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1. INTRODUCTION

Search for optimality in many optimization 
applications is a challenging task, and search 
efficiency is one of the most important measure 
for an optimization algorithm. In addition, an 
efficient algorithm does not necessarily guar-
antee the global optimality is reachable. In 
fact, many optimization algorithms are only 
efficient in finding local optima. For example, 
classic hill-climbing or steepest descent method 
is very efficient for local optimization. Global 
optimization typically involves objective func-
tions which can be multimodal and highly 
nonlinear. Thus, it is often very challenging to 
find global optimality, especially for large-scale 

optimization problems. Recent studies suggest 
that metaheuristic algorithms such as particle 
swarm optimization are promising in solving 
these tough optimization problems (Kennedy 
& Eberhart, 1995; Kennedy et al., 2001; Shi & 
Eberhart, 1998; Eberhart & Shi, 2000; Yang, 
2008).

Most metaheuristic algorithms are nature-
inspired, from simulated annealing (Kirkpatrick 
et al., 1983) to firefly algorithm (Yang, 2008, 
2010a), and from particle swarm optimization 
(Kennedy & Eberhart, 1995; Kennedy et al., 
2001) to cuckoo search (Yang & Deb, 2010). 
These algorithms have been applied to almost 
all areas of optimization, design, scheduling and 
planning, data mining, machine intelligence, 
and many others (Gandomi et al., in press; 
Talbi, 2009; Yang, 2010a). On the other hand, 

Chaos-Enhanced Firefly 
Algorithm with Automatic 

Parameter Tuning
Xin-She Yang, National Physical Lab, UK

ABSTRACT
Many metaheuristic algorithms are nature-inspired, and most are population-based. Particle swarm opti-
mization is a good example as an efficient metaheuristic algorithm. Inspired by PSO, many new algorithms 
have been developed in recent years. For example, firefly algorithm was inspired by the flashing behaviour of 
fireflies. In this paper, the author extends the standard firefly algorithm further to introduce chaos-enhanced 
firefly algorithm with automatic parameter tuning, which results in two more variants of FA. The author first 
compares the performance of these algorithms, and then uses them to solve a benchmark design problem in 
engineering. Results obtained by other methods will be compared and analyzed.
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chaotic tunneling is an important phenomenon 
in complex systems (Tomsovic, 1994; Podol-
skiy & Narmanov, 2003; Kohler et al., 1998; 
Delande & Zakrzewski, 2003; Shudo & Ikeda, 
1998; Shudo et al., 2009). Traditional wisdom 
in optimization is to avoid numerical instability 
and chaos. Contemporary studies suggest that 
chaos can assist some algorithms such as genetic 
algorithms (Yang & Chen, 2002). For example, 
metaheuristic algorithms often use randomiza-
tion techniques to increase the diversity of the 
solutions generated during search iterations 
(Talbi, 2009; Yang, 2010a). The most common 
randomization techniques are probably local 
random walks and Lévy flights (Gutowski, 
2001; Pavlyukevich, 2007; Yang 2010b).

The key challenge for global optimization 
is that nonlinearity leads to multimodality, 
which in turns will cause problems to almost 
all optimization algorithms because the search 
process may be trapped in any local valley, 
and thus may cause tremendous difficulty to 
the search process towards global optimality. 
Even with most well-established stochastic 
search algorithms such as simulated annealing 
(Kirkpatrick et al., 1983), care must be taken 
to ensure it can escape the local modes/opti-
mality. Premature convergence may occur in 
many algorithms including simulated annealing 
and genetic algorithms. The key ability of an 
efficient global search algorithm is to escape 
local optima, to visit all modes and to converge 
subsequently at the global optimality.

In this paper, we will first analyze the re-
cently developed firefly algorithm (FA) (Yang, 
2008, 2010b). Under the right conditions, FA can 
have chaotic behaviour, which can be used as 
an advantage to enhance the search efficiency, 
because chaos allow fireflies to sample search 
space more efficiently. In fact, a chaotic tunnel-
ling feature can be observed in FA simulations 
when a firefly can tunnel through multimodes 
and jump from one mode to another modes. This 
enables the algorithm more versatile in escaping 
the local optima, and thus can guarantee to find 
the global optimality. Chaotic tunneling is an 
important phenomenon in complex systems, but 
this is the first time that a chaotic tunneling is 

observed in an optimization algorithm. Through 
analysis and numerical simulations, we will 
highlight that intrinsic chaotic characteristics in 
the FA can enhance the search efficiency. Then, 
we will introduce automatic parameter tuning 
to the chaotic firefly algorithm and compare 
its performance against a set of diverse test 
functions. Finally, we will apply the FA with 
automatic parameter tuning to solve a design 
benchmark whose solutions will be compared 
with other results in the literature.

2. FIREFLY ALGORITHM

Firefly Algorithm (FA) was developed by Yang 
(2008, 2010b), which was based on the flashing 
patterns and behaviour of fireflies. In essence, 
each firefly will be attracted to brighter ones, 
while at the same time, it explores and searches 
for prey randomly. In addition, the brightness 
of a firefly is determined by the landscape of 
the objective function.

The movement of a firefly i  is attracted 
to another more attractive (brighter) firefly j  
is determined by

x x e x xi
t

i
t rij

j
t

i
t

i
t+ −

+ − +1
2

= ( ) ,β α ε
γ

 
(1)

where α, β and γ are parameters. α controls the 
scale of randomization, β controls the attractive-
ness, while γ is a scaling factor. Here the second 
term is due to the attraction. The third term is 
randomization with α being the randomization 
parameter, and εi

t is a vector of random numbers 
drawn from a Gaussian distribution or other 
distributions such as Lévy flights. Obviously, 
for a given firefly, there are often many more 
attractive fireflies, then we can either go through 
all of them via a loop or use the most attrac-
tive one. For multiple modal problems, using 
a loop while moving toward each brighter one 
is usually more effective, though this will lead 
to a slight increase of algorithm complexity.

Here β ∈ [0,1]  is the attractiveness at 
r = 0 , and r x xij i j=|| ||2−  is the 2-norm or 
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Cartesian distance. For other problems such as 
scheduling, any measure that can effectively 
characterize the quantities of interest in the 
optimization problem can be used as the “dis-
tance” r . Furthermore, the randomization term 
can easily be extended to other distributions 
such as Lévy flights (Reynolds & Rhodes, 
2009).

3. CHAOS-ENHANCED FA

In order to see the intrinsic tunneling ability, let 
us first carry out the convergence analysis for 
the firefly algorithm in a framework similar to 
Clerc and Kennedy’s dynamical analysis (Clerc 
& Kennedy, 2002). For simplicity, we start 
from the equation for firefly motion without 
the randomness term

x x e x xi
t

i
t rij

j
t

i
t+ −

+ −1
2

= ( ).β
γ

 (2)

If we focus on a single agent, we can replace 
xj

t by the global best g found so far, and we have

x x e g xi
t

i
t ri

i
t+ −

+ −1
2

= ( ),β γ  (3)

where the distance ri  can be given by the � 2
-norm r g xi i

t2
2
2=|| ||− . In an even simpler 1-D 

case, we can set y g xt i
t= − , and we have

y y e yt t
yt

t+

−
−1

2
= .β γ  (4)

We can see that γ  is a scaling parameter 
which only affects the scales/size of the firefly 
movement. In fact, we can let u yt t= γ  and 
we have

u u et t
ut

+

−
−1

2
= [1 ].β  (5)

These equations can be analyzed easily 
using the same methodology for studying the 
well-known logistic map

u u ut t t+ −1 = (1 ).λ  (6)

The chaotic map of equation (5) is shown 
in Figure 1, and the focus on the transition from 
periodic multiple states to chaotic behaviour is 
shown in the same figure.

