of
fireflies. In this paper, the author extends the standard firefly algorithm further to introduce chaos-enhanced
firefly algorithm with automatic parameter tuning, which results in two more variants of FA. The author first
compares the performance of these algorithms, and then uses them to solve a benchmark design problem in
engineering. Results obtained by other methods will be compared and analyzed.

DOI: 10.4018/jsir.2011100101

IGI GLOBAL PROOF

2 International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

chaotic tunneling is an important phenomenon
in complex systems (Tomsovic, 1994; Podol-
skiy & Narmanov, 2003; Kohler et al., 1998;
Delande & Zakrzewski, 2003; Shudo & Ikeda,
1998; Shudo et al., 2009). Traditional wisdom
in optimization is to avoid numerical instability
and chaos. Contemporary studies suggest that
chaos can assist some algorithms such as genetic
algorithms (Yang & Chen, 2002). For example,
metaheuristic algorithms often use randomiza-
tion techniques to increase the diversity of the
solutions generated during search iterations
(Talbi, 2009; Yang, 2010a). The most common
randomization techniques are probably local
random walks and Lévy flights (Gutowski,
2001; Pavlyukevich, 2007; Yang 2010b).

The key challenge for global optimization
is that nonlinearity leads to multimodality,
which in turns will cause problems to almost
all optimization algorithms because the search
process may be trapped in any local valley,
and thus may cause tremendous difficulty to
the search process towards global optimality.
Even with most well-established stochastic
search algorithms such as simulated annealing
(Kirkpatrick et al., 1983), care must be taken
to ensure it can escape the local modes/opti-
mality. Premature convergence may occur in
many algorithms including simulated annealing
and genetic algorithms. The key ability of an
efficient global search algorithm is to escape
local optima, to visit all modes and to converge
subsequently at the global optimality.

In this paper, we will first analyze the re-
cently developed firefly algorithm (FA) (Yang,
2008, 2010b). Under the right conditions, FA can
have chaotic behaviour, which can be used as
an advantage to enhance the search efficiency,
because chaos allow fireflies to sample search
space more efficiently. In fact, a chaotic tunnel-
ling feature can be observed in FA simulations
when a firefly can tunnel through multimodes
and jump from one mode to another modes. This
enables the algorithm more versatile in escaping
the local optima, and thus can guarantee to find
the global optimality. Chaotic tunneling is an
important phenomenon in complex systems, but
this is the first time that a chaotic tunneling is

observed in an optimization algorithm. Through
analysis and numerical simulations, we will
highlight that intrinsic chaotic characteristics in
the FA can enhance the search efficiency. Then,
we will introduce automatic parameter tuning
to the chaotic firefly algorithm and compare
its performance against a set of diverse test
functions. Finally, we will apply the FA with
automatic parameter tuning to solve a design
benchmark whose solutions will be compared
with other results in the literature.

2. FIREFLY ALGORITHM

Firefly Algorithm (FA) was developed by Yang
(2008, 2010b), which was based on the flashing
patterns and behaviour of fireflies. In essence,
each firefly will be attracted to brighter ones,
while at the same time, it explores and searches
for prey randomly. In addition, the brightness
of a firefly is determined by the landscape of
the objective function.

The movement of a firefly i is attracted
to another more attractive (brighter) firefly j
is determined by

x x e x xi
t

i
t rij

j
t

i
t

i
t+ −

+ − +1
2

= () ,β α ε
γ

(1)

where α, β and γ are parameters. α controls the
scale of randomization, β controls the attractive-
ness, while γ is a scaling factor. Here the second
term is due to the attraction. The third term is
randomization with α being the randomization
parameter, and εi

t is a vector of random numbers
drawn from a Gaussian distribution or other
distributions such as Lévy flights. Obviously,
for a given firefly, there are often many more
attractive fireflies, then we can either go through
all of them via a loop or use the most attrac-
tive one. For multiple modal problems, using
a loop while moving toward each brighter one
is usually more effective, though this will lead
to a slight increase of algorithm complexity.

Here β ∈ [0,1] is the attractiveness at
r = 0 , and r x xij i j=|| ||2− is the 2-norm or

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011 3

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Cartesian distance. For other problems such as
scheduling, any measure that can effectively
characterize the quantities of interest in the
optimization problem can be used as the “dis-
tance” r . Furthermore, the randomization term
can easily be extended to other distributions
such as Lévy flights (Reynolds & Rhodes,
2009).

3. CHAOS-ENHANCED FA

In order to see the intrinsic tunneling ability, let
us first carry out the convergence analysis for
the firefly algorithm in a framework similar to
Clerc and Kennedy’s dynamical analysis (Clerc
& Kennedy, 2002). For simplicity, we start
from the equation for firefly motion without
the randomness term

x x e x xi
t

i
t rij

j
t

i
t+ −

+ −1
2

= ().β
γ

 (2)

If we focus on a single agent, we can replace
xj

t by the global best g found so far, and we have

x x e g xi
t

i
t ri

i
t+ −

+ −1
2

= (),β γ (3)

where the distance ri can be given by the � 2
-norm r g xi i

t2
2
2=|| ||− . In an even simpler 1-D

case, we can set y g xt i
t= − , and we have

y y e yt t
yt

t+

−
−1

2
= .β γ (4)

We can see that γ is a scaling parameter
which only affects the scales/size of the firefly
movement. In fact, we can let u yt t= γ and
we have

u u et t
ut

+

−
−1

2
= [1].β (5)

These equations can be analyzed easily
using the same methodology for studying the
well-known logistic map

u u ut t t+ −1 = (1).λ (6)

The chaotic map of equation (5) is shown
in Figure 1, and the focus on the transition from
periodic multiple states to chaotic behaviour is
shown in the same figure.

As we can see from Figure 1 that good
convergence can be achieved for β < 2 . There
is a transition from periodic to chaos at β ≈ 4
. This may be surprising, as the aim of design-
ing a metaheuristic algorithm is to try to find
the optimal solution efficiently and accurately.
However, chaotic behaviour is not necessarily
a nuisance; in fact, we can use it to the advan-
tage of the firefly algorithm.

It is worth pointing out that no explicit
form of a random variable distribution can be
found for the chaotic map of (5). However,
simple chaotic characteristics from (6) can
often be used as an efficient mixing technique
for generating diverse solutions. Statistically,
the logistic mapping (6) with λ = 4 for the
initial states in (0,1) corresponds a beta distri-
bution. From the algorithm implementation
point of view, we can use higher attractiveness
β during the early stage of iterations so that
the fireflies can explore, even chaotically, the
search space more effectively. As the search
continues and convergence approaches, we can
reduce the attractiveness β gradually, which
may increase the overall efficiency of the al-
gorithm. The simulations presented in the rest
of this paper will confirm this.

4. AUTOMATIC
PARAMETER TUNING

Apart from the population size n , there are
three parameters in the firefly algorithm. They
are α , β and γ , which control the random-
ness, attractiveness and modal scales, respec-
tively. For most implementations, we can take

IGI GLOBAL PROOF

4 International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

β = (1)O , α = (1)O and γ = (1)O . How-
ever, randomness reduction technique is often
used as iterations continue, and this is often
achieved by using an annealing-like exponen-
tial function

α α η= ,0
t (7)

or

α αη← , (8)

where 0 < < 1η is a cooling parameter.
Typical ly, we can use α0 = 1 and
η = 0.9 0.99∼ . This equivalently introduces
a cooling schedule to the firefly algorithm, as
used in the traditional simulated annealing.
Recently studies showed this works well (Yang,
2008). There may be better ways to tune this
parameter and reduce randomness to be dis-
cussed later in this section.

It is worth pointing out that (1) is essen-
tially a random walk biased towards the
brighter fireflies. If β0 = 0 , it becomes a
simple random walk.

As it is true for all metaheuristic algorithms,
algorithm-dependent parameters can affect the
performance of the algorithm of interest greatly,
a natural question is whether we can automati-

cally tune these parameters? If so, what is the
best way to fine-tune these parameters?

For randomness reduction, it should be
linked with the diversity of the current solutions.
One simple way to automatically tune α is to
set α as proportional to the standard deviation
of the current solutions. However, for multi-
modal problems, this standard deviation should
be calculated for each local mode among local
subgroups of fireflies. For example, for two
modes A and B with current best solutions
x a
* and x b

* , respectively, the population will
gradually subdivide into two main subgroups
with population sizes of n1 and n2 , respec-
tively, one around A and one around B . There
are two standard deviations σA and σB which
should be calculated among the solutions rela-
tive to x a

* and x b
* , respectively. Then the

overall α should be a function of σA and σB
. The simplest way is to combine them by
weighted average

σ
σ σ

= , = .1 2

1 2
1 2

A Bn n
n n

n n n
+
+

+ (9)

As iterations continue, σ decreases in
general. If we set

α ζσ ζ= , 0 < < 1, (10)

Figure 1. The chaotic map of the iteration formula (5) in the firefly algorithm and the transition
between from periodic/multiple states to chaos

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011 5

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

then α is automatically associated with the
scale of the problem of interest. In practice, η
may be affected by the dimensions d , so in our
implementation we used ζ = / (2 1)d d + .
The parameter γ should be linked with the
scale L of the modes. A simple rule is that the
change of the attractiveness term should be
O(1) through the search landscape, which
provide a simple relationship γ = 1/ L .
Parameter β control the behavior of fireflies,
however, its tuning is more subtle. From the
above discussion of (5), when β is large, fire-
flies may experience chaotic behavior, and this
can be used to enhance the search capability of
the algorithm. In fact, from our intensive
simulations, we have observed that fireflies can
tunnel through all modes for multimodal func-
tion. This chaotic tunnelling effect of the algo-
rithm can help to search the global optimality
for highly nonlinear global optimization prob-
lems.

To demonstrate this, we now first use a
nonlinear multimodal function, namely, Ack-
ley’s function:

2

=1 =1

1 1() = 20exp[0.2] exp[cos(2)] (20),
d d

i i
i i

f x x x e
d d

π− + − +∑ ∑

which has the global maximum f* = 0 at
x *= (0,0,..., 0) i n t h e r a n g e o f
− ≤ ≤32.768 32.768xi where i d= 1,2,...,
and d is the number of dimensions. In the 2D
case, Ackley’s function is shown in Fig. 2. For
25 fireflies, a snapshot at t = 15 of search
process using the firefly algorithm is shown in
Fig. 3. If we ignore the randomness by setting
α = 0 and β = 4 all the time, then we can
trace any one particular firefly, say, firefly
number 5 , its path of x -component displays
a random-noise-like path. It is worth pointing
out each firefly has the ability of tunneling
through all modes, and distance of the tunnel-
ling is controlled by the scaling factor γ and
β .

During the iteration, if we reduce β
gradually from a higher value, say, β = 4 to
a lower value β = 1 by βηt +1 and also use
equation (7), the algorithm can be expected to
converge more quickly. So for the same firefly
5 , if we reduce β gradually, as the iteration
proceeds, this path will gradually settle down
and converge to a global optimal point.

Now we have three version of FA: The
standard version of FA with α as a cooling
schedule, a chaos-enhanced FA with β reduced
gradually, and the chaotic FA in combination
with automatic parameter tuning (AutoFA). In
the rest of the paper, we will carry out more
testing and comparison of their performance.

5. NUMERICAL EXPERIMENTS

Various test functions in the literature are de-
signed to test the performance of optimization
algorithms. Any new optimization algorithm
should also be validated and tested against these
benchmark functions. In our simulations, we
have used the following test functions.

De Jong’s first function is essentially a
sphere function

f x x x
i

d

i i() = , [5.12,5.12],
=1

2∑ ∈ −

(12)

whose global minimum f* = 0 occurs at
x *= (0,0,..., 0) . Here d is the dimension.

The generalized Rosenbrock’s function
is given by

f x x x x
i

d

i i i() = [(1) 100()],
=1

1
2

1
2 2

−

+∑ − + −

(13)

which has a unique global minimum f x() = 0*
at x *= (1,1,...,1) .

Schwefel’s test function is multimodal

IGI GLOBAL PROOF

6 International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

f x x x x
i

d

i i i() = [(| |)], 500 500,
=1
∑− − ≤ ≤sin

(14)

whose global minimum f d* = 418.9829− is
at x i di

* = 420.9687(= 1,2,...,) .
Rastrigin’s test function

f x d x x
i

d

i i() = 10 [10 (2)],
=1

2+ −∑ cos π

(15)

has a unique global minimum f* = 0 at
(0,0,..., 0) in a hypercube − ≤ ≤5.12 5.12xi
where i d= 1,2,..., .

Easom’s test function has a sharp tip

f x y x y x y(,) = () () [() ()],2 2− − − − −cos cos exp π π
(16)

in the domain (,) [100,100] [100,100]x y ∈ − × −
. It has a global minimum of f* = 1− at (,)π π
in a very small region.

Rosenbrock’s function

f x x x x
i

d

i i i() = [(1) 100()],
=1

1
2

1
2 2

−

+∑ − + −

(17)

whose global minimum f* = 0 occurs at
x *= (1,1,...,1) in the domain − ≤ ≤5 5xi

where i d= 1,2,..., . In the 2D case, it is often
written as

f x y x y x(,) = (1) 100() ,2 2 2− + − (18)

which is often referred to as the banana function.
The Michalewicz function

f x x
ix

i

d

i
i m() = ()[()] ,

=1

2
2−∑ sin sin

π
 (19)

where m = 10 and d = 1,2,... . The global
minimum f* 1.801≈ − in 2-D occurs at
(2.20319,1.57049) ,

Griewangk’s test function has many local
minima

f x x
x
ii

d

i
i

d
i() =

1
4000

() 1,
=1

2

=1
∑ ∏− +cos

(20)

but a unique global mimimum f* = 0 at
(0,0,..., 0) for all − ≤ ≤600 600xi where
i d= 1,2,..., .

Yang’s test function (Yang, 2010a)

f x x x x
i

d

i
i

d

i i() = (| |) [()], 2 2 ,
=1 =1

2∑ ∑− − ≤ ≤exp sin π π

(21)

which has a global minimum f* = 0 at
(0,0,..., 0) .

Rosenbrock’s stochastic function was
extended by Yang (2010a)

f x x x x
i

d

i i i i i() = [(1) 100 ()],
=1

1
2

1 1
2 2

−

+ +∑ − + −ε ε

(22)

whose global minimum f* = 0 occurs at
x *= (1,1,...,1) in the domain − ≤ ≤5 5xi

where i d= 1,2,..., .
The functions used in Table 1 are (1) Mi-

chaelwicz (d = 16), (2) Rosenrbrock (d = 16
), (3) De Jong (d = 16), (4) Schwefel (d = 8
), (5) Ackley (d = 16), (6) Rastrigin, (7) Easom,
(8) Griewangk, (9) Yang d = 16 , (10) Rob-
senbrock’s stochastic function (d = 8).

We ran the simulations for 50 times for a
given accuracy of δ = 10 5− , and the search
stops when the best solution is found g * is
near the known solution x * , that || ||* *x g− ≤ δ
. We then recorded the number of iterations for
finding such best solutions. In this table, the
second column corresponds to the average

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011 7

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

number of iterations and its standard deviation.
The third column is the average ratio of the
number of iterations of chaotic FA to the num-
ber of iterations for the standard FA when β = 1
(no chaos). The fourth column is the average
ratio of the number of iterations of AutoFA to
that of standard FA. These ratios reflect the
computational effort saved. For example, if the

average ratio is about 0.1, than about 90% of
the computing effort is saved, that is the effi-
ciency has been increased by a factor of about
10.

We can see that the chaos-enhanced firefly
algorithm indeed can improve its search ef-
ficiency significantly.

Figure 2. Ackley’s multimodal function

Table 1. Comparison of standard FA, chaotic FA and AutoFA

Test Functions FA Chaotic FA (ratio) AutoFA (ratio)

(1) 3752 725± 0.154 0.022± 0.108 0.015±

(2) 7792 2923± 0.175 0.024± 0.123 0.017±

(3) 2319 337± 0.069 0.014± 0.054 0.012±

(4) 7540 125± 0.097 0.018± 0.072 0.014±

(5) 3172 723± 0.071 0.012± 0.051 0.010±

(6) 11981 970± 0.093 0.011± 0.069 0.009±

(7) 7925 1799± 0.145 0.027± 0.127 0.024±

(8) 12592 3715± 0.112 0.019± 0.089 0.012±

(9) 7390 2189± 0.079 0.011± 0.057 0.009±

(10) 9125 2149± 0.037 0.014± 0.330 0.049±

IGI GLOBAL PROOF

8 International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

6. DESIGN OPTIMIZATION

There are many design benchmarks in the lit-
erature, however, the results are fragmental, as
not all results are available and comparable.
Here we select a well-known welded beam
design, which has many results obtained by
other methods in the literature (Ragsdell &
Phillips, 1976; Cagnina et al., 2008; Gandomi
et al., in press-a, in press-b). The problem
typically has four design variables: the width
w and length L of the welded area, the depth
h and thickness h of the main beam. The
objective is to minimise the overall fabrication
cost, under the appropriate constraints of shear
stress τ , bending stress σ , buckling load P
and maximum end deflection δ .

The problem can be written as

minimise f x w L dh L() = 1.10471 0.04811 (14.0),2 + +
(23)

subject to

g x w h
g x x
g x x
g x

1

2

3

4

() = 0,
() = () 0.25 0,
() = () 13,600 0,
() = (

− ≤
− ≤
− ≤

δ
τ
σ xx

g x w hd L
g x

) 30,000 0,
() = 0.10471 0.04811 (14) 5.0 0,
() = 0
5

2

6

− ≤
+ + − ≤

..125 0,
() = 6000 () 0,7

− ≤
− ≤
w

g x P x

(24)

where
σ() =

504,000
, = 6000(14

2
),

=
1
2

() , = 2 [
6

(

2

2 2
2

x
hd

Q L

D L w d J wL L
w d

+

+ + +
+))
2

],

=
65,856
30,000

, = ,

=
6000

2
, () = ,

=

2

3

2 2

δ β

α τ α
αβ

β

hd
QD
J

wL
x L

D

P

+ +

00.61423 10
6
(1

30 / 48
28

).6
3

× −
dh d

The simple limits or bounds are
0.1 , 10≤ ≤L d and 0.1 , 2.0≤ ≤w h . This
benchmark has been solved by many different
methods, including simulated annealing (Hedar
& Fukushima, 2006), genetic algorithms (Deb,
1991), particle swarm optimization (He et al.,
2004; Cagnina et al., 2008), harmony search
(Lee & Geem, 2004), differential evolution
(Zhang et al., 2008) and firefly algorithm in
this study.

It is worth pointing out that the constraints
should be handled appropriately. In this case,
we have used the penalty functions to incor-
porate the above nonlinear constraints (Yang,
2010a). Using our chaotic firefly algorithm
with automatic parameter tuning, we have the
following optimal solution

Figure 3. The snapshot of 25 fireflies during iteration t = 15

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011 9

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

x w L d h*= (, , ,)
= (0.20573, 3.47049,9.03662,0.20573),

(26)
with

f x(*) = 1.72485.min (27)

Our results are the same or better than the
results obtained by other methods as summa-
rized in Table 2.

From the above validation, comparison
and benchmark design, we can see that cha-
otic FA with automatic parameter tuning is very
efficient. Good convergence can be obtained
by chaos-assisted tunnelling and automatic
parameter adjustment. Effect and improvements
become significant for multimodal problems.

6. CONCLUSION

Search for optimality in complex systems and
global optimization problems require efficient
algorithms. Metaheuristic algorithms such as
particle swarm optimization and firefly algo-
rithm are becoming very powerful. We have used

a dynamical system approach to study the con-
vergence property of the firefly algorithm and
discovered its intrinsic chaotic tunneling ability.
This property can be used as an advantage to
enhance search efficiency of the algorithm. For
multimodal optimization problems, there is a
risk for any algorithm to get trapped in local
optima. Chaos-assisted tunneling in the firefly
algorithm makes it particular suitable for dealing
with nonlinear, multimodal optimization prob-
lems. Our analysis and numerical experiments
indeed demonstrated that chaotic tunneling can
increase the search efficiency significantly.

An important topic for further research
is to vary the scheme of automatic parameter
tuning. The present study presents just one of
many ways for automatic tuning of algorithm-
dependent parameters. Other methods may
be more appropriate and more efficient for
different types of problems. In addition, more
studies are highly needed to investigate whether
this approach can be directly applied to other
algorithms for automatic parameter tuning.

Further research can focus on the theoretical
framework and extensive numerical studies on
how an algorithm can be enhanced by chaotic
tunneling, and thus may show insight into the

Table 2. Welded beam design

Refs Method w L d h cost Number of
function

evaluations

Deb GA 0.2489 6.1730 8.1789 0.2533 2.4331 320,080

He et al. PSO 0.2444 6.2175 8.2915 0.2444 2.3810 30,000

Cagnina et al. PSO 0.2057 3.4705 9.0366 0.2057 1.7248 24,000

Hedar &
Fukushima

SA 0.2444 6.2158 8.2939 0.2444 2.3811 56,243

Lee & Geem HS 0.2442 6.2231 8.2915 0.2443 2.381 110,000

Zhang et al. DE 0.2444 6.2175 8.2915 0.2444 2.3810 24,000

This study AutoFA 0.2057 3.4705 9.0366 0.2057 1.7248 20,000

IGI GLOBAL PROOF

10 International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

working of an efficient algorithm. Such studies
may help to design new generation truly intel-
ligent optimization algorithms.

REFERENCES

Cagnina, L. C., Esquivel, S. C., & Coello, C. A.
(2008). Solving engineering optimization problems
with the simple constrained particle swarm optimizer.
Informatica, 32, 319–326.

Clerc, M., & Kennedy, J. (2002). The particle
swarm - explosion, stability, and convergence in
a multidimensional complex space. IEEE Trans-
actions on Evolutionary Computation, 6, 58–73.
doi:10.1109/4235.985692

Deb, K. (1991). Optimal design of a welded beam
via genetic algorithms. AIAA Journal, 29(11),
2013–2015. doi:10.2514/3.10834

Delande, D., & Zakrzewski, J. (2003). Experi-
mentally attainable example of chaotic tunneling:
The hydrogen atom in parallel static electric and
magnetic fields. Physical Review A., 68(6), 062110.
doi:10.1103/PhysRevA.68.062110

Eberhart, E. C., & Shi, Y. (2000). Comparing inertia
weights and constriction factors in particle swarm
optimization. In Proceedings of the Congress on
Evolutionary Computation (Vol. 1, pp. 84-88).

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (in
press). -a). Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems.
Engineering with Computers.

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (in
press). -b). Mixed variable structural optimization
using firefly algorithm. Computers & Structures.

Gutowski, M. (2001). Lévy flights as an underlying
mechanism for global optimization algorithms. Re-
trieved from http://arxiv.org/abs/math-ph/0106003

He, S., Prempain, E., & Wu, Q. H. (2004). An
improved particle swarm optimizer for mechanical
design optimization problems. Engineering Opti-
mization, 36(5), 585–605. doi:10.1080/03052150
410001704854

Hedar, A. R., & Fukushima, M. (2006). Derivative-
free simulated annealing method for constrained
continuous global optimization. Journal of Global
Optimization, 35(4), 521–649. doi:10.1007/s10898-
005-3693-z

Kennedy, J., & Eberhart, R. C. (1995). Particle
swarm optimization. In Proceedings of the IEEE
International Conference on Neural Networks (pp.
1942-1948).

Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm
intelligence. San Francisco, CA: Morgan Kaufmann.

Kirkpatrick, S., Gellat, C. D., & Vecchi, M. P. (1983).
Optimization by simulated annealing. Science, 220,
670–680. doi:10.1126/science.220.4598.671

Kohler, S., Utermann, R., Hagnni, R., & Dittrich, T.
(1998). Coherent and incoherent chaotic tunneling
near singlet-doublet crossings. Physical Review E:
Statistical Physics, Plasmas, Fluids, and Related In-
terdisciplinary Topics, 58, 7219–7230. doi:10.1103/
PhysRevE.58.7219

Lee, K. S., & Geem, Z. W. (2004). A new meta-heu-
ristic algorithm for continues engineering optimiza-
tion: harmony search theory and practice. Computer
Methods in Applied Mechanics and Engineering,
194, 3902–3933. doi:10.1016/j.cma.2004.09.007

Pavlyukevich, I. (2007). Lévy flights, non-local
search and simulated annealing. Journal of Com-
putational Physics, 226, 1830–1844. doi:10.1016/j.
jcp.2007.06.008

Podolskiy, V. A., & Narmanov, E. E. (2003). Semi-
classical description of chaos-assisted tunneling.
Physical Review Letters, 91, 263601. doi:10.1103/
PhysRevLett.91.263601

Ragsdell, K., & Phillips, D. (1976). Optimal design
of a class of welded structures using geometric pro-
gramming. Journal of Engineering for Industry, 98,
1021–1025. doi:10.1115/1.3438995

Reynolds, A. M., & Rhodes, C. J. (2009). The Lévy
flight paradigm: random search patterns and mecha-
nisms. Ecology, 90, 877–887. doi:10.1890/08-0153.1

Shi, Y., & Eberhart, R. C. (1998). A modified particle
swarm optimizer. In Proceedings of the IEEE Inter-
national Conference on Evolutionary Computation
(pp. 69-73).

Shudo, A., & Ikeda, K. S. (1998). Chaotic tunneling:
a remarkable manifestation of complex classical
dynamics in non-integrable quantum phenomena.
Physica D. Nonlinear Phenomena, 115, 234–292.
doi:10.1016/S0167-2789(97)00239-X

Shudo, A., Ishii, Y., & Ikeda, K. S. (2009). Julia
sets and chaotic tunneling: II. Journal of Physics
A . Mathematical and Theoretical, 42, 265102.
doi:10.1088/1751-8113/42/26/265102

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011 11

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Talbi, E.-G. (2009). Metaheuristics: From design to
implementation. New York, NY: John Wiley & Sons.

Tomsovic, S. (1994). Chao-assisted tunneling. Physi-
cal Review E: Statistical Physics, Plasmas, Fluids,
and Related Interdisciplinary Topics, 50, 145–162.
doi:10.1103/PhysRevE.50.145

Yang, L. J., & Chen, T. L. (2002). Applications of
chaos in genetic algorithms. Communications in
Theoretical Physics, 38, 168–192.

Yang, X. S. (2008). Nature-inspired metaheuristic
algorithms. Beckington, UK: Luniver Press.

Yang, X. S. (2010a). Engineering optimiza-
tion: An introduction with metaheuristic ap-
plications. New York, NY: John Wiley & Sons.
doi:10.1002/9780470640425

Yang, X. S. (2010b). Firefly algorithm, stochastic
test functions and design optimisation. International
Journal of Bio-Inspired Computation, 2, 78–84.
doi:10.1504/IJBIC.2010.032124

Yang, X. S., & Deb, S. (2010). Engineering optimi-
zation by cuckoo search. International Journal of
Mathematical Modelling & Numerical Optimization,
1, 330–343. doi:10.1504/IJMMNO.2010.035430

Zhang, M., Luo, W., & Wang, X. (2008). Differ-
ential evolution with dynamic stochastic selection
for constrained optimization. Information Science,
178(15), 3043–3074. doi:10.1016/j.ins.2008.02.014

Xin-She Yang received his DPhil in Applied Mathematics from Oxford University, and he has
been the recipient of Garside Senior Scholar Award in Mathematics of Oxford University. He
worked at Cambridge University for 5 years and is now a Senior Research Scientist at National
Physical Laboratory. He has written 7 books and published more than 110 papers. He is the
Editor-in-Chief of Int. J. Mathematical Modelling and Numerical Optimisation. He is also a
Guest Professor of Harbin Engineering University, China. He is the vice chair of IEEE CIS
task force on business intelligence and knowledge management. He is the inventor of a few
metaheuristic algorithms, including bat algorithm, eagle strategy, firefly algorithm, cuckoo
search and virtual bee algorithm.

IGI GLOBAL PROOF

12 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Differential Evolution, Email Classification, Fireworks Algorithm, Fish School Search, Genetic
Algorithms, NMF Initialization, Nonnegative Matrix Factorization (NMF), Particle Swarm
Optimization

1. INTRODUCTION

Low-rank approximations are utilized in sev-
eral content based retrieval and data mining
applications, such as text and multimedia min-
ing, web search, etc. and achieve a more com-
pact representation of the data with only lim-
ited loss in information. They reduce storage
and runtime requirements, and also reduce
redundancy and noise in the data representation

while capturing the essential associations. The
Non-negative Matrix Factorization (NMF) (Lee
& Seung, 1999) leads to a low-rank approxima-
tion which satisfies non-negativity constraints.
NMF approximates a data matrix A by
A WH≈ ,where W and H are the NMF fac-
tors. NMF requires all entries inA , W andH
to be zero or positive. Contrary to other low-
rank approximations such as the Singular
Value Decomposition (SVD), these constraints
force NMF to produce so-called “additive parts-
based” representations. This is an impressive

Swarm Intelligence for Non-
Negative Matrix Factorization

Andreas Janecek, University of Vienna, Austria

Ying Tan, Peking University, China

ABSTRACT
The Non-negative Matrix Factorization (NMF) is a special low-rank approximation which allows for an
additive parts-based and interpretable representation of the data. This article presents efforts to improve the
convergence, approximation quality, and classification accuracy of NMF using five different meta-heuristics
based on swarm intelligence. Several properties of the NMF objective function motivate the utilization of
meta-heuristics: this function is non-convex, discontinuous, and may possess many local minima. The proposed
optimization strategies are two-fold: On the one hand, a new initialization strategy for NMF is presented in
order to initialize the NMF factors prior to the factorization; on the other hand, an iterative update strategy
is proposed, which improves the accuracy per runtime for the multiplicative update NMF algorithm. The
success of the proposed optimization strategies are shown by applying them on synthetic data and data sets
coming from the areas of spam filtering/email classification, and evaluate them also in their application
context. Experimental results show that both optimization strategies are able to improve NMF in terms of
faster convergence, lower approximation error, and better classification accuracy. Especially the initialization
strategy leads to significant reductions of the runtime per accuracy ratio for both, the NMF approximation
as well as the classification results achieved with NMF.

DOI: 10.4018/jsir.2011100102

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 13

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

benefit of NMF, since it makes the interpretation
of the NMF factors much easier than for factors
containing positive and negative entries (Berry,
Browne, Langville, Pauca, & Plemmons, 2007;
Janecek & Gansterer, 2010; Lee & Seung, 1999).

The NMF is usually not unique if different
initializations of the factors W and H are
used. Moreover, there are several different NMF
algorithms which all follow different strategies
(e.g., mean squared error, least squares, gradi-
ent descent,...) and produce different results.
Mathematically, the goal of NMF is to find a
“good” (ideally the best) solution of an optimi-
zation problem with bound constraints in the
form min ()x f x∈Ω , where f N: � �→ is the
nonlinear objective function of NMF, and Ω
is the feasible region (for NMF, Ω is restricted
to non-negative values). f is usually not convex,
discontinuous and may possess many local
minima (Stadlthanner, Lutter, Theis, Lang,
Tome, Georgieva, & Puntonet, 2007). Since
meta-heuristic optimization algorithms are
known to be able to deal well with such difficul-
ties they seem to be a promising choice for
improving the quality of NMF. Over the last
decades nature-inspired meta-heuristics, includ-
ing those based on swarm intelligence, have
gained much popularity due to their applicabil-
ity for various optimization problems. They
benefit from the fact that they are able to find
acceptable results within a reasonable amount
of time for many complex, large and dynamic
problems (Blackwell, 2007). Although they
lack the ability to guarantee the optimal solution
for a given problem (comparably to NMF), it
has been shown that they are able to tackle
various kinds of real-world optimization prob-
lems (Chiong, 2009). Meta-heuristics as well
as the principles of NMF are in accordance with
the law of sufficiency (Kennedy, Eberhart, &
Shi, 2001): If a solution to a problem is good
enough, fast enough and cheap enough, then it
is sufficient.

In this article we present two different
strategies for improving the NMF using five
optimization algorithms based on swarm intel-
ligence and evolutionary computing: Particle
Swarm Optimization (PSO), Genetic Algo-

rithms (GA), Fish School Search (FSS), Dif-
ferential Evolution (DE), and Fireworks Algo-
rithm (FWA). All algorithms are population
based and can be categorized into the fields of
swarm intelligence (PSO, FSS, FWA), evolu-
tionary algorithms (GA), and a combination
thereof (DE). The goal is to find a solution with
smaller overall error at convergence, and/or to
speed up convergence of NMF (i.e., smaller
approximation error for a given number of NMF
iterations) compared to identical NMF algo-
rithms without applied optimization strategy.
Another goal is to increase the classification
accuracy in cases where NMF is used as di-
mensionality reduction method for machine
learning applications. The concepts of the two
optimization strategies are the following: In the
first strategy, meta-heuristics are used to initial-
ize the factors W and H in order to minimize
the NMF objective function prior to the fac-
torization. The second strategy aims at itera-
tively improving the approximation quality of
NMF during the first iterations.

The proposed optimization strategies can
be considered successful if they are able to
improve the NMF in terms of either (i) faster
convergence (i.e., better accuracy per runtime)
(ii) lower final approximation error, (iii) or
better classification accuracy. The optimization
of different rows of W and different columns
ofH can be split up into several partly inde-
pendent sub-tasks and can thus be executed
concurrently. Since this allows for a parallel
and/or distributed computation of both update
strategies, we also discuss parallel implementa-
tions of the proposed optimization strategies.
Experimental results show that both strategies,
the initialization of NMF factors as well as an
iterative update during the first iterations, are
able to improve the NMF in terms of faster
convergence, lower approximation error, and/
or better classification accuracy.

1.1. Related Work

The work by Lee and Seung (1999) is known as
a standard reference for NMF. The original Mul-
tiplicative Update (MU) algorithm introduced

IGI GLOBAL PROOF

14 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

in this article provides a good baselines against
which other algorithms, e.g., the Alternating
Least Squares algorithm (Paatero & Tapper,
1994), the Gradient Descent algorithm (Lin,
2007), ALSPGRAD (Lin, 2007), quasi Newton-
type NMF (Kim & Park, 2008), fastNMF and
bayesNMF (Schmidt & Laurberg, 2008), etc.
have to be judged. While the MU algorithm is
still the fastest NMF algorithm per iteration
and a good choice if a very fast and rough ap-
proximation is needed, ALSPGRAD, fastNMF
and bayesNMF have shown to achieve a better
approximation at convergence compared to
many other NMF algorithms (Janecek, Schulze-
Grotthoff et al., 2011).

NMF Initialization

Only few algorithms for non-random NMF
initialization have been published. Wild, Curry,
and Dougherty (2004) used spherical k -means
clustering to group column vectors of A as
input for W . A similar technique was used in
Xue, Tong, Chen, and Chen (2008). Another
clustering-based method of structured initializa-
tion designed to find spatially localized basis
images can be found in Kim and Park (2008).
Boutsidis and Gallopoulos (2008) used an
initialization technique based on two SVD
processes called nonnegative double singular
value decomposition (NNDSVD). Experiments
indicate that this method has advantages over
the centroid initialization in Wild, Curry, and
Dougherty (2004) in terms of faster conver-
gence.

NMF and Meta-Heuristics

So far, only few studies can be found that aim
at combining NMF and meta-heuristics, most of
them are based on Genetic Algorithms (GAs).
In Stadlthanner et al. (2007), the authors have
investigated the application of GAs on sparse
NMF for microarray analysis, while Snásel,
Platos, and Kromer (2008) have applied GAs
for boolean matrix factorization, a variant of
NMF for binary data based on Boolean algebra.
However, the methods presented in these studies
are barely connected to the techniques presented

in this article. In two preceding studies (Janecek
& Tan 2011a, 2011b), we have introduced the
basic concepts of the proposed update strategies.

In this article we extend our preliminary
work in several ways by the following new
contributions. At first, we evaluate our methods
on synthetic data as well as on data sets coming
from the areas of spam filtering/email classifi-
cation. This allows us to evaluate the proposed
methods in the application context of the applied
data sets. In other words, we are now able to
investigate the quality of the NMF not only in
terms of approximation accuracy but also in
terms of classification accuracy achieved with
the approximated data sets as well as with the
basic vectors of the NMF factor W . Within
this evaluation process we consider two differ-
ent classification settings, a static setting where
NMF is computed on the complete data set
(training and test data), and a dynamic setting
where NMF can be applied dynamically to new
data. Moreover, we present a detailed evaluation
of the runtime performance of the proposed
update strategies, and, finally, we are able to
compare the performance of our strategies with
each other using the same parameter settings,
data sets, and hardware set-up.

1.2. Notation

A matrix is represented by an uppercase italic
letter (A , B , Σ , …), a vector by a lowercase
bold letter (u, x,, q1, …), and a scalar by a
lowercase Greek letter (λ , µ , …). The ith row
vector of a matrix D is represented as di

r , and
the j th column vector of D as d j

c . Matrix-
matrix multiplications are denoted by “*”, el-
ement-wise multiplications by “ · ”, and ele-
ment-wise divisions by “ . / ”.

1.3. Synopsis

In Section 2 we briefly review low-rank approxi-
mations and NMF algorithms. In Section 3 we
summarize the swarm intelligence algorithms
used in this article, and in Section 4 we present
the proposed optimization strategies for NMF
based on them. Moreover, we discuss differ-

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 15

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ent classification methods based on NMF. In
Sections 5 and 6 we evaluate our methods and
discuss the achieved results. Finally, in Section
7 we conclude our work and summarize ongo-
ing and future research activities in this area.