As we can see from Figure 1 that good 
convergence can be achieved for β < 2 . There 
is a transition from periodic to chaos at β ≈ 4
. This may be surprising, as the aim of design-
ing a metaheuristic algorithm is to try to find 
the optimal solution efficiently and accurately. 
However, chaotic behaviour is not necessarily 
a nuisance; in fact, we can use it to the advan-
tage of the firefly algorithm.

It is worth pointing out that no explicit 
form of a random variable distribution can be 
found for the chaotic map of (5). However, 
simple chaotic characteristics from (6) can 
often be used as an efficient mixing technique 
for generating diverse solutions. Statistically, 
the logistic mapping (6) with λ = 4  for the 
initial states in (0,1) corresponds a beta distri-
bution. From the algorithm implementation 
point of view, we can use higher attractiveness 
β  during the early stage of iterations so that 
the fireflies can explore, even chaotically, the 
search space more effectively. As the search 
continues and convergence approaches, we can 
reduce the attractiveness β  gradually, which 
may increase the overall efficiency of the al-
gorithm. The simulations presented in the rest 
of this paper will confirm this.

4. AUTOMATIC 
PARAMETER TUNING

Apart from the population size n , there are 
three parameters in the firefly algorithm. They 
are α , β  and γ , which control the random-
ness, attractiveness and modal scales, respec-
tively. For most implementations, we can take 
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β = (1)O , α = (1)O  and γ = (1)O . How-
ever, randomness reduction technique is often 
used as iterations continue, and this is often 
achieved by using an annealing-like exponen-
tial function

α α η= ,0
t  (7)

or

α αη← ,  (8)

where 0 < < 1η  is a cooling parameter. 
Typical ly,  we can use α0 = 1  and 
η = 0.9 0.99∼ . This equivalently introduces 
a cooling schedule to the firefly algorithm, as 
used in the traditional simulated annealing. 
Recently studies showed this works well (Yang, 
2008). There may be better ways to tune this 
parameter and reduce randomness to be dis-
cussed later in this section.

It is worth pointing out that (1) is essen-
tially a random walk biased towards the 
brighter fireflies. If β0 = 0 , it becomes a 
simple random walk.

As it is true for all metaheuristic algorithms, 
algorithm-dependent parameters can affect the 
performance of the algorithm of interest greatly, 
a natural question is whether we can automati-

cally tune these parameters? If so, what is the 
best way to fine-tune these parameters?

For randomness reduction, it should be 
linked with the diversity of the current solutions. 
One simple way to automatically tune α  is to 
set α  as proportional to the standard deviation 
of the current solutions. However, for multi-
modal problems, this standard deviation should 
be calculated for each local mode among local 
subgroups of fireflies. For example, for two 
modes A  and B  with current best solutions 
x a
*  and x b

* , respectively, the population will 
gradually subdivide into two main subgroups 
with population sizes of n1  and n2 , respec-
tively, one around A  and one around B . There 
are two standard deviations σA  and σB  which 
should be calculated among the solutions rela-
tive to x a

*  and x b
* , respectively. Then the 

overall α  should be a function of σA  and σB
. The simplest way is to combine them by 
weighted average

σ
σ σ

= , = .1 2

1 2
1 2

A Bn n
n n

n n n
+
+

+  (9)

As iterations continue, σ  decreases in 
general. If we set

α ζσ ζ= , 0 < < 1,  (10)

Figure 1. The chaotic map of the iteration formula (5) in the firefly algorithm and the transition 
between from periodic/multiple states to chaos
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then α  is automatically associated with the 
scale of the problem of interest. In practice, η  
may be affected by the dimensions d , so in our 
implementation we used ζ = / (2 1)d d + . 
The parameter γ  should be linked with the 
scale L  of the modes. A simple rule is that the 
change of the attractiveness term should be 
O(1) through the search landscape, which 
provide a simple relationship γ = 1/ L . 
Parameter β  control the behavior of fireflies, 
however, its tuning is more subtle. From the 
above discussion of (5), when β  is large, fire-
flies may experience chaotic behavior, and this 
can be used to enhance the search capability of 
the algorithm. In fact, from our intensive 
simulations, we have observed that fireflies can 
tunnel through all modes for multimodal func-
tion. This chaotic tunnelling effect of the algo-
rithm can help to search the global optimality 
for highly nonlinear global optimization prob-
lems.

To demonstrate this, we now first use a 
nonlinear multimodal function, namely, Ack-
ley’s function:

 
2

=1 =1

1 1( ) = 20exp[ 0.2 ] exp[ cos(2 )] (20 ),
d d

i i
i i

f x x x e
d d

π− + − +∑ ∑

which has the global maximum f* = 0  at 
x *= (0,0,..., 0)  i n  t h e  r a n g e  o f 
− ≤ ≤32.768 32.768xi  where i d= 1,2,...,  
and d  is the number of dimensions. In the 2D 
case, Ackley’s function is shown in Fig. 2. For 
25 fireflies, a snapshot at t = 15  of search 
process using the firefly algorithm is shown in 
Fig. 3. If we ignore the randomness by setting 
α = 0  and β = 4  all the time, then we can 
trace any one particular firefly, say, firefly 
number 5 , its path of x -component displays 
a random-noise-like path. It is worth pointing 
out each firefly has the ability of tunneling 
through all modes, and distance of the tunnel-
ling is controlled by the scaling factor γ  and 
β .

During the iteration, if we reduce β  
gradually from a higher value, say, β = 4  to 
a lower value β = 1  by βηt +1  and also use 
equation (7), the algorithm can be expected to 
converge more quickly. So for the same firefly 
5 , if we reduce β  gradually, as the iteration 
proceeds, this path will gradually settle down 
and converge to a global optimal point.

Now we have three version of FA: The 
standard version of FA with α  as a cooling 
schedule, a chaos-enhanced FA with β  reduced 
gradually, and the chaotic FA in combination 
with automatic parameter tuning (AutoFA). In 
the rest of the paper, we will carry out more 
testing and comparison of their performance.

5. NUMERICAL EXPERIMENTS

Various test functions in the literature are de-
signed to test the performance of optimization 
algorithms. Any new optimization algorithm 
should also be validated and tested against these 
benchmark functions. In our simulations, we 
have used the following test functions.

De Jong’s first function is essentially a 
sphere function

f x x x
i

d

i i( ) = , [ 5.12,5.12],
=1

2∑ ∈ −  

(12)

whose global minimum f* = 0  occurs at 
x *= (0,0,..., 0) . Here d  is the dimension.

The generalized Rosenbrock’s function 
is given by

f x x x x
i

d

i i i( ) = [(1 ) 100( ) ],
=1

1
2

1
2 2

−

+∑ − + −  

(13)

which has a unique global minimum f x( ) = 0*  
at x *= (1,1,...,1) .

Schwefel’s test function is multimodal
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f x x x x
i

d

i i i( ) = [ ( | | )], 500 500,
=1
∑− − ≤ ≤sin

 
(14)

whose global minimum f d* = 418.9829−  is 
at x i di

* = 420.9687( = 1,2,..., ) .
Rastrigin’s test function

f x d x x
i

d

i i( ) = 10 [ 10 (2 )],
=1

2+ −∑ cos π  

(15)

has a unique global minimum f* = 0  at 
(0,0,..., 0)  in a hypercube − ≤ ≤5.12 5.12xi  
where i d= 1,2,..., .

Easom’s test function has a sharp tip

f x y x y x y( , ) = ( ) ( ) [ ( ) ( ) ],2 2− − − − −cos cos exp π π  
(16)

in the domain ( , ) [ 100,100] [ 100,100]x y ∈ − × −
. It has a global minimum of f* = 1−  at ( , )π π  
in a very small region.