2. LOW RANK
APPROXIMATIONS

Given a data matrix A m n∈ ×� whose n columns
represent instances and whose m rows contain
the values of a certain feature for the instances,
most low-rank approximations reduce the di-
mensionality by representing the original data
as accurately as possible with linear combina-
tions of the original instances and/or features.
Mathematically, A is replaced with another
matrix Ak with usually much smaller rank. In
general, a closer approximation means a better
factorization. However, it is highly likely that
in some applications specific factorizations
might be more desirable compared to other
solutions.

The most important low-rank approxima-
tion techniques are the Singular Value Decom-
position (SVD) (Berry, 1992) and the closely
related Principal Component Analysis (PCA)
(Jolliffe, 2002). Traditionally, the PCA uses the
eigenvalue decomposition to find eigenvalues
and eigenvectors of the covariance matrix Cov(
A) of A . Then the original data matrix A can
be approximated by A AQk k:= , with
Qk k= [, ...,]q q1 , where q q1, ..., k are the first
k eigenvectors of Cov(A). The SVD decom-
poses A into a product of three matrices such
that A U V= Σ � , where Σ contains the sin-
gular values along the diagonal, and U and V
are the singular vectors. The reduced rank SVD
to A can be found by setting all but the first
k largest singular values equal to zero and
using only the first k columns of U and V ,
such that A U Vk k k k:= Σ � . Other well-known
low-rank approximation techniques comprise
Factor Analysis, Independent Components
Analysis, Multidimensional Scaling such as
Fastmap or ISOMAP, or Locally Linear Embed-

ding (LLE), which are all summarized in Tan,
Steinbach, and Kumar (2005).

Amongst all possible rank k approxima-
tions, the approximation Ak calculated by SVD
and PCA is the best approximation in the sense
that || ||A Ak F− is as small as possible (cf.
Berry, Drmac, & Jessup, 1999). In other words,
SVD and PCA give the closest rank k ap-
proximation of a matrix, such that
|| || || ||A A A Bk F k F− ≤ − , where Bk is any
matrix of rank k , and || . ||F is the Frobenius
norm, which is defined as (| |) || ||/∑ =a Aij F

2 1 2

. However, the main drawback of PCA and SVD
refers to the interpretability of the transformed
features. The resulting orthogonal matrix factors
generated by the approximation usually do not
allow for direct interpretations in terms of the
original features because they contain positive
and negative coefficients (Zhang, Berry, Lamb,
& Samuel, 2009). In many application domains,
a negative quantification of features is meaning-
less and the information about how much an
original feature contributes in a low-rank ap-
proximation is lost. The presence of negative,
meaningless components or factors may influ-
ence the entire result. This is especially impor-
tant for applications where the original data
matrix contains only positive entries, e.g., in
text-mining applications, image classification,
etc. If the factor matrices of the low-rank ap-
proximation were constrained to contain only
positive or zero values, the original meaning
of the data could be preserved better.

2.1. Non-negative Matrix
Factorization (NMF)

The NMF leads to special low-rank approxima-
tions which satisfy these non-negativity con-
straints. NMF requires that all entries in A ,
W and H are zero or positive. This makes the
interpretation of the NMF factors much easier
and enables NMF a non-subtractive combina-
tion of parts to form a whole (Lee & Seung,
1999). The NMF consists of reduced rank non-
negative factors W m k∈ ×� andH k n∈ ×� with
k min m n� { , } that approximate a matrix

IGI GLOBAL PROOF

16 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

A m n∈ ×� by A WH≈ ,where the approxima-
tion WH has rank at most k . The nonlinear
optimization problem underlying NMF can
generally be stated as

2
, ,

1min (,) min || || .
2W H W H Ff W H A WH= −

(1.1)

The Frobenius norm || . ||F is commonly
used to measure the error between the original
data A and the approximation WH , but other
measures such as the Kullback-Leibler diver-
gence are also possible (Lee & Seung, 2001).
The error between A and WH is usually stored
in a distance matrix D A WH= − (cf. Figure
1). Unlike the SVD, the NMF is not unique,
and convergence is not guaranteed for all NMF
algorithms. If they converge, then usually to
local minima only (potentially different ones
for different algorithms). Nevertheless, the data
compression achieved with only local minima
has been shown to be of desirable quality for
many data mining applications (Langville,
Meyer, & Albright, 2006). Moreover, for some
specific problem settings a smaller residual
D A WH= − (a smaller error) may not neces-
sarily improve of the solution of the actual
application (e.g., classification task) compared
to a rather coarse approximation. However, as
analyzed in Janecek and Gansterer (2010) a
closer NMF approximation leads to qualita-
tively better classification results and turns out
to achieve significantly more stable results.

NMF Initialization

Algorithms for computing NMF are iterative
and require initialization of the factors W and
H . NMF unavoidably converges to local
minima, probably different ones for different
initialization (cf. Boutsidis & Gallopoulos,
2008). Hence, random initialization makes the
experiments unrepeatable since the solution to
Equ.1.1 is not unique in this case. A proper

non-random initialization can lead to faster
error reduction and better overall error at con-
vergence. Moreover, it makes the experiments
repeatable. Although the benefits of good NMF
initialization techniques are well known in the
literature, most studies use random initialization
(cf. Boutsidis & Gallopoulos, 2008). Since some
initialization procedures can be rather costly in
terms of runtime the trade-off between compu-
tational cost in the initialization step and the
computational cost of the actual NMF algorithm
need to be balanced carefully. In some situa-
tions, an expensive preprocessing step may
overwhelm the cost savings in the subsequent
NMF update steps.

General Structure of NMF

In the basic form of NMF (Algorithm 1), W
and H are initialized randomly and the whole
algorithm is repeated several times (maxrepeti-
tion). In each repetition, NMF update steps are
processed until a maximum number of iterations
is reached (maxiter). These update steps are
algorithm specific and differ from one NMF
variant to the other. Termination criteria: If the
approximation error drops below a pre-defined
threshold, or if the shift between two iterations
is very small, the algorithm might stop before
all iterations are processed.

Multiplicative Update (MU) Algorithm

To give an example of the update steps for a
specific NMF algorithm we provide the update
steps for the MU algorithm in Algorithm 2. MU
is one of the two original NMF algorithms
presented in Lee and Seung (1999) and still one
of the fastest NMF algorithms per iteration.
The update steps are based on the mean squared
error objective function and consist of multiply-
ing the current factors by a measure of the
quality of the current approximation. The divi-
sions in Algorithm 2 are to be performed ele-
ment-wise. ε is used to avoid division by zero
(ε ≈ −10 9).

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 17

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

3. SWARM INTELLIGENCE
OPTIMIZATION

Optimization techniques inspired by swarm
intelligence (SI) have become increasingly
popular and benefit from their robustness and
flexibility (Chiong, 2009). Swarm intelligence
is characterized by a decentralized design
paradigm that mimics the behavior of swarms
of social insects, flocks of birds, or schools
of fish. Optimization techniques inspired by
swarm intelligence have shown to be able to
successfully deal with increasingly complex
problems (Blackwell, 2007). In this article

we use five different optimization algorithms.
Particle Swarm Optimization (PSO) (Kennedy
& Eberhart, 1995) is a classical swarm intel-
ligence algorithm, while Fish School Search
(FSS) (Bastos Filho et al., 2009) and Fireworks
Algorithm (FWA) (Tan & Zhu, 2010) are two
recently developed swarm intelligence meth-
ods. These three algorithms are compared to
a Genetic Algorithm (GA) (Haupt & Haupt,
2005), a classical evolutionary algorithm, and
Differential Evolution (DE) (Price, Storn, &
Lampinen, 2005), which shares some features
with swarm intelligence but can also be con-
sidered as an evolutionary algorithm. Since

Figure 1. Scheme of very coarse NMF approximation with very low rank k. Although k is sig-
nificantly smaller than m and n, the typical structure of the original data matrix can be retained
(note the three different groups of data objects in the left, middle, and right part of A)

Algorithm 1. General structure of NMF algorithms

IGI GLOBAL PROOF

18 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

PSO, GA and DE are well known optimization
techniques we will not summarize them here;
instead the interested reader is referred to the
references given.

Fish School Search is a recently developed
swarm intelligence algorithm (Algorithm 3) that
mimics the movements of schools of fish. The
main operators are feeding (fish can gain/lose
weight, depending on the region they swim in)

and swimming (there are three different swim-
ming movements).

The Fireworks Algorithm (Algorithm 4)
is a novel swarm intelligence algorithm that is
inspired by observing fireworks explosion. Two
different types of explosion (search) processes
are used in order to ensure diversity of resulting
sparks, which are similar to particles in PSO
or fish in FSS.

Algorithm 2. Update steps of the multiplicative update algorithm

Algorithm 3. Pseudo code of the Fish School Search algorithm

Algorithm 4. Pseudo code of the Fireworks Algorithm

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 19

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

4. IMPROVING NMF WITH
SWARM INTELLIGENCE
OPTIMIZATION

Before describing our two optimization strate-
gies for NMF based on swarm intelligence, we
discuss some properties of the Frobenius norm
(cf. Berry, Drmac, & Jessup, 1999). We use the
Frobenius norm (1.1) as NMF objective func-
tion (i.e., to measure the error between A and
WH) because it offers some properties that
are beneficial for combining NMF and optimi-
zation algorithms. The following statements
about the Frobenius norm are valid for any real
matrix. However, in the following we assume
that D refers to a distance matrix storing the
distance (error of the approximation) between
the original data and the approximation,
D A WH= − . The Frobenius norm of a matrix
D m n∈ ×� is defined as

|| || | |
(,) /

D F i
i

min m n

j

n

i

m

ij=

=

= ==
∑ ∑∑σ
1

1 2

11

2 d

1 2/

,

(1.2)

where σi are the singular values of D , and
dij is the element in the ith row and j th column
of D . The Frobenius norm can also be com-
puted row wise or column wise. The row wise
calculation is

|| || | |
/

D F
RW

i

m

i
r=

=
∑
1

2
1 2

 d , (1.3)

where | |di
r is the norm of the ith row vector

of D , i.e., | |di
r = (| |) /

j

n

j
ir

=
∑
1

2 1 2 , and rj
i is the

j th element in row i . The column wise calcu-
lation is

|| || | |
/

D F
CW

j

n

j
c=

=

∑
1

2

1 2

 d , (1.4)

with | |d j
c being the norm of the j th column

vector of D , i.e., | |d j
c = (| |) /

i

m

i
jc

=
∑
1

2 1 2 , and ci
j

being the ith element in column j . Obviously,
a reduction of the Frobenius norm of any row
or any column of D leads to a reduction of the
total Frobenius norm || ||D F .

In the following we exploit these properties
of the Frobenius norm for the proposed NMF
optimization strategies. While strategy 1 aims
at finding heuristically optimal starting points
for the NMF factors, strategy 2 aims at itera-
tively improving the quality of NMF during the
first iterations. All meta-heuristics mentioned
in Section 3 can be used within both strategies.
Before discussing the optimization strategies
we illustrate the basic optimization procedure
for a specific row (row l) of W in Figure 2.
This procedure is similar for both optimization
strategies.

Parameters: Global parameters used for all
optimization algorithms are upper/lower
bound of the search space and the initializa-
tion, the number of particles (chromo-
somes, fish, ...), and maximum number of
fitness evaluations. Parameter settings are
discussed in Sections 5. For all meta-
heuristics, the problem dimension is equal
to the rank k of the NMF, i.e., if, for ex-
ample, k = 10, a row/column vector with
10 continuous entries is returned by the
optimization algorithms.

4.1. Optimization Strategy
1 – Initialization

The goal of this optimization strategy is to find
heuristically optimal starting points for the rows
of W and the columns of H , respectively, i.e.,
prior to the factorization process. Algorithm 5
shows the pseudo code for the initialization
procedure. In the beginning, H0 needs to be
initialized randomly using a non-negative
lower bound (preferably 0) for the initialization.
In the first loop, W is initialized row wise, i.e.,
row wi

r is optimized in order to minimize the

IGI GLOBAL PROOF

20 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Frobenius norm of the ith row di
r of D , which

is defined as d a wi
r

i
r

i
rH= − 0 . Since the

optimization of any row of W is independent
to the optimization of any other row of W , all
wi
r can be optimized concurrently. In the second

loop, the columns of H are initialized using
on the previously computed and already opti-
mized rows of W , which need to be gathered
beforehand (in line 7 of the algorithm). H is
initialized column wise, i.e., column h j

c is
optimized in order to minimize the Frobenius
norm of the j th column d j

c of D , which is
defined as d a hj

c
j
c

j
cW= − . The optimization

of the columns of H can be performed concur-
rently as well.

4.2. Optimization Strategy 2 –
Iterative Optimization

The second optimization strategy aims at it-
eratively optimizing the NMF factors W and
H during the first iterations of the NMF. Com-
pared to the first strategy not all rows of W
and all columns of H are optimized – instead
the optimization is only performed on selected
rows/columns. In order to improve the ap-
proximation as fast as possible we identify rows
of D with highest norm (the approximation of
this row is worse than for other rows of D)
and optimize the corresponding rows of W .

The same procedure is used to identify the
columns of H that should be optimized. Our
experiments showed that not all NMF algo-
rithms are suited for this iterative optimization
procedure. For many NMF algorithms there
was no improvement with respect to the con-
vergence or a reduction of the overall error
after a fixed number of iterations. However, for
the multiplicative update (MU) algorithm –
which is one of the most widely used NMF
algorithms – this strategy is able to improve
the quality of the factorization. Hence, Algo-
rithm 6 shows the pseudo code for the iterative
optimization of the NMF factors during the first
iterations using the update steps of the MU
algorithm described in Section 2.1. As shown
in Section 6, this update strategy is able to
significantly reduce the approximation error
per iteration for the MU algorithm. Due to the
relatively high computational cost of the meta-
heuristics the optimization procedure is only
applied in the first m iterations and only on c
selected rows/columns of the NMF factors.
Similar to strategy one the optimization of all
rows of W are independent from each other
(identical for columns of H), which allows for
a parallel implementation of the proposed
method. In the following we describe the vari-
ables and functions (for updating rows of W
) of Algorithm 6. Updating columns of H is
similar to updating the rows of W .

Figure 2. Illustration of the optimization process for row l of the NMF factor W. The lthrow of A
(al

r) and all columns of H0 are the input for the optimization algorithms. The output is a row-
vector wl

r (the lthrow of W) which minimizes the norm of dl
r, the lthrow of the distance matrix D.

The norm of dl
r is the fitness function for the optimization algorithms (minimization problem)

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 21

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• m : the number of iterations in which the
optimization using meta-heuristics is
applied

• c : the number of rows and/or columns that
are optimized in the current iteration.

• ∆c : the value of c is decreased by ∆c
in each iteration. ∆c round c minitial= (/)

• [, _] ((),)Val IX W sort norm descendi
r= ′ ′d

: returns the values Val and the correspond-
ing indices (IX W_) of the norm of all
row vectors di

r of D in descending
order.

• IX W IX W c_ _ (:)= 1 : returns only the
first c elements of the vector IX W_ .

• minimize || ||a wi
r

i
r

FH− : see Figure 2
and optimization strategy 1

4.3. Using NMF for Classification
Problems

As already mentioned before, we also investi-
gate the performance of NMF when applied for

classification tasks. In this article, we use two
different classification methods for evaluating
the classification accuracy of NMF based on
the optimization strategies discussed in Sections
4.1 and 4.2. Both classification methods have
shown to work well for different application
areas (Janecek, 2010).

Static Classification

In the first approach we analyze the classifica-
tion accuracy achieved with the basis vectors
(i.e., features in W). In this setting the NMF
needs to be computed on the complete dataset
(training and test data) which makes this tech-
nique only applicable on test data that is already
available before the approximation/classifica-
tion. However, the advantage of this approach
is that any freely chosen classification method
can be applied on the basis features.

If the original data matrix A m n∈ ×� is an
instance × feature matrix, then the NMF factor
W is a m k× matrix, where every instance is
described by k basis features, i.e., every column

Algorithm 5. Pseudo code for the initialization procedure for NMF factors W and H. The two
for-loops in lines 4 and 10 can be executed concurrently. SIO = Swarm Intelligence Optimization

IGI GLOBAL PROOF

22 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

of W corresponds to a basis feature. Note that
this setup is different to the one discussed at
the beginning of Section 2! By applying a clas-
sification algorithm on the rows of W instead
on the rows of A we can significantly reduce
the dimension of the classification problem and
thus decrease the computational cost for both,
building the classification model and testing
new data.

Dynamic Classification

The second approach can be applied dynami-
cally to new data. Here the factorization of the
data (NMF) and the classification process are
separated from each other (i.e., the NMF is per-
formed on labeled training data – the unlabeled
test data does not have to be available at the
time of performing the NMF). This approach is
called NMF-LSI and is based on an adaptation
of latent semantic indexing which is a variant
of the well-known vector space model.

A vector space model (VSM) (Raghavan
& Wong, 1999) is a widely used algebraic
model for representing objects as vectors in a
potentially very high dimensional metric vector
space. The distance of a query vector q to all
objects in a given feature×instance matrix A
are usually measured in terms of the cosines of
the angles between q and the columns of A

such that cos
e A q
Ae qi

i

i

ϕ =
� �

|| || || ||2 2

.

Latent semantic indexing (LSI) (Berry,
Drmac, & Jessup, 1999) is a variant of the
basic VSM that replaces the original matrix A
with a low-rank approximation Ak of A . In
the standard version of LSI the SVD (Section
2) is used to constructAk , and cos iϕ can be

approximated as cos
e V U q

U V e qi
i k k k

k k k i

ϕ ≈
� �

�

Σ
Σ|| || || ||2 2

. LSI has computational advantages resulting
in lower storage and computational cost, and
often gives a cleaner and more efficient repre-
sentation of the (latent) relationship between
data elements.

NMF-LSI: The approximation within LSI
can be replaced with other approximations.
Instead of using the truncated SVD (

A U Vk k k k:= Σ �), we approximate A with
A W Hk k k:= (the NMF). When using NMF,
the value of k must be fixed prior to the ap-
proximation. The cosine of the angle between
q and the ith column of A can then be ap-

proximated as cos
e H W q
W H e qi

i k k

k k i

ϕ ≈
� � �

|| || || ||2 2

. In

order to save computational cost, the left term
in the numerator (e Hi k

� �) and the left part of
the denominator (|| ||W H ek k i 2) can be com-
puted a priori. In all three methods (VSM and
both LSI variants) a query instance q is assigned
to the same class as the majority of its k-closest
(in terms of cosine similarity) instances in A
.

5. SETUP

Software

All software is written in Matlab. We used
only publicly available NMF implementations:
Multiplicative Update (MU, Matlab’s Statis-
tics Toolbox since v6.2, nnmf()). ALS using
Projected Gradient (ALSPG) (Lin, 2007), and
BayesNMF and FastNMF (Schmidt & Laurberg,
2008). Matlab code for NNDSVD (Section 1.1)
is also publicly available (cf. Boutsidis & Gal-
lopoulos, 2008). Codes for PSO and DE were
adapted from Pedersen (2010), and code for GA
from the appendix of Haupt and Haupt (2005).
For FWA we used the same implementation as
in the introductory paper Tan and Zhu (2010),
and FSS was self-implemented following the
algorithm provided in Bastos Filho et al. (2009).

Hardware

All experiments were performed on a SUN
FIRE X4600 M2 with eight AMD Opteron
quad-core processors (32 cores overall) with
3.2 GHz, 2MB L3 cache, and 32GB of main
memory (DDR-II 666).

Parallel Implementation

We implemented parallel variants of the opti-
mization algorithms exploiting Matlab’s paral-

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 23

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

lel computing potential. Matlab’s Distributed
Computing Server (which requires a separate
license) allows for parallelizing the optimiza-
tion process over a large number (currently
up to 64) of workers (threads). These workers
can be nodes in multi-core computers, GPUs,
or a node in a cluster of simple desktop PCs.
Matlab’s Parallel Computing Toolbox (which
is included in the basic version of Matlab) al-

lows running up to eight workers concurrently,
but is limited to local workers, i.e., nodes on
a multi-core machine or local GPUs, but no
cluster support.

Parameter Setup

The dimension of the optimization problem is
always identical to the rank k of the NMF (cf.

Algorithm 6. Pseudo code for the iterative optimization for the Multiplicative Update algorithm.
SIO = Swarm Intelligence Optimization. The methods used in this algorithm are explained.

IGI GLOBAL PROOF

24 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Section 4). The upper/lower bound of the search
space was set to the interval [,(* ())]0 4 max A
and upper/lower bound of the initialization to
[, ()]0max A . In order to achieve fair results
which are not biased due to excessive param-
eter tuning we used the same parameter settings
for all data sets. These parameter settings were
found by running a self-written benchmark
program that tested several parameter combina-
tions on randomly generated data. For some
optimization strategies (PSO, FSS and FWA)
the recommended parameter settings from the
literature worked fine. However, for GA and
DE the parameter settings that were used in
most studies in the literature did not perform
very well. For GA we found that a very aggres-
sive (high) mutation rate highly improved the
results. For DE we observed a similar behavior
and found that the maximum crossover prob-
ability (1) achieved the best results. For all
experiments in this paper, the following param-
eter settings were used:

• GA: mutation rate of 0.5; selection rate
of 0.65

• PSO: (Gbest topology) following Bratton
and Kennedy (2007)ω = 0.8, and c1 = c2
= 2.05

• DE: crossover probability (pc) set to upper
limit 1

• FSS: stepind initial_ = 1, stepind final_ =0.001,
Wscale = 10

• FWA: number of sons (sonnum) set to 10

Data Sets

We used three different data sets to evaluate
our methods. DS-RAND is a randomly created,
fully dense 100 100× matrix which is used in
order to provide unbiased results. To evaluate
the proposed methods in a classification context
we further used two data sets from the area of
email classification (spam/phishing detection).
Data set DS-SPAM1 consists of 3000 e-mail
messages described by 133 features, divided
into three groups: spam, phishing and legitimate
email. An exact description of this data set can

be found in Janecek and Gansterer (2010). Data
set DS-SPAM2 is the spambase data set taken
from Kjellerstrand (2011) which consists of
1813 spam and 2788 non-spam messages. DS-
SPAM1 represents a ternary classification
problem; DS-SPAM2 represents a typical bi-
nary classification problem.

6. EXPERIMENTAL
EVALUATION

The evaluation is split up into two parts. First
we evaluate the two optimization strategies
proposed in Section 4.1 and Section 4.2, then
we evaluate the quality of NMF in a classifica-
tion context.

6.1. Evaluation of
Optimization Strategy 1

Initialization

Before evaluating the improvement of the NMF
approximation quality as such, we first measure
the initial error after initializing W and H
(before running the NMF algorithm). Figure 3
and Figure 4 show the average approximation
error (i.e., Frobenius norm / fitness) per row
(left) and per column (right) for data set DS-
RAND.

The figures on the left side show the aver-
age (mean) approximation error per row after
initializing the rows of W (first loop in Algo-
rithm 5). The figures on the right side show the
average (mean) approximation error per column
after initializing the columns of H (second
loop in Algorithm 5). The legends are ordered
according to the average approximation error
achieved after the maximum number of function
evaluations for each figure (top = worst, bottom
= best). When the NMF rank k is small (Figure
3, k=5) all optimization algorithms except FWA
achieve similar results. Except FWA, all opti-
mization algorithms quickly converge to a good
result. With increasing complexity (i.e., increas-
ing rank k) FWA clearly improves its results,
as shown in Figure 4. The gap between the
optimization algorithms is much bigger for

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 25

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

larger rank k. Note that GA needs more than
2000 evaluations to achieve a low approxima-
tion error for initializing the rows of W . When
initializing the columns of H , PSO and GA
suffer from their high approximation error dur-
ing the first iterations, which is caused by the
relatively sparse factor matrix W for PSO and
GA. Although PSO is able to reduce the ap-
proximation error significantly during the first
500 iterations, FSS and GA achieve slightly
better final results. Generally, FSS achieves the
best approximation accuracy after the initializa-
tion procedure for large k. However, as shown
later the initial approximation error is not nec-
essarily an indicator for the approximation
quality of NMF or the resulting classification
accuracy.

Runtime Performance

When parallelizing a sequential algorithm over
p processors the speed-up indicates how much
the parallel algorithm can perform specific tasks
faster than the sequential algorithm. Speed-up
is defined as S ET ETp sequential parallel= / , where
ET is the execution time. A linear speed-up
is achieved when Sp is equal to p . Efficiency
is another metric that estimates how well-uti-
lized the processors are in solving the problem,
compared to the cost of communication and
synchronization. Efficiency is defined as
E S pp p= / . For algorithms with linear speed-
up the efficiency is 1, for algorithms with
lower speed-up ratio it is between 0 and 1.

Figure 5 shows the runtime behavior for
optimization strategy 1 with increasing number
of Matlab workers. Runtimes are shown for
the FSS optimization algorithm – however, all
optimization algorithms have rather similar
runtimes. Due to license limitations we only
had Matlab’s Parallel Computing Toolbox
available which is limited to 8 workers (cf.
Section 5). We measured runtimes and speed-
up for up to 8 workers (average efficiency
of about 0.95) and estimated the behavior of
speed-up and runtime for a larger number of
workers (based on this efficiency). Upgrading
to Matlab’s Distributed Computing Server is
possible without any code-changes and thus
only a license issue. When using eight work-
ers, the NNDSVD initialization (the best NMF
initialization strategy from the literature, Section
1.1) is a bit faster, but estimation shows that the
proposed initialization strategy is faster when 12
or more workers are used. NNDSVD is already
optimized and cannot be parallelized further in
its current implementation.

Approximation Quality

For evaluating the approximation results
achieved by NMF using the factors W and H
initialized by the optimization algorithms, we
compare our results to random initialization as
well as to NNDSVD. Figure 6 shows the ap-
proximation error on the y-axis (log scale) after
a given number of NMF iterations for four NMF
algorithms using different initialization methods
(for DS-RAND). The initialization methods in

Figure 3. Left hand-side: average approximation error per row (after initializing rows of W).
Right hand-side: average approximation error per column (after initializing of H). NMF rank k
= 5. Legends are ordered according to approximation error (top = worst, bottom = best)

IGI GLOBAL PROOF

26 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the legend are ordered (top = worst, bottom =
best). Since the MU algorithm (A) has low cost
per iteration but converges slowly, the first 100
iterations are shown (for all other algorithms
the first 25 iterations are shown). For MU, all
initialization variants achieve a smaller ap-
proximation error than random initialization.
NNDSVD shows slightly better results than
PSO and FWA, but GA, DE and especially FSS
are able to achieve a smaller error per iteration
than NNDSVD. For ALSPG (B), the new ini-
tialization strategy achieves better results than
random initialization and also achieves a better

approximation error than NNDSVD. This
improvement is independent of the actual op-
timization algorithm. The same behavior can
be seen for FastNMF (C) and BayesNMF (D).
It has to be mentioned that FastNMF and
BayesNMF were developed after the NNDSVD
initialization. Surprisingly, when using Fast-
NMF, NNDSVD achieves a lower approxima-
tion than random initialization. When compar-
ing the different meta-heuristics, FSS achieves
the best results amongst all optimization algo-
rithms and achieves the closest approximation
after 100 (MU) and 25 (ALSPG, FastNMF,

Figure 4 . Similar information as for Figure 3, but for NMF rank k = 30

Figure 5. Runtime and speed-up measurement/estimation for DS-RAND using 1500 function
evaluations per row/column for k= 5. As a reference, NNDSVD needs about 0.16 seconds for
k=5. This indicates that if the number of workers is larger than 12, the proposed optimization
strategy is faster than NNDSVD

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 27

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

BayesNMF) iterations, respectively. DE and
GA follow with a small gap since they are not
as stable as FSS (i.e., they achieve good results
for some, but not for all NMF algorithms.

6.2. Evaluation of Optimization
Strategy 2

Figure 7 shows the convergence curves for the
NMF approximation using optimization strat-
egy 2 for different values of rank k (data set
DS-RAND). Due to the relatively high com-
putational cost of the meta-heuristics we applied
our optimization procedure here only on the
rows of W , while the columns in H remained
unchanged. Experiments showed that with this
setting the loss in accuracy compared to opti-
mizing both, W andH , is relatively small while
the runtime can be increased significantly. m
was set to 2 which indicates that the optimiza-
tion is only applied in the first two iterations,

and c was set to 20. As can be seen, the ap-
proximation error per iteration can be reduced
when using optimization strategy 2. For small
rank k (left side of Figure 7) the improvement
is significant but decreases with increasing
values of k (see right side of Figure 7). For
larger k (larger than 10) the improvement over
the basic MU is only marginal.

Runtime Performance

Figure 8 shows the reduction in runtime for
different rank k when the same accuracy as for
basic MU should be achieved. Runtimes are
shown for a parallel implementation using 32
Matlab workers. Basic MU sets the baseline (1
= 100%), the runtimes of the optimization
strategy 2 (using different optimization algo-
rithms) are given as t topt XX Basic MU− / . For ex-
ample, for small rank k the runtime can often
be reduced by more than 50%. With increasing

Figure 6. Approximation error archived by different NMF algorithms using different initializa-
tion variants (k=30, after 1500 fitness evaluations)

IGI GLOBAL PROOF

28 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

rank k the runtime savings get smaller and are
only marginal for k=10. For rank k larger than
12 the basic MU algorithm is faster than opti-
mization strategy 2.

6.3. Evaluation of the
Classification Accuracy

Since optimization strategy 1 (initialization,
Sections 4.1 and 6.1) achieves a faster, closer,
and more stable approximation as optimization
strategy 2 (iterative update, Sections 4.2 and
6.2) we evaluate the classification accuracy
for this strategy. In the following, we mea-
sure the quality of optimization strategy 1 as
pre-processing step for the two classification
approaches mentioned in Section 4.3. Within
the static classification approach any machine

learning algorithm can be used for classifica-
tion, but the approximation used for reducing
the dimensionality of the data set (SVD, PCA,
NMF) needs to be applied on the complete
data set. Contrary, the dynamic classification
approach can be applied on the training data,
the test data does not need to be available at
the time of computing the approximation.
However, this approach cannot be applied to
all classification methods.

Static Classification

We used three classification algorithms from
the freely available WEKA toolkit (Witten and
Frank 2005) to compare the classification ac-
curacies achieved with the NMF factor W
based on different NMF initializations: A sup-

Figure 7. Accuracy per Iteration when updating only the row of W, m=2, c=20. Left: k=2, right: k=5

Figure 8. Proportional runtimes for achieving the same accuracy as basic MU after 30 iterations
for different values of k when updating only the rows of W. (m=2, c=20)

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 29

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

port vector machine (SVM) based on the se-
quential minimal optimization (SOM) algorithm
using a polynomial kernel with an exponent of
1; a k-nearest neighbor (kNN) classifier; and a
J4.8 decision tree based on the C4.5 decision
tree algorithm. Results were achieved using a
10-fold cross-validation, i.e., by randomly

partitioning the data sets into 10 subsamples
and then iteratively using one 9 subsamples as
training data and 1 for testing.

Table 1 shows the overall classification
results achieved with data set DS-SPAM1 using
three different values of rank k and the three
different classification methods mentioned

Table 1. Classification results (static classification) for DS-SPAM1

J4.8 kNN(1) SVM (SMO)

all features: 0,973 all features: 0,977 all features: 0,976

NMF Alg Init k = 30 k = 15 k = 5 k = 30 k = 15 k = 5 k = 30 k = 15 k = 5

ALSPG DE 0,968 0,972 0,965 0,974 0,972 0,968 0,973 0,956 0,940

ALSPG FSS 0,961 0,972 0,967 0,971 0,972 0,969 0,973 0,954 0,939

ALSPG FWA 0,973 0,969 0,970 0,972 0,973 0,968 0,964 0,954 0,938

ALSPG GA 0,970 0,968 0,969 0,973 0,970 0,968 0,973 0,957 0,947

ALSPG PSO 0,971 0,972 0,969 0,977 0,971 0,968 0,972 0,954 0,937

ALSPG NNDSVD 0,963 0,976 0,964 0,969 0,972 0,968 0,966 0,952 0,938

ALSPG RAND 0,943 0,938 0,935 0,952 0,940 0,938 0,948 0,942 0,913

BAYES DE 0,971 0,970 0,970 0,974 0,973 0,968 0,971 0,954 0,946

BAYES FSS 0,966 0,973 0,971 0,976 0,971 0,969 0,975 0,953 0,947

BAYES FWA 0,970 0,970 0,968 0,972 0,974 0,968 0,957 0,954 0,941

BAYES GA 0,966 0,971 0,968 0,974 0,973 0,969 0,972 0,955 0,947

BAYES PSO 0,968 0,967 0,969 0,970 0,971 0,970 0,966 0,957 0,937

BAYES NNDSVD 0,968 0,972 0,968 0,970 0,973 0,969 0,966 0,952 0,947

BAYES RAND 0,952 0,941 0,953 0,961 0,951 0,947 0,958 0,937 0,926

FAST DE 0,966 0,969 0,969 0,977 0,973 0,968 0,970 0,955 0,946

FAST FSS 0,967 0,971 0,970 0,976 0,971 0,969 0,975 0,953 0,947

FAST FWA 0,968 0,970 0,969 0,971 0,974 0,968 0,957 0,954 0,941

FAST GA 0,966 0,965 0,968 0,973 0,971 0,969 0,973 0,955 0,947

FAST PSO 0,968 0,970 0,970 0,974 0,971 0,970 0,973 0,956 0,937

FAST NNDSVD 0,966 0,973 0,970 0,970 0,973 0,968 0,966 0,952 0,939

FAST RAND 0,954 0,949 0,937 0,958 0,951 0,941 0,957 0,935 0,917

MU DE 0,955 0,952 0,965 0,966 0,959 0,968 0,962 0,953 0,940

MU FSS 0,965 0,960 0,967 0,967 0,964 0,969 0,966 0,952 0,939

MU FWA 0,949 0,956 0,970 0,964 0,966 0,968 0,959 0,955 0,938

MU GA 0,954 0,961 0,969 0,966 0,966 0,968 0,961 0,944 0,947

MU PSO 0,958 0,939 0,969 0,949 0,946 0,968 0,953 0,940 0,937

MU NNDSVD 0,964 0,967 0,964 0,972 0,973 0,968 0,963 0,954 0,938

MU RAND 0,941 0,937 0,947 0,948 0,941 0,951 0,951 0,930 0,927

IGI GLOBAL PROOF

30 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

above. The overall classification accuracy is
computed as the number of correct classified
email messages divided by the total number
of messages. The most-left column indicates
the NMF algorithm and the second column the
initialization strategy used for computing the
NMF (RAND = random initialization). Note
that the number of features is reduced to 30,
15 and 5, respectively, compared to 133. This
reduction in the number of features signifi-
cantly speeds up both, the process of building
the classification model and the classification
process itself. The best result for each NMF
algorithm and each rank k is highlighted in
bold letters. The proposed initialization strate-
gies achieve better classification results as the
state-of-the-art initialization method NNDSVD
and significantly better results as random NMF
initialization. Among the applied optimization
algorithms there is not much difference, though
FSS achieves a larger number of best results
then the other algorithms. Results for J4.8 and
kNN are very stable even for k=5 and are almost
identical to the classification result achieved
with all features. For SVM, the classification
result tends to decrease with decreasing rank
k. This behavior has been observed in another
study (Janecek, Gansterer, Demel, & Ecker,
2008) where SVM has been applied on data sets
from other dimensionality reduction methods
(PCA). However, compared to NNDSVD and
random initialization the proposed initialization
methods achieve better results for all ranks of
k. Comparing the different NMF algorithms it
can be seen the MU achieves lower classifica-
tion accuracy compared to ALSPG, FastNMF
and BayesNMF.

Table 2 shows the static classification re-
sults achieved with data set DS-SPAM2. Results
are shown for the FastNMF, which achieved
the most stable results of all NMF algorithms
for this data set. Again, the proposed initializa-
tion strategy again achieves better results as
NNDSVD and random initialization. Compared
to DS-SPAM1, the results for this data set tend
to decrease with decreasing rank k. This indi-
cates that it is important to find a good trade-off

between classification accuracy and computa-
tional cost.

Dynamic Classification

Table 3 shows the classification results achieved
with the dynamic classification approach
described in Section 4.3 for DS-SPAM1. In
general, the classification accuracies achieved
for data set DS-SPAM2 using the dynamic
classification approach are rather similar to
the results for DS-SPAM1 shown in Table 3.
The baseline to which the NMF-LSI variants
are compared are given by a standard LSI
classification using SVD as approximation
algorithm (Section 4.3). A basic vector space
model achieves a classification accuracy of
0.911, while LSI achieves 0.911, 0.914 and
0.887, respectively, for rank k set to 30, 15 and
5. Similar to Table 2 (DS-SPAM2) the results
are sensible with respect to the value of rank k.
For very small values of k (5) the classification
results generally tend to decrease. Overall, the
initialization strategy based on meta-heuristics
achieve much better classification accuracy as
NNDSVD and random initialization, and also
outperform basic LSI in many cases. The best
results are again highlighted in bold letters.
Especially GA and FWA achieve good clas-
sification results.

7. CONCLUSION

In this article we presented two new optimiza-
tion strategies for improving the NMF using
optimization algorithms based on swarm intel-
ligence. While strategy one uses swarm intel-
ligence algorithms to initialize the factors W
and H prior to the factorization process of
NMF, the second strategy aims at iteratively
improving the approximation quality of NMF
during the first iterations of the factorization.
Overall, five different optimization algorithms
were used for improving NMF: Particle Swarm
Optimization (PSO), Genetic Algorithms (GA),
Fish School Search (FSS), Differential Evolu-
tion (DE), and Fireworks Algorithm (FWA).