Rosenbrock’s function

f x x x x
i

d

i i i( ) = [( 1) 100( ) ],
=1

1
2

1
2 2

−

+∑ − + −  

(17)

whose global minimum f* = 0  occurs at 
x *= (1,1,...,1)  in the domain − ≤ ≤5 5xi  

where i d= 1,2,..., . In the 2D case, it is often 
written as

f x y x y x( , ) = ( 1) 100( ) ,2 2 2− + −  (18)

which is often referred to as the banana function.
The Michalewicz function

f x x
ix

i

d

i
i m( ) = ( )[ ( )] ,

=1

2
2−∑ sin sin

π
 (19)

where m = 10  and d = 1,2,... . The global 
minimum f* 1.801≈ −  in 2-D occurs at 
(2.20319,1.57049) ,

Griewangk’s test function has many local 
minima

f x x
x
ii

d

i
i

d
i( ) =

1
4000

( ) 1,
=1

2

=1
∑ ∏− +cos  

(20)

but a unique global mimimum f* = 0  at 
(0,0,..., 0)  for all − ≤ ≤600 600xi  where 
i d= 1,2,..., .

Yang’s test function (Yang, 2010a)

f x x x x
i

d

i
i

d

i i( ) = ( | |) [ ( )], 2 2 ,
=1 =1

2∑ ∑− − ≤ ≤exp sin π π  

(21)

which has a global minimum f* = 0  at 
(0,0,..., 0) .

Rosenbrock’s stochastic function was 
extended by Yang (2010a)

f x x x x
i

d

i i i i i( ) = [ ( 1) 100 ( ) ],
=1

1
2

1 1
2 2

−

+ +∑ − + −ε ε  

(22)

whose global minimum f* = 0  occurs at 
x *= (1,1,...,1)  in the domain − ≤ ≤5 5xi  

where i d= 1,2,..., .
The functions used in Table 1 are (1) Mi-

chaelwicz (d = 16 ), (2) Rosenrbrock (d = 16
), (3) De Jong (d = 16 ), (4) Schwefel (d = 8
), (5) Ackley (d = 16 ), (6) Rastrigin, (7) Easom, 
(8) Griewangk, (9) Yang d = 16 , (10) Rob-
senbrock’s stochastic function (d = 8 ).

We ran the simulations for 50 times for a 
given accuracy of δ = 10 5− , and the search 
stops when the best solution is found g *  is 
near the known solution x * , that || ||* *x g− ≤ δ
. We then recorded the number of iterations for 
finding such best solutions. In this table, the 
second column corresponds to the average 
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number of iterations and its standard deviation. 
The third column is the average ratio of the 
number of iterations of chaotic FA to the num-
ber of iterations for the standard FA when β = 1  
(no chaos). The fourth column is the average 
ratio of the number of iterations of AutoFA to 
that of standard FA. These ratios reflect the 
computational effort saved. For example, if the 

average ratio is about 0.1, than about 90% of 
the computing effort is saved, that is the effi-
ciency has been increased by a factor of about 
10.

We can see that the chaos-enhanced firefly 
algorithm indeed can improve its search ef-
ficiency significantly.

Figure 2. Ackley’s multimodal function

Table 1. Comparison of standard FA, chaotic FA and AutoFA 

Test Functions FA Chaotic FA (ratio) AutoFA (ratio)

(1) 3752 725± 0.154 0.022± 0.108 0.015±

(2) 7792 2923± 0.175 0.024± 0.123 0.017±

(3) 2319 337± 0.069 0.014± 0.054 0.012±

(4) 7540 125± 0.097 0.018± 0.072 0.014±

(5) 3172 723± 0.071 0.012± 0.051 0.010±

(6) 11981 970± 0.093 0.011± 0.069 0.009±

(7) 7925 1799± 0.145 0.027± 0.127 0.024±

(8) 12592 3715± 0.112 0.019± 0.089 0.012±

(9) 7390 2189± 0.079 0.011± 0.057 0.009±

(10) 9125 2149± 0.037 0.014± 0.330 0.049±
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6. DESIGN OPTIMIZATION

There are many design benchmarks in the lit-
erature, however, the results are fragmental, as 
not all results are available and comparable. 
Here we select a well-known welded beam 
design, which has many results obtained by 
other methods in the literature (Ragsdell & 
Phillips, 1976; Cagnina et al., 2008; Gandomi 
et al., in press-a, in press-b). The problem 
typically has four design variables: the width 
w  and length L  of the welded area, the depth 
h  and thickness h  of the main beam. The 
objective is to minimise the overall fabrication 
cost, under the appropriate constraints of shear 
stress τ , bending stress σ , buckling load P  
and maximum end deflection δ .

The problem can be written as

minimise f x w L dh L( ) = 1.10471 0.04811 (14.0 ),2 + +  
(23)

subject to

g x w h
g x x
g x x
g x

1

2

3

4

( ) = 0,
( ) = ( ) 0.25 0,
( ) = ( ) 13,600 0,
( ) = (

− ≤
− ≤
− ≤

δ
τ
σ xx

g x w hd L
g x

) 30,000 0,
( ) = 0.10471 0.04811 (14 ) 5.0 0,
( ) = 0
5

2

6

− ≤
+ + − ≤

..125 0,
( ) = 6000 ( ) 0,7

− ≤
− ≤
w

g x P x

 

(24)

where
σ( ) =

504,000
, = 6000(14

2
),

=
1
2

( ) , = 2 [
6

(

2

2 2
2

x
hd

Q L

D L w d J wL L
w d

+

+ + +
+ ))
2

],

=
65,856
30,000

, = ,

=
6000

2
, ( ) = ,

=

2

3

2 2

δ β

α τ α
αβ

β

hd
QD
J

wL
x L

D

P

+ +

00.61423 10
6
(1

30 / 48
28

).6
3

× −
dh d

 

The simple limits or bounds are 
0.1 , 10≤ ≤L d  and 0.1 , 2.0≤ ≤w h . This 
benchmark has been solved by many different 
methods, including simulated annealing (Hedar 
& Fukushima, 2006), genetic algorithms (Deb, 
1991), particle swarm optimization (He et al., 
2004; Cagnina et al., 2008), harmony search 
(Lee & Geem, 2004), differential evolution 
(Zhang et al., 2008) and firefly algorithm in 
this study.

It is worth pointing out that the constraints 
should be handled appropriately. In this case, 
we have used the penalty functions to incor-
porate the above nonlinear constraints (Yang, 
2010a). Using our chaotic firefly algorithm 
with automatic parameter tuning, we have the 
following optimal solution

Figure 3. The snapshot of 25 fireflies during iteration t = 15
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x w L d h*= ( , , , )  
= (0.20573, 3.47049,9.03662,0.20573),  

(26)
with

f x( *) = 1.72485.min  (27)

Our results are the same or better than the 
results obtained by other methods as summa-
rized in Table 2.

From the above validation, comparison 
and benchmark design, we can see that cha-
otic FA with automatic parameter tuning is very 
efficient. Good convergence can be obtained 
by chaos-assisted tunnelling and automatic 
parameter adjustment. Effect and improvements 
become significant for multimodal problems.

6. CONCLUSION

Search for optimality in complex systems and 
global optimization problems require efficient 
algorithms. Metaheuristic algorithms such as 
particle swarm optimization and firefly algo-
rithm are becoming very powerful. We have used 

a dynamical system approach to study the con-
vergence property of the firefly algorithm and 
discovered its intrinsic chaotic tunneling ability. 
This property can be used as an advantage to 
enhance search efficiency of the algorithm. For 
multimodal optimization problems, there is a 
risk for any algorithm to get trapped in local 
optima. Chaos-assisted tunneling in the firefly 
algorithm makes it particular suitable for dealing 
with nonlinear, multimodal optimization prob-
lems. Our analysis and numerical experiments 
indeed demonstrated that chaotic tunneling can 
increase the search efficiency significantly.