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 31

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Both optimization strategies allow for ef-
ficiently computing the optimization of single
rows of W and/or single columns of H in
parallel. The achieved results are evaluated in
terms of accuracy per runtime and per iteration,
final accuracy after a given number of NMF
iterations, and in terms of the classification

accuracy achieved with the reduced NMF fac-
tors when being applied for machine learning
applications. Especially the initialization strat-
egy (optimization strategy 1) is able to sig-
nificantly improve the approximation results
of NMF compared to random initialization and
state-of-the-art methods. Among the different

Table 2. Classification results (static classification) for DS-SPAM2 (FastNMF)

J4.8 kNN(1) SVM (SMO)

all features: 0,921 all features: 0,907 all features: 0,904

NMF
Alg Init k = 30 k = 15 k = 5 k = 30 k = 15 k = 5 k = 30 k = 15 k = 5

FAST DE 0,918 0,893 0,863 0,902 0,880 0,821 0,905 0,865 0,798

FAST FSS 0,920 0,920 0,773 0,895 0,889 0,826 0,894 0,880 0,773

FAST FWA 0,916 0,916 0,864 0,887 0,898 0,797 0,893 0,885 0,757

FAST GA 0,918 0,914 0,865 0,889 0,896 0,827 0,896 0,891 0,778

FAST PSO 0,921 0,911 0,878 0,895 0,892 0,850 0,896 0,881 0,827

FAST NNDSVD 0,919 0,911 0,811 0,895 0,894 0,816 0,894 0,882 0,766

FAST RAND 0,907 0,908 0,813 0,885 0,886 0,803 0,887 0,864 0,752

Table 3. Dynamic classification using DS-SPAM1. Basic vector space model (all features): 0,911

Baseline LSI 0,911 0,914 0,887 LSI 0,911 0,914 0,887

NMF Alg Init k = 30 k = 15 k = 05 NMF
Alg Init k = 30 k = 15 k = 05

ALSPG DE 0,911 0,898 0,889 FAST DE 0,912 0,895 0,888

ALSPG FSS 0,943 0,899 0,877 FAST FSS 0,926 0,897 0,879

ALSPG FWA 0,930 0,914 0,883 FAST FWA 0,913 0,912 0,891

ALSPG GA 0,927 0,901 0,896 FAST GA 0,927 0,914 0,875

ALSPG PSO 0,918 0,889 0,885 FAST PSO 0,923 0,914 0,847

ALSPG NNDSVD 0,914 0,911 0,840 FAST NNDSVD 0,911 0,913 0,846

ALSPG RAND 0,901 0,886 0,874 FAST RAND 0,898 0,899 0,838

BAYES DE 0,911 0,906 0,888 MU DE 0,893 0,897 0,834

BAYES FSS 0,926 0,897 0,879 MU FSS 0,892 0,882 0,807

BAYES FWA 0,914 0,911 0,891 MU FWA 0,913 0,882 0,843

BAYES GA 0,930 0,916 0,875 MU GA 0,899 0,899 0,795

BAYES PSO 0,922 0,915 0,848 MU PSO 0,922 0,900 0,812

BAYES NNDSVD 0,904 0,913 0,846 MU NNDSVD 0,906 0,908 0,795

BAYES RAND 0,898 0,896 0,854 MU RAND 0,876 0,889 0,817

IGI GLOBAL PROOF

32 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

optimization algorithms, the recently developed
fish school search algorithm achieves slightly
better results than the other heuristics. The it-
erative strategy (optimization strategy 2) can
improve one of the basic NMF algorithms (the
multiplicative update strategy) for very small
rank k and can thus be used if a rough and very
fast approximation method is needed. Moreover,
the NMF subsets achieved with optimization
strategy 1 have shown to clearly improve the
classification accuracy of NMF compared to
state-of-the-art initialization strategies, and also
achieve better results as feature subsets com-
puted with other low-approximation techniques.

Future Work

Our investigations provide several important
and interesting directions for future work. First
of all, we will set the focus on developing
optimization strategies that update the factor
matrices W and H concurrently instead of
applying an alternating update fashion where
one factor is fixed and the other one is optimized.
Moreover, we will apply the optimization
strategies on NMF problems were sparseness
constraints are enforced, i.e., the optimization
strategies are enforced to compute solutions
with a certain percentage of zero values. We
also plan to use different NMF optimization
functions (not based on the Frobenius norm)
for our optimization methods and several re-
cently developed NMF algorithms (HALS,
multilayer NMF, etc.).

ACKNOWLEDGMENTS

This work was supported by National Natural
Science Foundation of China (NSFC), Grant No.
60875080 and No. 61170057. Andreas wants
to thank the Erasmus Mundus External Coop.
Window, Lot 14 (2009-1650/001-001-ECW).

REFERENCES

Bastos Filho, C. J. A., de Lima Neto, F. B., Lins, A.
J. C. C., Nascimento, A. I. S., & Lima, M. P. (2009).
Fish school search. R. Chiong (Ed.), Nature-inspired
algorithms for optimisation (Vol. 193, pp. 261-277).
Berlin, Germany: Springer-Verlag.

Berry, M. W. (1992). Large scale singular value
computations. The International Journal of Super-
computer Applications, 6, 13–49.

Berry, M. W., Browne, M., Langville, A., Pauca, V.,
& Plemmons, R. (2007). Algorithms and applications
for approximate nonnegative matrix factorization.
Computational Statistics & Data Analysis, 52(1),
155–173. doi:10.1016/j.csda.2006.11.006

Berry, M. W., Drmac, Z., & Jessup, E. R. (1999).
Matrices, vector spaces, and information retrieval.
SIAM Review, 41(2), 335–362. doi:10.1137/
S0036144598347035

Blackwell, T. (2007). Particle swarm optimization in
dynamic environments. Evolutionary Computation
in Dynamic and Uncertain Environments, 1, 29–49.
doi:10.1007/978-3-540-49774-5_2

Boutsidis, C., & Gallopoulos, E. (2008). SVD based
initialization: A head start for nonnegative matrix fac-
torization. Pattern Recognition, 41(4), 1350–1362.
doi:10.1016/j.patcog.2007.09.010

Bratton, D., & Kennedy, J. (2007). Defining a stan-
dard for particle swarm optimization. In Proceed-
ings of the IEEE Swarm Intelligence Symposium
(pp. 120-127).

Chiong, R. (2009). Nature-inspired algorithms for
optimisation. New York, NY: Springer.

Haupt, R. L., & Haupt, S. E. (2005). Practical
genetic algorithms (2nd ed.). New York, NY: John
Wiley & Sons.

Janecek, A. (2010). Efficient feature reduction and
classification methods: Applications in drug discov-
ery and email categorization. Vienna, Austria: De-
partment of Computer Science, University of Vienna.

Janecek, A., & Gansterer, W. N. (2010). Utilizing
nonnegative matrix factorization for e-mail classifica-
tion problems . In Berry, M. W., & Kogan, J. (Eds.),
Survey of text mining III: Application and theory
(pp. 57–80). New York, NY: John Wiley & Sons.

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011 33

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Janecek, A., Gansterer, W. N., Demel, M., & Ecker,
G. (2008). On the relationship between feature selec-
tion and classi□cation accuracy. Journal of Machine
Learning Research, 4, 90–105.

Janecek, A., S. Schulze-Grotthoff, et al. (2011).
libNMF - A library for nonnegative matrix factor-
izatrion. Computing and Informatics, 22.

Janecek, A., & Tan, Y. (2011a). Iterative improvement
of the multiplicative update NMF algorithm using
nature-inspired optimization. In Proceedings of the
7th International Conference on Natural Computa-
tion (pp. 1668-1672).

Janecek, A., & Tan, Y. (2011b). Using population
based algorithms for initializing nonnegative matrix
factorization. In Y. Tan, Y. Shi, Y. Chai, & G. Wang
(Eds.), Proceedings of the Second International
Conference on Advances in Swarm Intelligence
(LNCS 6729, pp. 307-316).

Jolliffe, I. T. (2002). Principal component analysis.
New York, NY: Springer.

Kennedy, J., & Eberhart, R. C. (1995). Particle
swarm optimization. In Proceedings of the IEEE
International Conference on Neural Networks (Vol.
4, pp. 1942-1948).

Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm
intelligence. San Francisco, CA: Morgan Kaufmann.

Kim, H., & Park, H. (2008). Nonnegative matrix
factorization based on alternating nonnegativity
constrained least squares and active set method.
SIAM Journal on Matrix Analysis and Applications,
30, 713–730. doi:10.1137/07069239X

Kjellerstrand, H. (2011). hakanks hemsida. Retrieved
from http://www.hakank.org/weka/

Langville, A. N., Meyer, C. D., & Albright, R.
(2006). Initializations for the nonnegative matrix
factorization. In Proceedings of the 12th ACM
International Conference on Knowledge Discovery
and Data Mining.

Lee, D. D., & Seung, H. S. (1999). Learning parts of
objects by non-negative matrix factorization. Nature,
401(6755), 788–791. doi:10.1038/44565

Lee, D. D., & Seung, H. S. (2001). Algorithms for
non-negative matrix factorization. Advances in Neu-
ral Information Processing Systems, 13, 556–562.

Lin, C.-J. (2007). Projected gradient methods
for nonnegative matrix factorization. Neural
Computation, 19(10), 2756–2779. doi:10.1162/
neco.2007.19.10.2756

Paatero, P., & Tapper, U. (1994). Positive matrix
factorization: A non-negative factor model with
optimal utilization of error estimates of data val-
ues. Environmetrics, 5(2), 111–126. doi:10.1002/
env.3170050203

Pedersen, M. E. H. (2010). SwarmOps. Retrieved
from http://www.hvass-labs.org/projects/swarmops/
cs/files/SwarmOpsCS1_0.pdf

Price, K. V., Storn, R. M., & Lampinen, J. A. (2005).
Differential evolution a practical approach to global
optimization. New York, NY: Springer.

Raghavan, V. V., & Wong, S. K. M. (1999). A criti-
cal analysis of vector space model for information
retrieval. Journal of the American Society for Infor-
mation Science American Society for Information
Science, 37(5), 279–287.

Schmidt, M. N., & Laurberg, H. (2008). Non-negative
matrix factorization with Gaussian process priors.
Computational Intelligence and Neuroscience, (1):
1–10. doi:10.1155/2008/361705

Snásel, V., Platos, J., & Kromer, P. (2008). Developing
genetic algorithms for Boolean matrix factorization.
In Proceedings of the DATESO International Work-
shop on Current Trends on Databases.

Stadlthanner, K., Lutter, D., Theis, F. J., Lang, E.
W., Tome, A. M., Georgieva, P., & Puntonet, C. G.
(2007). Sparse nonnegative matrix factorization
with genetic algorithms for microarray analysis. In
Proceedings of the International Joint Conference
on Neural Networks (pp. 294-299).

Tan, P.-N., Steinbach, M., & Kumar, V. (2005).
Introduction to data mining. Reading, MA: Addison-
Wesley.

Tan, Y., & Zhu, Y. (2010). Fireworks algorithm for
optimization. In Y. Tan, Y. Shi, & K. C. Tan (Eds.),
Proceeding of the International Conference on
Advances in Swarm Intelligence (LNCS 6145, pp.
355-364).

Wild, S. M., Curry, J. H., & Dougherty, A. (2004). Im-
proving non-negative matrix factorizations through
structured initialization. Pattern Recognition, 37(11),
2217–2232. doi:10.1016/j.patcog.2004.02.013

IGI GLOBAL PROOF

34 International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Witten, I. H., & Frank, E. (2005). Data mining:
Practical machine learning tools and techniques.
San Francisco, CA: Morgan Kaufmann.

Xue, Y., Tong, C. S., Chen, Y., & Chen, W. (2008).
Clustering-based initialization for non-negative
matrix factorization. Applied Mathematics and
Computation, 205(2), 525–536. doi:10.1016/j.
amc.2008.05.106

Zhang, Q., & Berry, M. W., Lamb, B. T., & Samuel,
T. (2009). A parallel nonnegative tensor factoriza-
tion algorithm for mining global climate data. In G.
Allen, J. Nabrzyski, E. Seidel, G. Dick van Albada,
J. Dongarra, & P. M. A. Sloot (Eds.), Proceedings of
the 9th International Conference on Computational
Science (LNCS 5545, pp. 405-415).

Andreas Janecek is a post-doctoral researcher at the School of Electronic Engineering and
Computer Science, Peking University, China. He received his PhD degree in Computer Science
in 2010, and his MS degree in Business Informatics in 2005, both from the University of Vienna,
Austria. Besides computational intelligence such as swarm optimization and evolutionary comput-
ing, his research activities include data mining and machine learning algorithms, with a focus
on high performance and distributed computing aspects of these techniques.

Ying Tan received the BS in 1985, the MS in 1988, and the PhD in signal and information pro-
cessing from Southeast University in 1997, respectively. Since then, he became a postdoctoral
fellow then an associate professor at University of Science and Technology of China. He worked
with the Chinese University of Hong Kong in 1999 and in 2004-2005. Now, he is a professor
at the Key Laboratory of Machine Perception (MOE), Peking University, and department of
Machine Intelligence, EECS, Peking University. He is also the director of Computational In-
telligence Laboratory (CIL) of Peking University. He has published more than 200 academic
papers in refereed journals and conferences and several books and chapters in book and holds
4 invention patents. His current research interests include computational intelligence, artificial
immune system, swarm intelligence, data mining, pattern recognition, and their applications.
He was the general chair of International Conference on Swarm Intelligence (ICSI 2010, ICSI
2011) and honored the Second-class Prize of National Natural Science Award of China in 2009.

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 35

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Algorithm, Brain Storm Optimization, Brainstorming Process, Diversity, Optimization

INTRODUCTION

Many real-world applications can be represent-
ed as optimization problems of which algorithms
are required to have the capability to search
for optimum. Originally, these optimization
problems were mathematically represented by
continuous and differentiable functions so that
algorithms such as hill-climbing algorithms can
be designed and/or utilized to solve them. Tradi-
tionally, these hill-climbing like algorithms are
single-point based algorithms such as gradient
decent algorithms which move from the current
point along the direction pointed by the negative
of the gradient of the function at the current
point. These hill-climbing algorithms can find
solutions quickly for unimodal problems, but

they have the problems of being sensitive to
initial search point and being easily trapped
into local optimum for nonlinear multimodal
problems. Furthermore, these mathematical
functions need to be continuous and differen-
tiable, which instead greatly narrows the range
of real-world problems that can be solved by
hill-climbing algorithms. Recently, evolution-
ary algorithms have been designed and utilized
to solve optimization problems. Different from
traditional single-point based algorithms such
as hill-climbing algorithms, each evolutionary
algorithm is a population-based algorithm,
which consists of a set of points (population
of individuals). The population of individuals
is expected to have high tendency to move
towards better and better solution areas itera-
tion over iteration through cooperation and/
or competition among themselves. There are

An Optimization Algorithm
Based on Brainstorming Process

Yuhui Shi, Xi’an Jiaotong-Liverpool University, China

ABSTRACT
In this paper, the human brainstorming process is modeled, based on which two versions of Brain Storm
Optimization (BSO) algorithm are introduced. Simulation results show that both BSO algorithms perform
reasonably well on ten benchmark functions, which validates the effectiveness and usefulness of the proposed
BSO algorithms. Simulation results also show that one of the BSO algorithms, BSO-II, performs better than
the other BSO algorithm, BSO-I, in general. Furthermore, average inter-cluster distance Dc and inter-cluster
diversity De are defined, which can be used to measure and monitor the distribution of cluster centroids and
information entropy of the population over iterations. Simulation results illustrate that further improvement
could be achieved by taking advantage of information revealed by Dc, which points at one direction for future
research on BSO algorithms.

DOI: 10.4018/jsir.2011100103

IGI GLOBAL PROOF

36 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

a lot of evolutionary algorithms out there in
the literature. The most popular evolutionary
algorithms are evolutionary programming (Fo-
gel, 1962), genetic algorithm (Holland, 1975),
evolution strategy (Rechenberg, 1973), and
genetic programming (Koza, 1992), which were
inspired by biological evolution. In evolutionary
algorithms, population of individuals survives
into the next iteration. Which individual has
higher probability to survive is proportional
to its fitness value according to some evalu-
ation function. The survived individuals are
then updated by utilizing evolutionary opera-
tors such as crossover operator and mutation
operator, etc. In evolutionary programming and
evolution strategy, only the mutation operation
is employed, while in genetic algorithms and
genetic programming, both the mutation op-
eration and crossover operation are employed.
The optimization problems to be optimized
by evolutionary algorithms do not need to be
mathematically represented as continuous and
differentiable functions, they can be represented
in any form. Only requirement for representing
optimization problems is that each individual
can be evaluated as a value called fitness value.
Therefore, evolutionary algorithms can be
applied to solve more general optimization
problems, especially those that are very difficult,
if not impossible, for traditional hill-climbing
algorithms to solve.

Recently, another kind of algorithms, called
swarm intelligence algorithms, is attracting
more and more attentions from researchers.
Swarm intelligence algorithms are usually
nature-inspired optimization algorithms instead
of evolution-inspired optimization algorithms
such as evolutionary algorithms. Similar to
evolutionary algorithms, a swarm intelligence
algorithm is also a population-based optimiza-
tion algorithm. Different from the evolutionary
algorithms, each individual in a swarm intel-
ligence algorithm represents a simple object
such as ant, bird, fish, etc. So far, a lot of swarm
intelligence algorithms have been proposed
and studied. Among them are particle swarm
optimization(PSO) (Eberhart & Shi, 2007;
Shi & Eberhart, 1998), ant colony optimiza-

tion algorithm(ACO) (Dorigo, Maniezzo, &
Colorni, 1996), bacterial forging optimization
algorithm(BFO) (Passino, 2010), firefly opti-
mization algorithm (FFO) (Yang, 2008), bee
colony optimization algorithm (BCO) (Tovey,
2004), artificial immune system (AIS) (de
Castro & Von Zuben, 1999), fish school search
optimization algorithm(FSO) (Bastos-Filho,
De Lima Neto, Lins, Nascimento, & Lima,
2008), shuffled frog-leaping algorithm (SFL)
(Eusuff & Lansey, 2006), intelligent water
drops algorithm (IWD) (Shah-Hosseini, 2009),
to just name a few.

In a swarm intelligence algorithm, an
individual represents a simple object such as
birds in PSO, ants in ACO, bacteria in BFO,
etc. These simple objects cooperate and compete
among themselves to have a high tendency to
move toward better and better search areas.
As a consequence, it is the collective behavior
of all individuals that makes a swarm intel-
ligence algorithm to be effective in problem
optimization.

For example, in PSO, each particle (indi-
vidual) is associated with a velocity. The velocity
of each particle is dynamically updated accord-
ing to its own historical best performance and
its companions’ historical best performance. All
the particles in the PSO population fly through
the solution space in the hope that particles will
fly towards better and better search areas with
high probability.

Mathematically, the updating process of
the population of individuals over iterations
can be looked as a mapping process from one
population of individuals to another population
of individuals from one iteration to the next
iteration, which can be represented as Pt+1 =
f(Pt), where Pt is the population of individuals
at the iteration t, f() is the mapping function.
Different evolutionary algorithm or swarm
intelligence algorithm has a different mapping
function. Through the mapping function, we
expect the population of individuals will update
to better and better solutions over iterations.
Therefore mapping functions should possess
the property of convergence. For nonlinear and
complicated problems, mapping functions more

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 37

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

like to move population of individuals toward
local minima, which may not be good enough
solutions to the optimization problems to be
solved. A good mapping function should have
not only the capability to converge, but also the
capability to diverge when it gets trapped into
local minima. As for evolutionary algorithms
and swarm intelligence algorithms, they should
have the capability to be in convergence or di-
vergence state accordingly. A lot of researches
have been done and reported with regards to
this. For example, in particle swarm optimiza-
tion algorithms, diversity has been preserved
to keep the algorithm to have good search ca-
pability. Different diversity measurements have
been defined and monitored (Shi & Eberhart,
2008, 2009). A better designed population-
based algorithm should have a good balance
of convergence and divergence.

In this paper, we will introduce a new
optimization algorithm that is based on the
collective behavior of human being, that is,
the brainstorming process. It is natural to ex-
pect that an optimization algorithm based on
human collective behavior could be a better
optimization algorithm than existing swarm
intelligence algorithms which are based on
collective behavior of simple insects, because
human beings are social animal and are the most
intelligent animals in the world. The designed
optimization algorithm will naturally have the
capability of both convergence and divergence.

The remaining paper is organized as fol-
lows. The human brainstorming process is
reviewed. The model of a brainstorming process
is proposed and discussed. Two versions of
novel optimization algorithms inspired by hu-
man brainstorming process are introduced and
described, followed by experiments and result
discussion on benchmark functions. Finally,
conclusions are given.

BRAINSTORMING PROCESS

Brainstorming process has often been utilized
for innovative problem solving. It can solve a
lot of difficult problems which usually can’t be

solved by a single person. In a brainstorming
process, a group of people with diverse back-
ground are gathered together to brainstorm. A
facilitator will usually be involved to facilitate
the brainstorming process but not directly in-
volved in idea generation himself (or herself).
The facilitator usually should have enough
facilitation experience but have less knowledge
about the problem to be solved so that generated
ideas will have less, if not none, biases from the
facilitator. The brainstorming process is used to
generate many ideas as diverse as possible so
that good solutions to solve the problem can be
obtained from these ideas. The brainstorming
process usually consists of several rounds of
idea generation. In each round of idea genera-
tion, the brainstorming group is asked to come
out a lot of ideas. At the end of each round of
idea generation process, better ideas among
them will be picked up and will serve as clues
to generate ideas in the next round of idea gen-
eration process. In the brainstorming process,
there is another group of persons that serve the
purpose to pick up better ideas from the ideas
generated in each round of idea generation
process. Through the brainstorming process,
hopefully great and un-expectable solution can
occur from collective intelligence of human
being, and the problem can usually be solved
with high probability.

To help generate more diverse ideas, the
Osborn’s original four rules of idea generation in
a brainstorming process (Osborn, 1963; Smith,
2002) should be obeyed. The four rules are listed
in the Table 1. One major role of the facilitator
is to facilitate the brainstorming group to obey
the Osborn’s four rules.

The four rules in Table 1 guide the idea
generation in each round of idea generation
during a brainstorming process. In order to keep
the brainstorming group to be open-minded,
there is no idea as good idea or bad idea, any
idea is welcomed. For any idea generated dur-
ing each round of idea generation process, there
should be no judgment and/or criticism wheth-
er it is good idea or bad idea. Any judgment
should be held back until the end of this round
of idea generation process when better ideas

IGI GLOBAL PROOF

38 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

are picked up by problem owners. This is what
the Rule 1 “Suspend Judgment” means. The
Rule 2 “Anything Goes” means that any thought
comes to your mind should be raised and re-
corded. Don’t let any idea or thought pass by
without sharing with other brainstorming group
members. The Rule 3 “Piggyback” says any
generated idea could and should serve as a clue
to inspire the brainstorming group to come out
more ideas. Ideas are not independently gener-
ated. They are related. The late generated ideas
are inspired and dependent on the previously
generated ideas. The Rule 4 “Go for quantity”
says that we focus on generating as many ideas
as possible. Hopefully quality of ideas will
come out of quantity of idea naturally. Without
generating large quantity of ideas, it is naive to
believe that good quality ideas will come out.

The purpose to generate ideas according
to rules in Table 1 is to keep the brainstorming
group to be open-minded as much as possible
so that they will generate ideas as diverse as
possible. A brainstorming process generally fol-
lows the steps listed in Table 2 (Shi, 2011).After
some time of brainstorming, the brainstorming
group will become tired and narrow-minded,
and therefore it becomes harder to come out

new diverse ideas. The operation of picking
up an object in Step 6 in Table 2 serves for the
purpose to help brainstorming group to diverge
from previously generated ideas therefore to
avoid being trapped by the previously generated
ideas. Picking up several good ideas from ideas
generated so far is to cause the brainstorming
group to pay more attention to the better ideas
which the brainstorming group believes to be.
The ideas picked-up works like point-attraction
for the idea generation process while ideas gen-
eration works like point-expansion. Therefore,
there are attraction and expansion embedded in
the brainstorming process naturally.

MODELING BRAINSTORMING
PROCESS

The procedure of a brainstorming process listed
in Table 2 can be described by the flow chart
shown in Figure 1. There are three rounds of
idea generation involved in a brainstorming pro-
cess in general. In each round of brainstorming
process, there are several steps. For example,
in the first round, there are idea generations,
idea evaluations, and idea picking up. The idea
evaluation step serves the purpose of finding

Table 1. Osborn’s original rules for idea generation in a brainstorming process

1. Suspend Judgment
2. Anything Goes
3. Cross-fertilize (Piggyback)
4. Go for Quantity

Table 2. Steps in a brainstorming process

1. Get together a brainstorming group of people with as diverse background as possible;
2. Generate many ideas according to the rules in Table 1;
3. Have several, say 3 or 5, clients act as the owners of the problem to pick up several, say one from each owner,
ideas as better ideas for solving the problem;
4. Use the ideas picked up in the Step 3 with higher probability than other ideas as clues, and generate more ideas
according to the rules in Table 1;
5. Have the owners to pick up several better ideas generated as did in Step 3;
6. Randomly pick an object and use the functions and appearance of the object as clues, generate more ideas ac-
cording to the rules in Table 1;
7. Have the owners to pick up several better ideas;
8. Hopefully a good enough solution can be obtained by considering the ideas generated.

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 39

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

out better ideas. By idea evaluation, good
ideas could be identified and picked up in the
Picking up Better Ideas step, which simulates
picking up good ideas by problem owners. The
first round simulates Step 2 &3 in Table 2. The
second round is the same as the first round which
simulates Step 4 & 5 in Table 2. The third round
is the same as the first two rounds except that
one additional step Selecting an Object as Clue
is added to simulate randomly picking up an
object as clues in Step 6 in Table 2. Each step
in a brainstorming process therefore can be
modeled (and/or simulated) and put together as
a model for the brainstorming process as shown
in Figure 1, which will be further explained and
modified in the following sub-sections.

Population

A solution to a problem with d variables to be
optimized can be looked as a point in the d
dimensional solution space. An idea can be con-
sidered as a potential solution, i.e., a point in the

solution space. Therefore to find a good solution
is equivalent to find a point or a solution in the
solution space. A group of ideas can therefore
be considered as a population of solutions or
individuals in the solution space. If for every
round of idea generation in the brainstorming
process, a fixed number of n ideas will be gener-
ated before the problem owners pick up good
ideas, then these n ideas can be considered as
a population of individuals (or solutions) with
population size being n in the solution space.
Therefore, the human brainstorming process
can be considered as generating a population
of individuals iteratively three times as shown
in Figure 1. One round of idea generation can
be considered as one iteration of individual
generations in population-based optimization
algorithms such as particle swarm optimiza-
tion algorithm. The difference between them
is the way how new population of individuals
is generated based on the current population
of individuals.

Figure 1. Flow chart of a brainstorming process

IGI GLOBAL PROOF

40 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Initialization

The Generating Ideas step in the very first
round of idea generations can be considered as
the population initialization in any population-
based optimization algorithm. During the
population initialization, to gather a group of
people with as diverse background as possible
can be considered as initializing the population
of individuals randomly with uniform distribu-
tion over the dynamic range of the solution
space. The whole population of individuals can
be totally randomly generated or only portion
of the population is randomly generated and
the rest of the population of individuals will
be generated by adding noise to the already
randomly generated individuals. To preserve
the initialized population to be diversified,
usually a priori domain knowledge should not
be utilized in the initialization process, unless
when computation cost is the first priority, in
which the domain knowledge should be utilized
to initialize the population to find good solution
quickly at the risk of premature convergence.

Clustering

Each round of idea generation generates enough
ideas, but not necessary too many ideas because
otherwise all the generated ideas will more like
to diverge, and therefore will be far away from
expected ideas which are close to expected
solutions. To have diverse ideas is good to seek
around all possible ideas to help find good po-
tential solutions, but there should be a tradeoff
between divergence and focus. We also need to
pull the brainstorming group back to concentrate
on generating ideas around some areas with high
potential to speed up searching for good enough
ideas. The problem owners in the brainstorming
process serve this purpose. They are asked to
pick good ideas from generated ideas. Because
every problem owner has different expertise and
knowledge, therefore the picked ideas will be
different. They represent potential good ideas
that have been generated so far. Next round of
idea generation should better be conducted with
focus on them. Certainly, it does not exclude

idea generation by piggybacking other ideas,
but with small probability. One way to simulate
the idea picking up by problem owners is to
use clustering algorithms. All the individuals
(ideas) in the population are clustered into
several clusters. The number of clusters cor-
responds to the number of problem owners.
The cluster center of each cluster corresponds
to the idea(s) picked up by a problem owner.
The cluster center for each cluster can be the
best performed individual within this cluster. It
can also be the centroid of the cluster.

One possible clustering algorithm is the
k-means clustering algorithm (MacQueen,
1967), which requires to know the number of
clusters k a priori. The number k corresponds
to the number of problem owners, that is, the
number of problem owners is fixed. The self-
organizing feature map (Kohonen & Honkela,
2007) is another kind of clustering algorithm, in
which the number of clusters is unknown before
running the algorithm. The number of clusters
will be determined by the algorithm itself ac-
cording to the distribution of individuals in the
population. Other clustering algorithms (Xu
& Wunsch, 2005) such as partitioning around
medoids (Theodoridis & Koutroumbas, 2006),
fuzzy c-means (FCM) (Nock & Nielsen, 2006),
etc. can also be employed.

Individual Generation

For idea generations by piggyback, it is similar to
randomly select one or several existing individu-
als (or ideas) and generate a new individual by
adding noise to the selected individual(s). The
purpose of doing this is to guarantee that new
individuals (ideas) are generated by piggyback-
ing existing individuals as diverse as possible.
If a new idea (individual) xnew is generated by
piggybacking one existing idea (individual) xold,
it can be written as

x x t random tnew
i

old
i= + ()ξ * () (1)

where xnew
i and xold

i are the ith dimension of xnew
and xold, respectively; random(t) is a random

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 41

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

function; ξ(t) is a coefficient that weights the
contribution of random value to the new indi-
vidual. The formula is similar to the mutation
operation in evolutionary programming algo-
rithm. The commonly utilized random function
in mutation operation is the Gaussian function
(Yao, Liu, & Lin, 1997). Other random func-
tions that can be used are Cauchy function (Yao,

Liu, & Lin, 1997), Le
�

vy flights (Pavlyukevich,
2007), etc. Compared with Gaussian function,
Cauchy function has a longer tail which makes
it preferable if wider areas need to be explored
(Yao, Liu, & Lin, 1997).

If a new idea (individual) xnew is generated
by piggybacking two existing ideas (individu-
als) xold1 and xold2, it can be written as

x x t random tnew
i

old
i= + () ()ξ * (2a)

x w x w xold
i

old
i

old
i= +1 1 2 2* * (2b)

where xold
i is the weighted summation of the ith

dimension of xold1 and xold2; w1 and w2 are two
coefficients to weight the contribution of two
existing individuals. The formula simulates
generating new idea by piggybacking two
existing ideas. Certainly, a new idea can also
be generated by piggybacking more than two
existing ideas.

No matter how many existing ideas (indi-
viduals) will be piggybacked to generate new
ideas (individuals), the cluster centers will have
high probability to be chosen to generate new
ideas (individuals) compared with the other
non-cluster-center ideas (individuals) which
usually can be chosen with small probability.

The coefficient ξ(t) weights the contribu-
tion of randomly generated value to the new
individual. Generally, large ξ(t) value facilitates
exploration while small ξ(t) values facilitates
exploitation. When global search capability
is preferred, for example, at the beginning of
search process, ξ(t) should give large value,
while when local search capability is preferred,
for example, at the end of search process, ξ(t)
should give small value. One possible function
for ξ(t) is

ξ t logsig

T t

k
random t() =

−

2 * ()

(3)

where logsig() is a logarithmic sigmoid transfer
function, T is the maximum number of itera-
tions, and t is the current iteration number, k
is for changing logsig() function’s slope, and
random() is a random value within (0,1).

Disruption

After two rounds of idea generation, the mind-
set of the brainstorming group usually will be
narrowed and therefore it becomes more dif-
ficult, if not impossible, for them to come out
different ideas efficiently. To further explore
whether there are potential good ideas out there
somewhere, in the brainstorming process, an
object will be randomly picked up, and the
brainstorming group will be asked to generate
new ideas which are more or less related to the
functions and appearance of the object. The pur-
pose of this is to help the brainstorming group
to disrupt from their current mindset, which
is usually difficult to achieve. This disruption
operation can be simulated by replacing selected
ideas (individuals) with randomly generated
individuals. Therefore, wider areas could be
explored with high probability by utilizing
disruption operation.

As shown in Figure 1, there are three
rounds of idea generation. The first two rounds
are identical while the third round serves as the
purpose of disruption with the step Selecting
an Object as Clue. To further modulate the
operations, this disruption operation could be
distributed and shared among all three rounds
of idea generation. Figure 2 shows the modi-
fied flow chart of the brainstorming process,
which includes three identical rounds of idea
generation. Each round of idea generation is
shown in Figure 3 in which the step Selecting
an Object as Clue is changed to be the step

IGI GLOBAL PROOF

42 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Disrupting Selected Ideas and it is put at the
end of each round.

Selection

In a population-based optimization algorithm,
generally speaking, if it is not because of specific
requirements, the population size p is fixed and
not changed during the algorithm running time.
During each iteration, number of new individu-
als will be generated, say n (n≥p), therefore
there will exist p+n number of individuals,
among which only p will be copied into the
next iteration due to the fixed population size.
Similar to other population-based algorithms,
how to select p from p+n individuals is critical
to the optimization algorithm inspired by the
brainstorming process. One simple way is that
for each existing individual in the population,

a new individual is generated. This pair of in-
dividuals is compared. The better one will be
kept as the individual into the next iteration.
Another way could be to randomly pick up p
pairs of individuals from the n+p individuals,
and the better one of each pair will be kept into
the next iteration.

To further take advantage of information
embedded in each pair of individuals, crossover
operations could also be applied to each pair
of individuals to generate two new offspring.
The best of the four will then be copied into
the next iteration.

In each round of idea generation shown
in Figure 3, one more step Selecting Ideas is
inserted right below the step Generating Ideas.
Figure 4 shows the new flow chart of each round
of idea generation.

Figure 2. Flow chart of a brainstorming process

Figure 3. Flow chart of one round of idea generation

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 43

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In practice, limited time will be taken for
a brainstorming process, otherwise, the brain-
storming group will be tired to generate new
meaningful ideas efficiently. Usually as a good
practice, a brainstorming process takes ap-
proximately 60 minutes. As shown in the
Figure 1, there are only three rounds of idea
generation in a brainstorming process. But for
a model to be executed by computers, the
number of rounds of idea generation can be as
large as that we want. Figure 5 shows the flow

chart for a brainstorming process that can be
simulated by computers. In Figure 5, the step
1st Round of Idea Generations is the same as
the step One Round of Idea Generation shown
in Figure 5. The purpose to have the extra step
1st Round of Idea Generations at the beginning
is to be similar to the Initialization step in
population-based algorithms. The max_i is the
maximum number of rounds of idea generation
we want to conduct. Therefore totally, max_i
rounds of idea generation will be conducted in

Figure 4. Flow chart of one round of idea generation

Figure 5. Flow chart of a brainstorming process

IGI GLOBAL PROOF

44 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the brainstorming process shown in the Figure
5.

By implementing Figure 5, a model or
algorithm to mimic the human being brainstorm-
ing process can be built.

BRAIN STORM OPTIMIZATION
ALGORITHM

According to the Figure 5, a brain storm op-
timization (BSO) algorithm can be designed
by directly mapping the steps in the Figure 5.
By some straightforward rearrangement, one
possible flow chart of the BSO algorithm is
shown in Figure 6. In Figure 6, there are five
main operations among which three operations
are unique to the BSO algorithm and the other
two operations are similar to those in other
evolutionary algorithms.

In the procedure of the Brain Storm Opti-
mization (BSO) algorithm shown in the Figure
6, the first two steps are the initialization step

and evaluation step which are the same as that
in other swarm intelligence algorithms. In the
initialization step, the population of individuals
is usually uniformly and randomly initialized
within the dynamic range of solution space.
The population size n simulates the number of
ideas generated in each round of idea generation
in the brainstorming process. For the simplic-
ity of the algorithm, the population size usu-
ally is set to be a constant number for all itera-
tions in the BSO algorithm. In the evaluation
step, each individual will be evaluated. An
evaluation value (fitness) will be obtained to
measure how good the individual as a potential
solution to the problem to be solved. The third
step is to cluster the population of individuals
into several clusters. Different kind of cluster-
ing algorithms could be employed. In this paper,
the k-means clustering algorithm will be used
as the clustering algorithm. The disruption step
randomly selects a cluster center and replace it
with a randomly generated individual. This step

Figure 6. An implementation of BSO algorithm

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 45

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

will not be executed in every iteration, but will
only be selected to execute with small probabil-
ity.