An important topic for further research 
is to vary the scheme of automatic parameter 
tuning. The present study presents just one of 
many ways for automatic tuning of algorithm-
dependent parameters. Other methods may 
be more appropriate and more efficient for 
different types of problems. In addition, more 
studies are highly needed to investigate whether 
this approach can be directly applied to other 
algorithms for automatic parameter tuning.

Further research can focus on the theoretical 
framework and extensive numerical studies on 
how an algorithm can be enhanced by chaotic 
tunneling, and thus may show insight into the 

Table 2. Welded beam design 

Refs Method w L d h cost Number of 
function 

evaluations

Deb GA 0.2489 6.1730 8.1789 0.2533 2.4331 320,080

He et al. PSO 0.2444 6.2175 8.2915 0.2444 2.3810 30,000

Cagnina et al. PSO 0.2057 3.4705 9.0366 0.2057 1.7248 24,000

Hedar & 
Fukushima

SA 0.2444 6.2158 8.2939 0.2444 2.3811 56,243

Lee & Geem HS 0.2442 6.2231 8.2915 0.2443 2.381 110,000

Zhang et al. DE 0.2444 6.2175 8.2915 0.2444 2.3810 24,000

This study AutoFA 0.2057 3.4705 9.0366 0.2057 1.7248 20,000
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working of an efficient algorithm. Such studies 
may help to design new generation truly intel-
ligent optimization algorithms.

REFERENCES

Cagnina, L. C., Esquivel, S. C., & Coello, C. A. 
(2008). Solving engineering optimization problems 
with the simple constrained particle swarm optimizer. 
Informatica, 32, 319–326.

Clerc, M., & Kennedy, J. (2002). The particle 
swarm - explosion, stability, and convergence in 
a multidimensional complex space. IEEE Trans-
actions on Evolutionary Computation, 6, 58–73. 
doi:10.1109/4235.985692

Deb, K. (1991). Optimal design of a welded beam 
via genetic algorithms. AIAA Journal, 29(11), 
2013–2015. doi:10.2514/3.10834

Delande, D., & Zakrzewski, J. (2003). Experi-
mentally attainable example of chaotic tunneling: 
The hydrogen atom in parallel static electric and 
magnetic fields. Physical Review A., 68(6), 062110. 
doi:10.1103/PhysRevA.68.062110

Eberhart, E. C., & Shi, Y. (2000). Comparing inertia 
weights and constriction factors in particle swarm 
optimization. In Proceedings of the Congress on 
Evolutionary Computation (Vol. 1, pp. 84-88).

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (in 
press). -a). Cuckoo search algorithm: a metaheuristic 
approach to solve structural optimization problems. 
Engineering with Computers.

Gandomi, A. H., Yang, X. S., & Alavi, A. H. (in 
press). -b). Mixed variable structural optimization 
using firefly algorithm. Computers & Structures.

Gutowski, M. (2001). Lévy flights as an underlying 
mechanism for global optimization algorithms. Re-
trieved from http://arxiv.org/abs/math-ph/0106003

He, S., Prempain, E., & Wu, Q. H. (2004). An 
improved particle swarm optimizer for mechanical 
design optimization problems. Engineering Opti-
mization, 36(5), 585–605. doi:10.1080/03052150
410001704854

Hedar, A. R., & Fukushima, M. (2006). Derivative-
free simulated annealing method for constrained 
continuous global optimization. Journal of Global 
Optimization, 35(4), 521–649. doi:10.1007/s10898-
005-3693-z

Kennedy, J., & Eberhart, R. C. (1995). Particle 
swarm optimization. In Proceedings of the IEEE 
International Conference on Neural Networks (pp. 
1942-1948).

Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm 
intelligence. San Francisco, CA: Morgan Kaufmann.

Kirkpatrick, S., Gellat, C. D., & Vecchi, M. P. (1983). 
Optimization by simulated annealing. Science, 220, 
670–680. doi:10.1126/science.220.4598.671

Kohler, S., Utermann, R., Hagnni, R., & Dittrich, T. 
(1998). Coherent and incoherent chaotic tunneling 
near singlet-doublet crossings. Physical Review E: 
Statistical Physics, Plasmas, Fluids, and Related In-
terdisciplinary Topics, 58, 7219–7230. doi:10.1103/
PhysRevE.58.7219

Lee, K. S., & Geem, Z. W. (2004). A new meta-heu-
ristic algorithm for continues engineering optimiza-
tion: harmony search theory and practice. Computer 
Methods in Applied Mechanics and Engineering, 
194, 3902–3933. doi:10.1016/j.cma.2004.09.007

Pavlyukevich, I. (2007). Lévy flights, non-local 
search and simulated annealing. Journal of Com-
putational Physics, 226, 1830–1844. doi:10.1016/j.
jcp.2007.06.008

Podolskiy, V. A., & Narmanov, E. E. (2003). Semi-
classical description of chaos-assisted tunneling. 
Physical Review Letters, 91, 263601. doi:10.1103/
PhysRevLett.91.263601

Ragsdell, K., & Phillips, D. (1976). Optimal design 
of a class of welded structures using geometric pro-
gramming. Journal of Engineering for Industry, 98, 
1021–1025. doi:10.1115/1.3438995

Reynolds, A. M., & Rhodes, C. J. (2009). The Lévy 
flight paradigm: random search patterns and mecha-
nisms. Ecology, 90, 877–887. doi:10.1890/08-0153.1

Shi, Y., & Eberhart, R. C. (1998). A modified particle 
swarm optimizer. In Proceedings of the IEEE Inter-
national Conference on Evolutionary Computation 
(pp. 69-73).

Shudo, A., & Ikeda, K. S. (1998). Chaotic tunneling: 
a remarkable manifestation of complex classical 
dynamics in non-integrable quantum phenomena. 
Physica D. Nonlinear Phenomena, 115, 234–292. 
doi:10.1016/S0167-2789(97)00239-X

Shudo, A., Ishii, Y., & Ikeda, K. S. (2009). Julia 
sets and chaotic tunneling: II. Journal of Physics 
A . Mathematical and Theoretical, 42, 265102. 
doi:10.1088/1751-8113/42/26/265102

IGI GLOBAL PROOF



International Journal of Swarm Intelligence Research, 2(4), 1-11, October-December 2011   11

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Talbi, E.-G. (2009). Metaheuristics: From design to 
implementation. New York, NY: John Wiley & Sons.

Tomsovic, S. (1994). Chao-assisted tunneling. Physi-
cal Review E: Statistical Physics, Plasmas, Fluids, 
and Related Interdisciplinary Topics, 50, 145–162. 
doi:10.1103/PhysRevE.50.145

Yang, L. J., & Chen, T. L. (2002). Applications of 
chaos in genetic algorithms. Communications in 
Theoretical Physics, 38, 168–192.

Yang, X. S. (2008). Nature-inspired metaheuristic 
algorithms. Beckington, UK: Luniver Press.