The Updating Individuals step generally
includes two sub-operations, i.e., Generating
Individuals and Selecting Individuals, which
is shown in Figure 7. As discussed in previous
section, crossover operation could be utilized
to further take advantage of existing search
information. Figure 8 shows another possi-
bility of the Updating Individuals operation
which adds one additional sub-operation, i.e.,
crossover operation. One implementation of the
BSO algorithm was introduced in Shi (2011)
and is given in Table 3 here for convenience,
in which the Updating Individuals operation
shown in Figure 7 is implemented. By replac-
ing the Step 6.d in Table 3 with two sub-steps
shown in Table 4, another implementation of
BSO algorithm can be achieved. To distin-
guish the two different implementations, the
first one is noted as BSO-I and the second is
noted as BSO-II for the purpose of description
convenience. Intuitively, the BSO algorithms
should be superior to other swarm intelligence
algorithms, which are inspired by collective

behaviors of inferior animals, because of the
highest intelligence unique to human beings.

In the BSO algorithm, the number of clus-
ter centers is usually set to be a small number,
say m=5, and the number of generated indi-
viduals in each iteration is usually set to be a
relatively large number, say n=100.

EXPERIMENTS AND
DISCUSSIONS

Test Problems

To validate the brain storm optimization algo-
rithms, ten benchmark functions listed in Table 5
are tested. Among them, the first five functions
are unimodal functions and the remaining five
functions are multimodal functions. They all are
minimization problems with minimum zero. The
third column in the Table 5 is the dynamic ranges
for the ten benchmark functions, which have
been used to test population-based algorithms
in the literature. For each benchmark function,
the tested BSO algorithm will be run 50 times
to obtain reasonable statistical results.

Figure 7. One implementation of updating individual operation

Figure 8. Another implementation of updating individual operation

IGI GLOBAL PROOF

46 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Simulations on k

In Shi (2011), the BSO-I algorithm was tested
on two benchmark functions, i.e., the Sphere
function and the Rastrigin function. The pa-
rameters are setup as that listed in Table 6. The
purpose there is to validate the usefulness and
effectiveness of the proposed BSO-I algorithm.
Generally speaking, the parameter k determines
the slope of the logsig() functions, therefore it
determines the decreasing speed of the step-
size ξ(t) over iterations. Different k should
have different impacts on the performance of
BSO algorithms. In order to test the impact of

k on BSO performance, we change the k value
while all other parameter values are kept to
be the same as that listed in Table 6. For this
purpose, again only one unimodal function,
Sphere function, and one multimodal function,
Rastrigin function, are utilized. The dimension
of the two functions is set to be 20.

Table 7 gives the simulation results. The
results given in the Table 7 are mean, best, worst
function values and their variance at the final
iteration over 50 runs. From the Table 7, it can
be observed that generally there is no single
parameter k value with which the BSO algorithm

Table 3. The procedure of the brain storm optimization algorithm in Shi (2011)

 1. Randomly generate n potential solutions (individuals);
 2. Evaluate the n individuals;
 3. Cluster n individuals into m clusters by k-means clustering algorithm;
 4. Rank individuals in each cluster and record the best individual as cluster center in each cluster;
 5. Randomly generate a value between 0 and 1;
 a) If the value is smaller than a pre-determined probability p5a,
 i. Randomly select a cluster center;
 ii. Randomly generate an individual to replace the selected cluster center;
 b) Otherwise, do nothing.
 6. Generate new individuals
 a) Randomly generate a value between 0 and 1;
 b) If the value is less than a probability p6b,
 i. Randomly select a cluster with a probability p6bi;
 ii. Generate a random value between 0 and 1;
 iii. If the value is smaller than a pre-determined probability p6biii,
 1) Select the cluster center and add random values to it to generate new individual.
 iv. Otherwise randomly select an individual from this cluster and add random value to the individual to
generate new individual.
 c) Otherwise randomly select two clusters to generate new individual
 i. Generate a random value;
 ii. If it is less than a pre-determined probability p6c, the two cluster centers are combined and then added
with random values to generate new individual;
 iii. Otherwise, two individuals from each selected cluster are randomly selected to be combined and
added with random values to generate new individual.
 d) The newly generated individual is compared with the existing individual with the same individual index,
the better one is kept and recorded as the new individual;
 7. If n new individuals have been generated, go to step 8; otherwise go to step 6;
 8. Terminate if pre-determined maximum number of iterations has been reached; otherwise go to step 2.

Table 4. Two sub-steps to replace step 6.d in table 3

d) The newly generated individual crossovers with the existing individual with the same individual index to gener-
ate two more individuals (offspring);
e) The four individuals are compared, the best one is kept and recorded as the new individual;

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 47

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

can have the best performance. From the Table
7, relatively speaking, unimodal function
(Sphere function) prefers relatively small k
value while multimodal function (Rastrigin
function) prefers relatively large k value. By
considering the robustness of the BSO algorithm
and from the results given in Table 7 itself,
generally speaking, a good choice for the pa-
rameter k is 25 as a tradeoff between uni-
modal function and multimodal function. The
obtained mean function values over 2000 it-
erations with parameter k =25 are shown in

Figure 9. From the Figure 9, it can be observed
that the BSO-I with k =25 can converge fast
when solving the Sphere function and Rstrigin
function. In all simulations, we will set the
parameter k to be 25 with all other parameters
are set as the same as that in Table 6.

Simulations on BSO-I Algorithm

The BSO-I algorithm is tested on the ten bench-
mark functions listed in Table 5 to illustrate
the effectiveness and efficiency of the BSO-I

Table 5. Benchmark functions tested in this paper

Function Expressions Range

Sphere f xii

d
1

2
1

=
=∑ [,]−100 100 d

Schwefel’s P221 f x
i i2 = max{ } [,]−100 100 d

Step f xii

d
3 1

20 5= + =∑ (.) [,]−100 100 d

Schwefel’s P222 f x xi
d

i
d

i i4 1 1
= +

= =∑ ∏ [,]−10 10 d

Quartic Noise f ix
i i
d

5 1
4 0 1= +

=∑ random[,) [. , .]−1 28 1 28 d

Ackely

f
d

xi
i

d

6
2

1

20 0 2
1

= − −

=
∑exp .

−

+ +

=
∑exp cos()
1

2 20
1d

x e
i

i

d

π

[,]−32 32 d

Rastrigin f x xi ii

d
7

2
1

10 2 10= − +
=∑ [cos()]π [. , .]−5 12 5 12 d

Rosenbrock f x x
i

d

i i8 1
2 2

1

1
100= −

=

−

+∑ [() + −()]xi 1 2 [,]−30 30 d

Schwefel’s P226 f x x d
i

d

i i9 1
418 9829= − +

=∑ (sin() . [,]−500 500 d

Griewank

f xii

d
10

2
1

1
4000

=
=∑

− +
=∏ cos()
i

id x
i1
1

[,]−600 600 d

IGI GLOBAL PROOF

48 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

algorithm instead of only two benchmark func-
tions in Shi (2011). Each function is tested with
three different dimension setting, 10, 20, and
30, respectively. The experimental results are
given in Tables 8 and 9 for unimodal functions
and multimodal functions, respectively. From
the Table 8, it can be seen that good results

can be achieved by BSO-I algorithm, and the
results also show that the BSO-I is robust and
reliable when it is applied to solve benchmark
unimodal functions. From the Table 9, it can
be seen that good results can be obtained for
function f6, relatively good results can be ob-
tained for functions f7 and f8, but not relatively

Table 6. Set of parameters for BSO algorithm

n m p5a p6b p6biii p6c k Max_ iteration μ σ

100 5 0.2 0.8 0.4 0.5 20 2000 0 1

Table 7. Simulation results of BSO-I with different k

function k mean best worst variance

Sphere

10 1.20381E-11 2.55674E-86 5.27132E-10 5.61316E-21

20 2.30827E-43 1.24079E-43 3.17853E-43 2.5931E-87

25 9.4726E-35 5.55931E-35 1.33105E-34 3.78414E-70

30 5.35092E-29 3.01328E-29 7.6509E-29 1.30974E-58

40 7.70746E-22 4.18609E-22 1.10552E-21 2.74116E-44

50 1.60782E-17 7.60191E-18 2.22015E-17 1.18045E-35

Rastrigin

10 17.11636 5.969754 29.84873 28.93288

20 18.00875 8.954632 31.83866 20.98068

25 17.17298 6.964713 23.879 13.24541

30 17.15308 7.959667 29.84871 26.04389

40 15.81984 6.964713 24.87396 17.95025

50 16.21782 8.954632 25.8689 16.85928

Figure 9. Obtained Mean Minimum Values vs. Iterations for BSO-I with k = 25

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 49

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Table 8. Simulation results of BSO-I on unimodal functions

Function Dimension mean best worst variance

f1

10 1.3989E-35 3.90855E-36 2.71203E-35 2.75801E-71

20 9.77845E-35 6.11475E-35 1.37856E-34 3.55418E-70

30 2.66069E-34 1.79135E-34 3.59892E-34 2.02141E-69

f2

10 2.31285E-18 1.49658E-18 3.11619E-18 1.47169E-37

20 5.05671E-18 3.69394E-18 6.40744E-18 4.41064E-37

30 0.000235 3.18538E-08 0.001718355 1.55583E-07

f3

10 0 0 0 0

20 0 0 0 0

30 0 0 0 0

f4

10 9.28917E-18 5.51341E-18 1.21942E-17 1.81665E-36

20 3.4224E-17 2.63097E-17 4.25525E-17 1.03733E-35

30 1.9978E-06 5.84794E-17 9.94736E-05 1.97869E-10

f5

10 0.000424 4.52215E-05 0.001140455 6.14016E-08

20 0.002636 0.000613 0.008465 2.8024E-06

30 0.00835095 0.001967 0.020706 1.33183E-05

Table 9. Simulation results of BSO-I on multimodal functions

Function Dimension mean best worst variance

f6

10 4.44089E-15 4.44089E-15 4.44089E-15 0

20 4.44089E-15 4.44089E-15 4.44089E-15 0

30 5.93303E-15 4.44089E-15 7.99361E-15 3.13741E-30

f7

10 3.502256 0 5.969754 1.949178

20 17.75005 8.954632 26.86387 15.12629

30 34.56484 13.92943 51.7378 51.65143

f8

10 6.330642 2.587793 29.36235 11.77892

20 21.60337 15.83735 87.11474 255.4539

30 42.02786 25.91331 296.7523 2073.832

f9

10 1350.782 454.0165 2270.172 192322.2

20 3012.657 1598.991 4501.054 570878.2

30 4951.779 3652.088 6771.33 563448.4

f10

10 1.35123 0.497182 2.21245 0.158512

20 0.058446 0 0.9467 0.022289

30 0.010777 0 0.056496 0.000163

IGI GLOBAL PROOF

50 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

good results are obtained for f9 which is in
general a difficult function to optimize, and
for function f10, good results can be obtained
for it with dimension 20 and 30, but not with
dimension10, for which only relatively good
results are obtained instead.

Simulation on BSO-II Algorithm

The BSO-II algorithm further exploits the search
areas by generating two new offspring through
utilizing crossover operation to crossover the
newly generated individual with the existing
individual with the same individual index.
The BSO-II is applied to the ten benchmark
functions with dimensions 10, 20, and 30, re-
spectively. The simulation results are given in
Tables 10 and 11 for unimodal functions and
multimodal functions, respectively. From the
Table 10, we can observe that good results can
be achieved by the BSO-II algorithm, and the
results also show that the BSO-II is robust and
reliable when it is applied to solve benchmark
unimodal functions. From the Table 11, it can
be seen that good results can be obtained for
function f6, relatively good results can be ob-
tained for functions f7 with dimension 30 and
f8, but not relatively good results are obtained
for f9 which is in general a difficult function to
optimize, and for function f10, reasonable good
results can be obtained. Compared with the
observation from the BSO-I algorithm, very
good results (the optimum) can be obtained
for f7 with dimension 10 and 20. For f7 with
dimension 30, the best results over 50 runs is
0 which is the optimum of the problem, but the
worst and variance over 50 runs are 3.979836
and 1.010551, which indicates that the BSO-II
is better than the BSO-I, but it is still not robust
when solving f7 function.

To further compare the BSO-I and BSO-II
algorithm, Figures 10 through 19 show curves
which display the average evaluation function
values over 50 runs vs. iterations for the ten
benchmark functions tested. From the figures,
it can be easily seen that the BSO-II algorithm
performs better than the BSO-I algorithm for
all the benchmark functions with all three dif-

ferent dimensions except the Griewank function
with dimension 20 and 30. For Griewnak func-
tion with dimension 10, the BSO-I can’t obtain
very good results but the BSO-II could. There-
fore, even for the Griewank function, the BSO-
II could be a better choice compared with the
BSO-I algorithm. For function f9, even though
still not very good results are obtained by BSO-
II, but BSO-II performs much better than BSO-
I does.

Diversity

During each iteration, the population of indi-
viduals is clustered into m clusters. Individu-
als in each cluster are scattered with different
distribution over iterations. To measure and
monitor the distribution of individuals in each
cluster, the following average intra-cluster
distance is defined

d x x x xc i j i j(,)= − (4a)

�d x x
d x x
a bc i j
c i j(,)
(,)

=
−

 (4b)

D
q q

d x xc i j
j i

q

i

q

=
− = +=

∑∑2
1 11()

(,)� (4c)

where q is the number of individuals in a clus-
ter; d(xi,xj) is the Euclidean distance between
individual xi and xj; a and b are dynamic range;

d
�

(xi,xj) is the normalized Euclidean distance
between individual xi and xj; Dc is the normal-
ized distance for a cluster. For m=5, there will
be 5 intra-cluster diversities. In addition to m
average intra-cluster distances, there will be
one average inter-cluster distance to measure
and/or monitor the distribution of cluster cen-
ters. The formula for calculating average intra-
cluster distance can also be utilized to calculate
the average inter-cluster distance except that
here the xi is the ith cluster center and number
of individuals is m.

Over iterations, the number of individuals
in each cluster will change. To measure and
monitor the distribution of number of individu-

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 51

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Table 10. Simulation results of BSO-II on unimodal functions

Function Dimension mean best worst variance

f1

10 4.56E-36 2.61244E-36 7.53912E-36 1.13477E-72

20 4.54E-35 2.98742E-35 6.19235E-35 7.00667E-71

30 1.33E-34 9.34047E-35 1.65808E-34 2.53466E-70

f2

10 1.52E-18 1.10811E-18 1.94476E-18 3.80565E-38

20 3.86E-18 3.23175E-18 4.44916E-18 8.94695E-38

30 5.85E-18 4.80866E-18 6.91767E-18 2.62081E-37

f3

10 0 0 0 0

20 0 0 0 0

30 0 0 0 0

f4

10 4.76E-18 3.30555E-18 6.17314E-18 5.02845E-37

20 2.13E-17 1.54076E-17 2.52198E-17 5.11026E-36

30 4.49E-17 3.56463E-17 5.22311E-17 1.57E-35

f5

10 8.85E-05 3.18035E-05 0.000256579 1.69387E-09

20 0.000319 0.000104 0.000853 2.24337E-08

30 0.000766 0.000176 0.001733 1.00554E-07

Table 11. Simulation results of BSO-II on multimodal functions

Function Dimension mean best worst variance

f6

10 4.16E-15 8.88178E-16 4.44089E-15 9.47921E-31

20 4.44E-15 4.44089E-15 4.44089E-15 0

30 4.44E-15 4.44089E-15 4.44089E-15 0

f7

10 0 0 0 0

20 0 0 0 0

30 0.855665 0 3.979836 1.010551

f8

10 4.558798 2.019811 9.069095 0.862945

20 28.514436 15.49093 83.89686 604.2519

30 34.06948 25.85653 128.9086 505.6776

f9

10 56.23811 0.000127 236.8768 5855.616

20 499.023 118.4386 927.8028 48176.18

30 1128.729 335.5784 1993.748 157231

f10

10 0.150697 0.022151 0.531254 0.019883

20 0.311937 0.017241 1.519837 0.110482

30 0.090445 0 0.568672 0.011172

IGI GLOBAL PROOF

52 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 13. Mean Function Evaluation Values vs. Iterations of Schwefel’s P222

Figure 11. Mean Function Evaluation Values vs. Iterations of Schwefel’s P221

Figure 12. Mean Function Evaluation Values vs. Iterations of Step Function

Figure 10. Mean Function Evaluation Values vs. Iterations of Sphere Function

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 53

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 14. Mean Function Evaluation Values vs. Iterations of Quartic Noise

Figure 15. Mean Function Evaluation Values vs. Iterations of Ackely Function

Figure 16. Mean Function Evaluation Values vs. Iterations of Rastrigin Function

Figure 17. Mean Function Evaluation Values vs. Iterations of Rosenbrock Function

IGI GLOBAL PROOF

54 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

als in each cluster over whole population, the
following inter-cluster diversity is defined

D
n n
m

n
n

mv
i

m
i i

m

i=
−

=
=

=∑ ∑
1

2
1()

 ,

_
_

 (5)

where m is the number of clusters, ni is the
number of individuals in the ith cluster. Dv is
similar to the definition of variance for distribu-
tion of number of individuals in each cluster
among the population.

Another similar definition of the inter-
cluster diversity can be defined as

D p p p
n
ne

i

m

i i i
i= − () =

=
∑
1

log , (6)

where m is the number of clusters, ni is the
number individuals in the ith cluster. Therefore
pi is the percentage of individuals that the ith
cluster has over the population. De is similar to

the definition of information entropy. Therefore,
it can be looked as a measurement of informa-
tion entropy for the population. When all the
individuals are located in one cluster, the De
has the smallest value, which is 0; when all
the individuals are equally distributed into
each cluster, De has the largest value, which is
log(m). If m =5, De = log(5) = 0.699.