Yang, X. S. (2010a). Engineering optimiza-
tion: An introduction with metaheuristic ap-
plications. New York, NY: John Wiley & Sons. 
doi:10.1002/9780470640425

Yang, X. S. (2010b). Firefly algorithm, stochastic 
test functions and design optimisation. International 
Journal of Bio-Inspired Computation, 2, 78–84. 
doi:10.1504/IJBIC.2010.032124

Yang, X. S., & Deb, S. (2010). Engineering optimi-
zation by cuckoo search. International Journal of 
Mathematical Modelling & Numerical Optimization, 
1, 330–343. doi:10.1504/IJMMNO.2010.035430

Zhang, M., Luo, W., & Wang, X. (2008). Differ-
ential evolution with dynamic stochastic selection 
for constrained optimization. Information Science, 
178(15), 3043–3074. doi:10.1016/j.ins.2008.02.014

Xin-She Yang received his DPhil in Applied Mathematics from Oxford University, and he has 
been the recipient of Garside Senior Scholar Award in Mathematics of Oxford University. He 
worked at Cambridge University for 5 years and is now a Senior Research Scientist at National 
Physical Laboratory. He has written 7 books and published more than 110 papers. He is the 
Editor-in-Chief of Int. J. Mathematical Modelling and Numerical Optimisation. He is also a 
Guest Professor of Harbin Engineering University, China. He is the vice chair of IEEE CIS 
task force on business intelligence and knowledge management. He is the inventor of a few 
metaheuristic algorithms, including bat algorithm, eagle strategy, firefly algorithm, cuckoo 
search and virtual bee algorithm.

IGI GLOBAL PROOF



12   International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Differential Evolution, Email Classification, Fireworks Algorithm, Fish School Search, Genetic 
Algorithms, NMF Initialization, Nonnegative Matrix Factorization (NMF), Particle Swarm 
Optimization

1. INTRODUCTION

Low-rank approximations are utilized in sev-
eral content based retrieval and data mining 
applications, such as text and multimedia min-
ing, web search, etc. and achieve a more com-
pact representation of the data with only lim-
ited loss in information. They reduce storage 
and runtime requirements, and also reduce 
redundancy and noise in the data representation 

while capturing the essential associations. The 
Non-negative Matrix Factorization (NMF) (Lee 
& Seung, 1999) leads to a low-rank approxima-
tion which satisfies non-negativity constraints. 
NMF approximates a data matrix A  by 
A WH≈ ,where W  and H  are the NMF fac-
tors. NMF requires all entries inA , W andH
to be zero or positive. Contrary to other low-
rank approximations such as the Singular 
Value Decomposition (SVD), these constraints 
force NMF to produce so-called “additive parts-
based” representations. This is an impressive 

Swarm Intelligence for Non-
Negative Matrix Factorization

Andreas Janecek, University of Vienna, Austria

Ying Tan, Peking University, China

ABSTRACT
The Non-negative Matrix Factorization (NMF) is a special low-rank approximation which allows for an 
additive parts-based and interpretable representation of the data. This article presents efforts to improve the 
convergence, approximation quality, and classification accuracy of NMF using five different meta-heuristics 
based on swarm intelligence. Several properties of the NMF objective function motivate the utilization of 
meta-heuristics: this function is non-convex, discontinuous, and may possess many local minima. The proposed 
optimization strategies are two-fold: On the one hand, a new initialization strategy for NMF is presented in 
order to initialize the NMF factors prior to the factorization; on the other hand, an iterative update strategy 
is proposed, which improves the accuracy per runtime for the multiplicative update NMF algorithm. The 
success of the proposed optimization strategies are shown by applying them on synthetic data and data sets 
coming from the areas of spam filtering/email classification, and evaluate them also in their application 
context. Experimental results show that both optimization strategies are able to improve NMF in terms of 
faster convergence, lower approximation error, and better classification accuracy. Especially the initialization 
strategy leads to significant reductions of the runtime per accuracy ratio for both, the NMF approximation 
as well as the classification results achieved with NMF.
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benefit of NMF, since it makes the interpretation 
of the NMF factors much easier than for factors 
containing positive and negative entries (Berry, 
Browne, Langville, Pauca, & Plemmons, 2007; 
Janecek & Gansterer, 2010; Lee & Seung, 1999).

The NMF is usually not unique if different 
initializations of the factors W  and H  are 
used. Moreover, there are several different NMF 
algorithms which all follow different strategies 
(e.g., mean squared error, least squares, gradi-
ent descent,...) and produce different results. 
Mathematically, the goal of NMF is to find a 
“good” (ideally the best) solution of an optimi-
zation problem with bound constraints in the 
form min ( )x f x∈Ω , where f N: � �→  is the 
nonlinear objective function of NMF, and Ω  
is the feasible region (for NMF, Ω  is restricted 
to non-negative values). f is usually not convex, 
discontinuous and may possess many local 
minima (Stadlthanner, Lutter, Theis, Lang, 
Tome, Georgieva, & Puntonet, 2007). Since 
meta-heuristic optimization algorithms are 
known to be able to deal well with such difficul-
ties they seem to be a promising choice for 
improving the quality of NMF. Over the last 
decades nature-inspired meta-heuristics, includ-
ing those based on swarm intelligence, have 
gained much popularity due to their applicabil-
ity for various optimization problems. They 
benefit from the fact that they are able to find 
acceptable results within a reasonable amount 
of time for many complex, large and dynamic 
problems (Blackwell, 2007). Although they 
lack the ability to guarantee the optimal solution 
for a given problem (comparably to NMF), it 
has been shown that they are able to tackle 
various kinds of real-world optimization prob-
lems (Chiong, 2009). Meta-heuristics as well 
as the principles of NMF are in accordance with 
the law of sufficiency (Kennedy, Eberhart, & 
Shi, 2001): If a solution to a problem is good 
enough, fast enough and cheap enough, then it 
is sufficient.

In this article we present two different 
strategies for improving the NMF using five 
optimization algorithms based on swarm intel-
ligence and evolutionary computing: Particle 
Swarm Optimization (PSO), Genetic Algo-

rithms (GA), Fish School Search (FSS), Dif-
ferential Evolution (DE), and Fireworks Algo-
rithm (FWA). All algorithms are population 
based and can be categorized into the fields of 
swarm intelligence (PSO, FSS, FWA), evolu-
tionary algorithms (GA), and a combination 
thereof (DE). The goal is to find a solution with 
smaller overall error at convergence, and/or to 
speed up convergence of NMF (i.e., smaller 
approximation error for a given number of NMF 
iterations) compared to identical NMF algo-
rithms without applied optimization strategy. 
Another goal is to increase the classification 
accuracy in cases where NMF is used as di-
mensionality reduction method for machine 
learning applications. The concepts of the two 
optimization strategies are the following: In the 
first strategy, meta-heuristics are used to initial-
ize the factors W  and H  in order to minimize 
the NMF objective function prior to the fac-
torization. The second strategy aims at itera-
tively improving the approximation quality of 
NMF during the first iterations.

The proposed optimization strategies can 
be considered successful if they are able to 
improve the NMF in terms of either (i) faster 
convergence (i.e., better accuracy per runtime) 
(ii) lower final approximation error, (iii) or 
better classification accuracy. The optimization 
of different rows of W and different columns 
ofH can be split up into several partly inde-
pendent sub-tasks and can thus be executed 
concurrently. Since this allows for a parallel 
and/or distributed computation of both update 
strategies, we also discuss parallel implementa-
tions of the proposed optimization strategies. 
Experimental results show that both strategies, 
the initialization of NMF factors as well as an 
iterative update during the first iterations, are 
able to improve the NMF in terms of faster 
convergence, lower approximation error, and/
or better classification accuracy.

1.1. Related Work

The work by Lee and Seung (1999) is known as 
a standard reference for NMF. The original Mul-
tiplicative Update (MU) algorithm introduced 

IGI GLOBAL PROOF



14   International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

in this article provides a good baselines against 
which other algorithms, e.g., the Alternating 
Least Squares algorithm (Paatero & Tapper, 
1994), the Gradient Descent algorithm (Lin, 
2007), ALSPGRAD (Lin, 2007), quasi Newton-
type NMF (Kim & Park, 2008), fastNMF and 
bayesNMF (Schmidt & Laurberg, 2008), etc. 
have to be judged. While the MU algorithm is 
still the fastest NMF algorithm per iteration 
and a good choice if a very fast and rough ap-
proximation is needed, ALSPGRAD, fastNMF 
and bayesNMF have shown to achieve a better 
approximation at convergence compared to 
many other NMF algorithms (Janecek, Schulze-
Grotthoff et al., 2011).

NMF Initialization

Only few algorithms for non-random NMF 
initialization have been published. Wild, Curry, 
and Dougherty (2004) used spherical k -means 
clustering to group column vectors of A  as 
input for W . A similar technique was used in 
Xue, Tong, Chen, and Chen (2008). Another 
clustering-based method of structured initializa-
tion designed to find spatially localized basis 
images can be found in Kim and Park (2008). 
Boutsidis and Gallopoulos (2008) used an 
initialization technique based on two SVD 
processes called nonnegative double singular 
value decomposition (NNDSVD). Experiments 
indicate that this method has advantages over 
the centroid initialization in Wild, Curry, and 
Dougherty (2004) in terms of faster conver-
gence.

NMF and Meta-Heuristics

So far, only few studies can be found that aim 
at combining NMF and meta-heuristics, most of 
them are based on Genetic Algorithms (GAs). 
In Stadlthanner et al. (2007), the authors have 
investigated the application of GAs on sparse 
NMF for microarray analysis, while Snásel, 
Platos, and Kromer (2008) have applied GAs 
for boolean matrix factorization, a variant of 
NMF for binary data based on Boolean algebra. 
However, the methods presented in these studies 
are barely connected to the techniques presented 

in this article. In two preceding studies (Janecek 
& Tan 2011a, 2011b), we have introduced the 
basic concepts of the proposed update strategies.

In this article we extend our preliminary 
work in several ways by the following new 
contributions. At first, we evaluate our methods 
on synthetic data as well as on data sets coming 
from the areas of spam filtering/email classifi-
cation. This allows us to evaluate the proposed 
methods in the application context of the applied 
data sets. In other words, we are now able to 
investigate the quality of the NMF not only in 
terms of approximation accuracy but also in 
terms of classification accuracy achieved with 
the approximated data sets as well as with the 
basic vectors of the NMF factor W .  Within 
this evaluation process we consider two differ-
ent classification settings, a static setting where 
NMF is computed on the complete data set 
(training and test data), and a dynamic setting 
where NMF can be applied dynamically to new 
data. Moreover, we present a detailed evaluation 
of the runtime performance of the proposed 
update strategies, and, finally, we are able to 
compare the performance of our strategies with 
each other using the same parameter settings, 
data sets, and hardware set-up.

1.2. Notation

A matrix is represented by an uppercase italic 
letter (A , B , Σ , …), a vector by a lowercase 
bold letter (u, x,, q1, …), and a scalar by a 
lowercase Greek letter (λ , µ , …). The ith  row 
vector of a matrix D  is represented as di

r , and 
the j th  column vector of D  as d j

c . Matrix-
matrix multiplications are denoted by “*”, el-
ement-wise multiplications by “ · ”, and ele-
ment-wise divisions by “ . / ”.

1.3. Synopsis

In Section 2 we briefly review low-rank approxi-
mations and NMF algorithms. In Section 3 we 
summarize the swarm intelligence algorithms 
used in this article, and in Section 4 we present 
the proposed optimization strategies for NMF 
based on them. Moreover, we discuss differ-
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ent classification methods based on NMF. In 
Sections 5 and 6 we evaluate our methods and 
discuss the achieved results. Finally, in Section 
7 we conclude our work and summarize ongo-
ing and future research activities in this area.

2. LOW RANK 
APPROXIMATIONS

Given a data matrix A m n∈ ×�  whose n columns 
represent instances and whose m rows contain 
the values of a certain feature for the instances, 
most low-rank approximations reduce the di-
mensionality by representing the original data 
as accurately as possible with linear combina-
tions of the original instances and/or features. 
Mathematically, A  is replaced with another 
matrix Ak  with usually much smaller rank. In 
general, a closer approximation means a better 
factorization. However, it is highly likely that 
in some applications specific factorizations 
might be more desirable compared to other 
solutions.

The most important low-rank approxima-
tion techniques are the Singular Value Decom-
position (SVD) (Berry, 1992) and the closely 
related Principal Component Analysis (PCA) 
(Jolliffe, 2002). Traditionally, the PCA uses the 
eigenvalue decomposition to find eigenvalues 
and eigenvectors of the covariance matrix Cov(
A ) of A . Then the original data matrix A  can 
be approximated by A AQk k:= , with 
Qk k= [ , ..., ]q q1 , where q q1, ..., k are the first 
k eigenvectors of Cov(A ). The SVD decom-
poses A  into a product of three matrices such 
that A U V= Σ � , where Σ  contains the sin-
gular values along the diagonal, and U  and V  
are the singular vectors. The reduced rank SVD 
to A  can be found by setting all but the first 
k  largest singular values equal to zero and 
using only the first k  columns of U  and V , 
such that A U Vk k k k:= Σ � . Other well-known 
low-rank approximation techniques comprise 
Factor Analysis, Independent Components 
Analysis, Multidimensional Scaling such as 
Fastmap or ISOMAP, or Locally Linear Embed-

ding (LLE), which are all summarized in Tan, 
Steinbach, and Kumar (2005).

Amongst all possible rank k  approxima-
tions, the approximation Ak  calculated by SVD 
and PCA is the best approximation in the sense 
that || ||A Ak F−  is as small as possible (cf. 
Berry, Drmac, & Jessup, 1999). In other words, 
SVD and PCA give the closest rank k  ap-
proximation of a matrix,  such that 
|| || || ||A A A Bk F k F− ≤ − , where Bk  is any 
matrix of rank k , and || . ||F  is the Frobenius 
norm, which is defined as ( | | ) || ||/∑ =a Aij F

2 1 2

. However, the main drawback of PCA and SVD 
refers to the interpretability of the transformed 
features. The resulting orthogonal matrix factors 
generated by the approximation usually do not 
allow for direct interpretations in terms of the 
original features because they contain positive 
and negative coefficients (Zhang, Berry, Lamb, 
& Samuel, 2009). In many application domains, 
a negative quantification of features is meaning-
less and the information about how much an 
original feature contributes in a low-rank ap-
proximation is lost. The presence of negative, 
meaningless components or factors may influ-
ence the entire result. This is especially impor-
tant for applications where the original data 
matrix contains only positive entries, e.g., in 
text-mining applications, image classification, 
etc. If the factor matrices of the low-rank ap-
proximation were constrained to contain only 
positive or zero values, the original meaning 
of the data could be preserved better.

2.1. Non-negative Matrix 
Factorization (NMF)

The NMF leads to special low-rank approxima-
tions which satisfy these non-negativity con-
straints. NMF requires that all entries in A , 
W  and H  are zero or positive. This makes the 
interpretation of the NMF factors much easier 
and enables NMF a non-subtractive combina-
tion of parts to form a whole (Lee & Seung, 
1999). The NMF consists of reduced rank non-
negative factors W m k∈ ×� andH k n∈ ×� with 
k min m n� { , }  that approximate a matrix 
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A m n∈ ×�  by A WH≈ ,where the approxima-
tion WH has rank at most k . The nonlinear 
optimization problem underlying NMF can 
generally be stated as

2
, ,

1min ( , ) min || || .
2W H W H Ff W H A WH= −

(1.1)

The Frobenius norm || . ||F  is commonly 
used to measure the error between the original 
data A  and the approximation WH ,  but other 
measures such as the Kullback-Leibler diver-
gence are also possible (Lee & Seung, 2001). 
The error between A  and WH is usually stored 
in a distance matrix D A WH= −  (cf. Figure 
1). Unlike the SVD, the NMF is not unique, 
and convergence is not guaranteed for all NMF 
algorithms. If they converge, then usually to 
local minima only (potentially different ones 
for different algorithms). Nevertheless, the data 
compression achieved with only local minima 
has been shown to be of desirable quality for 
many data mining applications (Langville, 
Meyer, & Albright, 2006). Moreover, for some 
specific problem settings a smaller residual 
D A WH= −  (a smaller error) may not neces-
sarily improve of the solution of the actual 
application (e.g., classification task) compared 
to a rather coarse approximation. However, as 
analyzed in Janecek and Gansterer (2010) a 
closer NMF approximation leads to qualita-
tively better classification results and turns out 
to achieve significantly more stable results.