Tables 12 and 13 give the results of aver-
age inter-cluster distance Dc and inter-cluster
diversity De for ten tested benchmark func-
tions at the end of BSO-I running. Tables 14
and 15 give the results of average inter-cluster
distance Dc and inter-cluster diversity De for
ten tested benchmark functions at the end of
BSO-II running. Figures 20 through 29 show
mean average inter-cluster distance over 50 runs
vs. iterations for the ten benchmark functions,
respectively. From both the Tables 12 through
15 and Figures 20 through 29, it could be easily
observed that the average inter-cluster distance
quickly decreases over iterations and gets to very
small values way before reaching the prefixed

Figure 19. Mean Function Evaluation Values vs. Iterations of Griewank Function

Figure 18. Mean Function Evaluation Values vs. Iterations of Schwefel’s P226

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 55

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Table 12. Simulation results of Dc and De for BSO-I on unimodal functions

F d
Dc De

mean short long variance mean small large variance

f1

10 3.99E-20 3.02E-20 5.45E-20 2.87E-41 0.674 0.576 0.697 0.00056

20 7.73E-20 5.84E-20 9.83-20 7.02E-41 0.658 0.566 0.697 0.000893

30 9.92E-20 7.47E-20 1.16E-19 1.10E-40 0.645 0.473 0.695 0.001978

f2

10 4.6E-20 3.31E-20 5.58E-20 2.71E-41 0.671 0.583 0.695 0.000528

20 9.11E-20 6.98E-20 1.15E-19 1.17E-40 0.653 0.579 0.693 0.000653

30 2.2E-19 1.40E-19 3.57E-19 2.36E-39 0.624 0.488 0.694 0.002807

f3

10 0.006908 0.005538 0.008269 2.80E-07 0.685 0.666 0.697 7.604E-05

20 0.007145 0.005921 0.007997 1.89E-07 0.666 0.572 0.695 0.000567

30 0.006818 0.005485 0.007595 2.15E-07 0.653 0.499 0.693 0.001402

f4

10 4.44E-19 3.24E-19 5.95E-19 3.44E-39 0.674 0.608 0.699 0.000481

20 8.54E-19 6.73E-19 1.12E-18 1.01E-38 0.652 0.567 0.698 0.000925

30 1.12E-18 8.86E-19 1.55E-18 1.83E-38 0.640 0.554 0.694 0.001363

f5

10 0.06774 0.031242 0.107543 0.000272 0.609 0.484 0.681 0.002202

20 0.041977 0.016624 0.071656 0.000163 0.604 0.394 0.686 0.003644

30 0.029224 0.010858 0.04638 6.94E-05 0.591 0.389 0.682 0.004305

Table 13. Simulation results of Dc and De for BSO-I on multimodal functions

F d
Dc De

mean short long variance mean small large variance

f6

10 1.01E-16 7.83E-17 1.24E-16 6.71E-35 0.677 0.617 0.698 0.00023

20 1.01E-16 7.28E-17 1.25E-16 1.30E-34 0.642 0.560 0.695 0.001086

30 1.14E-16 1.01E-18 2.21E-16 5.69E-33 0.613 0.384 0.692 0.003186

f7

10 2.57E-10 1.31E-16 4.39E-10 1.16E-10 0.607 0.450 0.692 0.002966

20 1.90E-10 4.56E-17 7.13E-10 3.82E-20 0.604 0.448 0.690 0.002892

30 1.22E-10 1.22E-17 7.10E-10 3.49E-20 0.589 0.378 0.695 0.004818

f8

10 1.15E-17 6.43E-19 5.77E-17 1.06E-34 0.622 0.505 0.688 0.002294

20 2.22E-17 1.17E-18 8.01E-17 3.61E-34 0.600 0.456 0.686 0.003408

30 2.75E-17 1.49E-18 1.81E-16 1.05E-33 0.588 0.349 0.692 0.00625

f9

10 1.91E-09 5.68E-17 3.89E-09 7.92E-19 0.618 0.115 0.685 0.007802

20 2.32E-09 3.22E-16 4.14E-09 8.62E-19 0.603 0.378 0.692 0.004574

30 2.16E-09 6.82E-17 4.30E-09 1.30E-18 0.593 0.097 0.683 0.00893

f10

10 1.21E-11 7.22E-19 8.07E-11 3.72E-22 0.589 0.097 0.693 0.01162

20 5.01E-11 5.05E-18 9.57E-11 6.74E-22 0.602 0.362 0.689 0.003937

30 5.21E-11 3.854E-16 9.28E-11 5.74E-22 0.610 0.506 0.696 0.002307

IGI GLOBAL PROOF

56 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Table 15. Simulation results of Dc and De for BSO-II on multimodal functions

F d
Dc De

mean short long variance mean small large variance

f6

10 9.83E-17 1.13E-18 1.25E-16 8.10E-34 0.684 0.616 0.698 0.00025

20 1.17E-16 7.84E-17 1.47E-16 1.68E-34 0.655 0.570 0.693 0.000735

30 1.02E-16 5.82E-17 1.38E-16 3.12E-34 0.597 0.419 0.691 0.00392

f7

10 4.63E-10 3.95E-10 5.28E-10 1.12E-21 0.688 0.665 0.698 5.111E-05

20 4.9E-10 4.10E-10 5.46E-10 8.55E-22 0.681 0.615 0.698 0.000203

30 4.85E-10 4.03E-10 5.68E-10 8.28E-22 0.663 0.590 0.698 0.000578

f8

10 1.93E-13 3.12E-19 9.66E-12 1.87E-24 0.589 0.411 0.687 0.004572

20 1.52E-16 7.17E-19 6.67E-16 1.98E-32 0.599 0.434 0.683 0.003304

30 1.38E-16 8.33E-19 6.48E-16 2.28E-32 0.585 0.468 0.668 0.002776

f9

10 2.13E-09 0 3.22E-09 6.53E-19 0.571 0.097 0.685 0.024857

20 3.42E-09 0 4.95E-09 1.38E-18 0.595 0.097 0.693 0.024992

30 5.79E-09 3.21E-09 7.72E-09 9.25E-19 0.634 0.443 0.697 0.003643

f10

10 3.24E-11 1.51E-19 6.07E-11 5.18E-22 0.623 0.421 0.694 0.002855

20 5.89E-11 1.35E-18 1.04E-10 1.04E-21 0.625 0.493 0.694 0.002619

30 8.63E-11 2.99E-20 1.24E-10 1.40E-21 0.631 0.499 0.691 0.002384

Table 14. Simulation results of Dc and De for BSO-II on unimodal functions

F d
Dc De

mean short long variance mean small large variance

f1

10 2.35E-20 1.80E-20 3.00E-20 5.86E-42 0.674 0.609 0.696 0.000435

20 5.3E-20 4.39E-20 6.41E-20 2.37E-41 0.676 0.568 0.696 0.000443

30 7.5E-20 6.48E-20 8.77E-20 3.51E-41 0.674 0.612 0.695 0.000363

f2

10 3.16E-20 2.50E-20 4.16E-20 1.36E-41 0.675 0.597 0.697 0.000592

20 7.4E-20 5.56E-20 8.36E-20 3.47E-41 0.658 0.586 0.694 0.000782

30 1.06E-19 9.13E-20 1.22E-19 5.64E-41 0.658 0.540 0.696 0.001079

f3

10 0.007209 0.005138 0.008104 2.81E-07 0.685 0.652 0.698 8.749E-05

20 0.007577 0.006727 0.008262 1.37E-07 0.685 0.610 0.697 0.000214

30 0.00797 0.007136 0.008711 1.77E-07 0.677 0.622 0.695 0.000298

f4

10 2.51E-19 1.77E-19 3.58E-19 1.42E-39 0.667 0.546 0.697 0.000904

20 5.58E-19 4.59E-19 8.08E-19 5.04E-39 0.658 0.509 0.699 0.001228

30 8.14E-19 5.89E-19 1.11E-18 9.52E-39 0.662 0.567 0.696 0.001039

f5

10 0.073914 0.052208 0.104325 0.000129 0.649 0.509 0.695 0.00143

20 0.066032 0.044808 0.095853 0.000149 0.638 0.515 0.692 0.001513

30 0.062562 0.041369 0.102545 0.000142 0.624 0.326 0.688 0.003219

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 57

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 22. Mean Average Inter-cluster Distance vs. Iterations of Step Function

Figure 23. Mean Average Inter-cluster Distance vs. Iterations of Schwefel’s P222

Figure 24. Mean Average Inter-cluster Distance vs. Iterations of Quartic Noise

Figure 21. Mean Average Inter-cluster Distance vs. Iterations of Schwefel’s P221

IGI GLOBAL PROOF

58 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 25. Mean Average Inter-cluster Distance vs. Iterations of Ackely Function

Figure 26. Mean Average Inter-cluster Distance vs. Iterations of Rastrigin Function

Figure 27. Mean Average Inter-cluster Distance vs. Iterations of Rosenbrock Function

Figure 28. Mean Average Inter-cluster Distance vs. Iterations of Schwefel’s P226

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 59

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

maximum iteration number for both BSO al-
gorithms, which indicates that m clusters move
close to each other very quickly, and therefore
the algorithms may lose their search capabilities
quickly, may converge quickly, or may be stuck
in (local) optima quickly. By double checking
the cluster centers over iterations, the same
observation can be obtained. That tells us that
when the situation occurs, further improvement
could be achieved by randomly move away
from current cluster centers and at the same
time increase the step-size to a relatively large
value which then will be dynamically adjusted
according to the formula (3).

The mean inter-cluster diversities of 50
runs over iterations for all benchmark functions
seem to have similar behaviors except function
f9 with dimension 10 and 20. Figures 30 and 31
display the curves of mean inter-cluster diver-
sities over 50 runs vs. iterations for function f1
as an example for unimodal functions and for
function f7 as an example for multimodal func-
tions. Figure 32 displays the curves of mean
inter-cluster diversities over 50 runs vs. itera-
tions for function f9 with dimension 20. From
Figures 30 and 31, the mean inter-cluster di-
versities tend to have relatively large values,
which indicate that the population of individu-
als is generally well-uniformly divided into m
clusters. This may be because the fixed number
of clusters and the k-means clustering algorithm
with randomly selecting k individuals as initial
cluster centroid positions are used over itera-
tions in the implementation of the BSO algo-
rithms. If different initialization method for
k-means clustering algorithm or a different

clustering algorithm especially those with un-
fixed number of clusters such as the self-orga-
nizing feature map is utilized, the mean inter-
cluster diversity may behave quite different.
From Figure 32 and Table 15, it can be seen
that toward the end of BSO-II running for func-
tion f9, the number of individuals in each clus-
ter is not uniformly distributed anymore, but
clustered into one cluster with other 4 clusters
with only 1 individual, in which the
D log loge = −

+

4

1
100

1
100

96
100

96
10010 10* * *

= 0 097.

.

CONCLUSION

In this paper, we first modeled the human brain-
storming process, then introduced two versions
of Brain Storm Optimization algorithms It is
natural to believe that BSO algorithms should
be superior to the optimization algorithms
inspired by collective behavior of injects such
as ants, birds, etc. because the BSO algorithms
were inspired by the human brainstorming
process. The proposed BSO algorithms were
implemented and tested on ten benchmark
functions, of which five are unimodal func-
tions and the other five are multimodal func-
tions. Simulation results showed that both
BSO algorithms performed reasonably well,
and BSO-II performs better than BSO-I does
in general. Furthermore, average inter-cluster
distance Dc and inter-cluster diversity De were
defined to measure and monitor the distribution
of cluster centroids and the information entropy
of the BSO population. Simulation results on Dc

Figure 29. Mean Average Inter-cluster Distance vs. Iterations of Griewank Function

IGI GLOBAL PROOF

60 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 32. Mean De over 50 Runs vs. Iterations for Schwefel’s P226 with Dimension d = 20

Figure 31. Mean De over 50 Runs vs. Iterations for Rastrigin Function with Dimension d = 20

Figure 30. Mean De over 50 Runs vs. Iterations for Sphere Function with Dimension d = 20

IGI GLOBAL PROOF

International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011 61

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

showed that further performance improvement
for the BSO algorithms could be achieved by
taking advantage of information revealed by the
Dc, which is one of future research directions.

Good optimization algorithms for solving
complicated and nonlinear optimization prob-
lems should have the capability to converge in
order to find better and better solutions, but at
the same time, it should have the capability to
diverge in order to escape from local optima
which are not good enough solutions for the
problem to be solved. The BSO algorithm
during each iteration involves two opposite
operations. One is to converge or contract by
utilizing clustering methods to converge to
the m cluster centers. Another is to diverge or
expand by adding noise to generate new indi-
viduals. Depending on the amplitude of noise,
different scales of areas can be searched by the
BSO algorithm. Therefore, the BSO algorithms
naturally include contraction and expansion
operations during each iteration by design. It
should be a good choice for solving complicated
and nonlinear optimization problems.

ACKNOWLEDGMENT

This paper is partially supported by National
Natural Science Foundation of China under
Grant Number 60975080, and by the Suzhou
Science and Technology Project under Grant
Number SYJG0919.

REFERENCES

Bastos-Filho, C. J. A., De Lima Neto, F. B., Lins, A. J.
C. C., Nascimento, A. I. S., & Lima, M. P. (2008). A
novel search algorithm based on fish school behavior.
In Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics (pp. 2646-2651).

de Castro, J. N., & Von Zuben, F. J. (1999). Artificial
immune systems: Part I -Basic theory and appli-
cations (Tech. Rep. No. DCA-RT 01/99). Brazil,
Campinas: School of Computing and Electrical
Engineering, State University of Campinas.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The
ant system: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man . Cy-
bernetics B, 26(2), 29–41. doi:10.1109/3477.484436

Eberhart, R. C., & Shi, Y. (2007). Computational
intelligence, concepts to implementation (1st ed.).
San Francisco, CA: Morgan Kaufmann.

Eusuff, M., & Lansey, K. (2006). Shuffled frog-
leaping algorithm: A memetic meta-heuristic for
discrete optimization. Engineering Optimization,
38(2), 129–154. doi:10.1080/03052150500384759

Fogel, L. J. (1962). Autonomous automata. Industrial
Research, 4, 14–19.

Holland, J. H. (1975). Adaptation in natural and
artificial systems. Ann Arbor, MI: University of
Michigan Press.

Kohonen, T., & Honkela, T. (2007). Kohonen
network. Scholarpedia, 2(1), 1568. doi:10.4249/
scholarpedia.1568

Koza, J. R. (1992). Genetic programming: On the
programming of computers by means of natural
selection. Cambridge, MA: MIT Press.

MacQueen, J. (1967). Some methods for classifica-
tion and analysis of multivariate observations. In
Proceedings of the 5th Berkeley Symposium on Math-
ematical Statistics and Probability (pp. 281-297).

Nock, R., & Nielsen, F. (2006). On weighting clus-
tering. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(8), 1–13. doi:10.1109/
TPAMI.2006.168

Osborn, A. F. (1963). Applied imagination: Principles
and procedures of creative problem solving (3rd ed.).
New York, NY: Charles Scribner’s Son.

Passino, K. M. (2010). Bacterial foraging optimiza-
tion. International Journal of Swarm Intelligence
Research, 1(1), 1–16. doi:10.4018/jsir.2010010101

Pavlyukevich, I. (2007). Lévy flights, non-local
search and simulated annealing. Journal of Com-
putational Physics, 226, 1830–1844. doi:10.1016/j.
jcp.2007.06.008

Rechenberg, I. (1973). Evolutionsstrategie: Op-
timierung technischer Systeme nach Prinzipien
der biologischen Evolution. Stuttgart, Germany:
Frommann-Holzboog.

IGI GLOBAL PROOF

62 International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Shah-Hosseini, H. (2009). The intelligent water
drops algorithm: a nature-inspired swarm-based
optimization algorithm. International Journal of Bio-
inspired Computation, 1(1-2), 71–79. doi:10.1504/
IJBIC.2009.022775

Shi, Y. (2011, June 11-15). Brain storm optimization
algorithm. In Y. Tan, Y. Shi, Y. Chai, & G. Wang (Eds.),
Proceedings of the Second International Conference
on Advances in Swarm Intelligence, Chongqing,
China (LNCS 6728, pp. 303-309).

Shi, Y., & Eberhart, R. C. (1998, May 4-9). A modi-
fied particle swarm optimizer. In Proceedings of the
IEEE International Conference on Evolutionary
Computation, Anchorage, AK.

Shi, Y., & Eberhart, R. C. (2008). Population diversity
of particle swarm optimization. In Proceedings of
the Congress on Evolutionary Computation, Hong
Kong, China.

Shi, Y., & Eberhart, R. C. (2009). Monitoring of
particle swarm optimization. Frontiers of Computer
Science in China, 3(1), 31–37. doi:10.1007/s11704-
009-0008-4

Smith, R. (2002). The 7 levels of change (2nd ed.).
Arlington, VA: Tapeslry Press.

Theodoridis, S., & Koutroumbas, K. (2006). Pattern
recognition (3rd ed.). New York, NY: Academic
Press.

Tovey, C. (2004). The honey bee algorithm: A bio-
logical inspired approach to internet server optimiza-
tion. Engineering Enterprise, the Alumni Magazine
for ISyE at Georgia Institute of Technology, 13-15.

Xu, R., & Wunsch, D. II. (2005). Survey of clustering
algorithms. IEEE Transactions on Neural Networks,
16(3), 645–678. doi:10.1109/TNN.2005.845141

Yang, X. (2008). Nature-inspired metaheuristic
algorithms. Beckington, UK: Luniver Press.

Yao, X., Liu, Y., & Lin, G. (1997). Evolutionary
programming made faster. IEEE Transactions on
Evolutionary Computation, 3, 82–102.

Yuhui Shi received the PhD degree in electronic engineering from Southeast University, Nanjing,
China, in 1992. He is currently a Professor with the Department of Electrical and Electronic
Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, China. His current research interests
include computational intelligence techniques (including swarm intelligence) and their applica-
tions. Dr. Shi is the Editor-in-Chief of the International Journal of Swarm Intelligence Research
and an Associate Editor of the IEEE Transactions on Evolutionary Computation. He is the Chair
of the IEEE Task Force on Swarm Intelligence.

IGI GLOBAL PROOF

Mission
The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading
international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and
their applications. This journal publishes original and previously unpublished articles including research
papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the
information shared among researchers in swarm intelligence research areas ranging from algorithm devel-
opments to real-world applications.

Subscription	Information
IJSIR is published quarterly: January-March; April-June; July-September; October-December by IGI
Global. Full subscription information may be found at www.igi-global.com/ijsir. The journal is available
in print and electronic formats.

Institutions may also purchase a site license providing access to the full IGI Global journal collection fea-
turing more than 100 topical journals in information/computer science and technology applied to business
& public administration, engineering, education, medical & healthcare, and social science. For informa-
tion visit www.igi-global.com/isj or contact IGI at eresources@igi-global.com.

Copyright
The International Journal of Swarm Intelligence Research (ISSN 1947-9263; eISSN 1947-9271). Copy-
right © 2011 IGI Global. All rights, including translation into other languages reserved by the publisher.
No part of this journal may be reproduced or used in any form or by any means without written permission
from the publisher, except for noncommercial, educational use including classroom teaching purposes.
Product or company names used in this journal are for identification purposes only. Inclusion of the names
of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or
registered trademark. The views expressed in this journal are those of the authors but not necessarily of
IGI Global.

International Journal of Swarm
Intelligence Research

An official publication of the Information Resources Management Association

Editorial: Yuhui Shi
 Editor-in-Chief
 IJSIR
 E-mail: yuhui.shi@xjtlu.edu.cn

Subscriber	Info: IGI Global
 Customer Service
 701 E Chocolate Avenue
 Hershey PA 17033-1240, USA
 Tel: 717/533-8845 x100
 E-mail: cust@igi-global.com

Correspondence	and	questions:

The International Journal of Swarm Intelligence Research is currently listed or indexed in:
Bacon’s Media Directory; DBLP; Google Scholar; MediaFinder; The Standard Periodical Direc-
tory; Ulrich’s Periodicals Directory

IGI GLOBAL PROOF