NMF Initialization

Algorithms for computing NMF are iterative 
and require initialization of the factors W and
H . NMF unavoidably converges to local 
minima, probably different ones for different 
initialization (cf. Boutsidis & Gallopoulos, 
2008). Hence, random initialization makes the 
experiments unrepeatable since the solution to 
Equ.1.1 is not unique in this case. A proper 

non-random initialization can lead to faster 
error reduction and better overall error at con-
vergence. Moreover, it makes the experiments 
repeatable. Although the benefits of good NMF 
initialization techniques are well known in the 
literature, most studies use random initialization 
(cf. Boutsidis & Gallopoulos, 2008). Since some 
initialization procedures can be rather costly in 
terms of runtime the trade-off between compu-
tational cost in the initialization step and the 
computational cost of the actual NMF algorithm 
need to be balanced carefully. In some situa-
tions, an expensive preprocessing step may 
overwhelm the cost savings in the subsequent 
NMF update steps.

General Structure of NMF

In the basic form of NMF (Algorithm 1), W  
and H  are initialized randomly and the whole 
algorithm is repeated several times (maxrepeti-
tion). In each repetition, NMF update steps are 
processed until a maximum number of iterations 
is reached (maxiter). These update steps are 
algorithm specific and differ from one NMF 
variant to the other. Termination criteria: If the 
approximation error drops below a pre-defined 
threshold, or if the shift between two iterations 
is very small, the algorithm might stop before 
all iterations are processed.

Multiplicative Update (MU) Algorithm

To give an example of the update steps for a 
specific NMF algorithm we provide the update 
steps for the MU algorithm in Algorithm 2. MU 
is one of the two original NMF algorithms 
presented in Lee and Seung (1999) and still one 
of the fastest NMF algorithms per iteration. 
The update steps are based on the mean squared 
error objective function and consist of multiply-
ing the current factors by a measure of the 
quality of the current approximation. The divi-
sions in Algorithm 2 are to be performed ele-
ment-wise. ε is used to avoid division by zero 
( ε ≈ −10 9 ).
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3. SWARM INTELLIGENCE 
OPTIMIZATION

Optimization techniques inspired by swarm 
intelligence (SI) have become increasingly 
popular and benefit from their robustness and 
flexibility (Chiong, 2009). Swarm intelligence 
is characterized by a decentralized design 
paradigm that mimics the behavior of swarms 
of social insects, flocks of birds, or schools 
of fish. Optimization techniques inspired by 
swarm intelligence have shown to be able to 
successfully deal with increasingly complex 
problems (Blackwell, 2007). In this article 

we use five different optimization algorithms. 
Particle Swarm Optimization (PSO) (Kennedy 
& Eberhart, 1995) is a classical swarm intel-
ligence algorithm, while Fish School Search 
(FSS) (Bastos Filho et al., 2009) and Fireworks 
Algorithm (FWA) (Tan & Zhu, 2010) are two 
recently developed swarm intelligence meth-
ods. These three algorithms are compared to 
a Genetic Algorithm (GA) (Haupt & Haupt, 
2005), a classical evolutionary algorithm, and 
Differential Evolution (DE) (Price, Storn, & 
Lampinen, 2005), which shares some features 
with swarm intelligence but can also be con-
sidered as an evolutionary algorithm. Since 

Figure 1. Scheme of very coarse NMF approximation with very low rank k. Although k is sig-
nificantly smaller than m and n, the typical structure of the original data matrix can be retained 
(note the three different groups of data objects in the left, middle, and right part of A)

Algorithm 1. General structure of NMF algorithms 
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PSO, GA and DE are well known optimization 
techniques we will not summarize them here; 
instead the interested reader is referred to the 
references given.

Fish School Search is a recently developed 
swarm intelligence algorithm (Algorithm 3) that 
mimics the movements of schools of fish. The 
main operators are feeding (fish can gain/lose 
weight, depending on the region they swim in) 

and swimming (there are three different swim-
ming movements).

The Fireworks Algorithm (Algorithm 4) 
is a novel swarm intelligence algorithm that is 
inspired by observing fireworks explosion. Two 
different types of explosion (search) processes 
are used in order to ensure diversity of resulting 
sparks, which are similar to particles in PSO 
or fish in FSS.

Algorithm 2. Update steps of the multiplicative update algorithm 

Algorithm 3. Pseudo code of the Fish School Search algorithm 

Algorithm 4. Pseudo code of the Fireworks Algorithm 
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4. IMPROVING NMF WITH 
SWARM INTELLIGENCE 
OPTIMIZATION

Before describing our two optimization strate-
gies for NMF based on swarm intelligence, we 
discuss some properties of the Frobenius norm 
(cf. Berry, Drmac, & Jessup, 1999). We use the 
Frobenius norm (1.1) as NMF objective func-
tion (i.e., to measure the error between A  and 
WH ) because it offers some properties that 
are beneficial for combining NMF and optimi-
zation algorithms. The following statements 
about the Frobenius norm are valid for any real 
matrix. However, in the following we assume 
that D refers to a distance matrix storing the 
distance (error of the approximation) between 
the original data and the approximation, 
D A WH= − . The Frobenius norm of a matrix 
D m n∈ ×�  is defined as

|| ||   | |
( , ) /

D F i
i

min m n

j

n

i

m

ij=
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where σi  are the singular values of D , and 
dij  is the element in the ith  row and j th  column 
of D . The Frobenius norm can also be com-
puted row wise or column wise. The row wise 
calculation is
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where | |di
r  is the norm of the ith  row vector 

of D , i.e., | |di
r  = ( | | ) /
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j
ir

=
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2 1 2 , and rj
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j th  element in row i . The column wise calcu-
lation is
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with | |d j
c  being the norm of the j th column 

vector of D , i.e., | |d j
c  = ( | | ) /

i

m

i
jc

=
∑
1

2 1 2 , and ci
j

being the ith  element in column j . Obviously, 
a reduction of the Frobenius norm of any row 
or any column of D  leads to a reduction of the 
total Frobenius norm || ||D F .

In the following we exploit these properties 
of the Frobenius norm for the proposed NMF 
optimization strategies. While strategy 1 aims 
at finding heuristically optimal starting points 
for the NMF factors, strategy 2 aims at itera-
tively improving the quality of NMF during the 
first iterations. All meta-heuristics mentioned 
in Section 3 can be used within both strategies. 
Before discussing the optimization strategies 
we illustrate the basic optimization procedure 
for a specific row (row l ) of W in Figure 2. 
This procedure is similar for both optimization 
strategies.

Parameters: Global parameters used for all 
optimization algorithms are upper/lower 
bound of the search space and the initializa-
tion, the number of particles (chromo-
somes, fish, ...), and maximum number of 
fitness evaluations. Parameter settings are 
discussed in Sections 5. For all meta-
heuristics, the problem dimension is equal 
to the rank k  of the NMF, i.e., if, for ex-
ample, k = 10, a row/column vector with 
10 continuous entries is returned by the 
optimization algorithms.

4.1. Optimization Strategy 
1 – Initialization

The goal of this optimization strategy is to find 
heuristically optimal starting points for the rows 
of W  and the columns of H , respectively, i.e., 
prior to the factorization process. Algorithm 5 
shows the pseudo code for the initialization 
procedure. In the beginning, H0  needs to be 
initialized randomly using a non-negative 
lower bound (preferably 0) for the initialization. 
In the first loop, W  is initialized row wise, i.e., 
row wi

r  is optimized in order to minimize the 
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Frobenius norm of the ith  row di
r  of D , which 

is defined as d a wi
r

i
r

i
rH= − 0 . Since the 

optimization of any row of W  is independent 
to the optimization of any other row of W , all 
wi
r can be optimized concurrently. In the second 

loop, the columns of H  are initialized using 
on the previously computed and already opti-
mized rows of W , which need to be gathered 
beforehand (in line 7 of the algorithm). H  is 
initialized column wise, i.e., column h j

c  is 
optimized in order to minimize the Frobenius 
norm of the j th  column d j

c  of D , which is 
defined as d a hj

c
j
c

j
cW= − . The optimization 

of the columns of H  can be performed concur-
rently as well.

4.2. Optimization Strategy 2 – 
Iterative Optimization

The second optimization strategy aims at it-
eratively optimizing the NMF factors W  and 
H during the first iterations of the NMF. Com-
pared to the first strategy not all rows of W
and all columns of H  are optimized – instead 
the optimization is only performed on selected 
rows/columns. In order to improve the ap-
proximation as fast as possible we identify rows 
of D  with highest norm (the approximation of 
this row is worse than for other rows of D ) 
and optimize the corresponding rows of W . 

The same procedure is used to identify the 
columns of H  that should be optimized. Our 
experiments showed that not all NMF algo-
rithms are suited for this iterative optimization 
procedure. For many NMF algorithms there 
was no improvement with respect to the con-
vergence or a reduction of the overall error 
after a fixed number of iterations. However, for 
the multiplicative update (MU) algorithm – 
which is one of the most widely used NMF 
algorithms – this strategy is able to improve 
the quality of the factorization. Hence, Algo-
rithm 6 shows the pseudo code for the iterative 
optimization of the NMF factors during the first 
iterations using the update steps of the MU 
algorithm described in Section 2.1. As shown 
in Section 6, this update strategy is able to 
significantly reduce the approximation error 
per iteration for the MU algorithm. Due to the 
relatively high computational cost of the meta-
heuristics the optimization procedure is only 
applied in the first m iterations and only on c 
selected rows/columns of the NMF factors. 
Similar to strategy one the optimization of all 
rows of W  are independent from each other 
(identical for columns of H ), which allows for 
a parallel implementation of the proposed 
method. In the following we describe the vari-
ables and functions (for updating rows of W
) of Algorithm 6. Updating columns of H  is 
similar to updating the rows of W .

Figure 2. Illustration of the optimization process for row l of the NMF factor W. The lthrow of A 
(al

r) and all columns of H0 are the input for the optimization algorithms. The output is a row-
vector wl

r (the lthrow of W) which minimizes the norm of dl
r, the lthrow of the distance matrix D. 

The norm of dl
r is the fitness function for the optimization algorithms (minimization problem)
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• m : the number of iterations in which the 
optimization using meta-heuristics is 
applied

• c : the number of rows and/or columns that 
are optimized in the current iteration.

• ∆c : the value of c  is decreased by ∆c  
in each iteration. ∆c round c minitial= ( / )

• [ , _ ] ( ( ), )Val IX W sort norm descendi
r= ′ ′d

: returns the values Val  and the correspond-
ing indices ( IX W_ ) of the norm of all 
row vectors di

r  of D  in descending 
order.

• IX W IX W c_ _ ( : )= 1 : returns only the 
first c  elements of the vector IX W_ .

• minimize || ||a wi
r

i
r

FH− : see Figure 2 
and optimization strategy 1

4.3. Using NMF for Classification 
Problems

As already mentioned before, we also investi-
gate the performance of NMF when applied for 

classification tasks. In this article, we use two 
different classification methods for evaluating 
the classification accuracy of NMF based on 
the optimization strategies discussed in Sections 
4.1 and 4.2. Both classification methods have 
shown to work well for different application 
areas (Janecek, 2010).

Static Classification

In the first approach we analyze the classifica-
tion accuracy achieved with the basis vectors 
(i.e., features in W ). In this setting the NMF 
needs to be computed on the complete dataset 
(training and test data) which makes this tech-
nique only applicable on test data that is already 
available before the approximation/classifica-
tion. However, the advantage of this approach 
is that any freely chosen classification method 
can be applied on the basis features.

If the original data matrix A m n∈ ×�  is an 
instance ×  feature matrix, then the NMF factor 
W is a m k×  matrix, where every instance is 
described by k basis features, i.e., every column 

Algorithm 5. Pseudo code for the initialization procedure for NMF factors W and H. The two 
for-loops in lines 4 and 10 can be executed concurrently. SIO = Swarm Intelligence Optimization 
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of W corresponds to a basis feature. Note that 
this setup is different to the one discussed at 
the beginning of Section 2! By applying a clas-
sification algorithm on the rows of W instead 
on the rows of A  we can significantly reduce 
the dimension of the classification problem and 
thus decrease the computational cost for both, 
building the classification model and testing 
new data.

Dynamic Classification

The second approach can be applied dynami-
cally to new data. Here the factorization of the 
data (NMF) and the classification process are 
separated from each other (i.e., the NMF is per-
formed on labeled training data – the unlabeled 
test data does not have to be available at the 
time of performing the NMF). This approach is 
called NMF-LSI and is based on an adaptation 
of latent semantic indexing which is a variant 
of the well-known vector space model.

A vector space model (VSM) (Raghavan 
& Wong, 1999) is a widely used algebraic 
model for representing objects as vectors in a 
potentially very high dimensional metric vector 
space. The distance of a query vector q to all 
objects in a given feature×instance matrix A  
are usually measured in terms of the cosines of 
the angles between q and the columns of A  

such that cos
e A q
Ae qi

i

i

ϕ =
� �

|| || || ||2 2

.

Latent semantic indexing (LSI) (Berry, 
Drmac, & Jessup, 1999) is a variant of the 
basic VSM that replaces the original matrix A  
with a low-rank approximation Ak  of A . In 
the standard version of LSI the SVD (Section 
2) is used to constructAk , and cos iϕ  can be 

approximated as cos
e V U q

U V e qi
i k k k

k k k i

ϕ ≈
� �

�

Σ
Σ|| || || ||2 2

. LSI has computational advantages resulting 
in lower storage and computational cost, and 
often gives a cleaner and more efficient repre-
sentation of the (latent) relationship between 
data elements.

NMF-LSI: The approximation within LSI 
can be replaced with other approximations. 
Instead of using the truncated SVD (

A U Vk k k k:= Σ � ), we approximate A  with 
A W Hk k k:=  (the NMF). When using NMF, 
the value of k must be fixed prior to the ap-
proximation. The cosine of the angle between 
q and the ith column of A  can then be ap-

proximated as cos
e H W q
W H e qi

i k k

k k i

ϕ ≈
� � �

|| || || ||2 2

. In 

order to save computational cost, the left term 
in the numerator (e Hi k

� � ) and the left part of 
the denominator ( || ||W H ek k i 2 ) can be com-
puted a priori. In all three methods (VSM and 
both LSI variants) a query instance q is assigned 
to the same class as the majority of its k-closest 
(in terms of cosine similarity) instances in A
.

5. SETUP

Software

All software is written in Matlab. We used 
only publicly available NMF implementations: 
Multiplicative Update (MU, Matlab’s Statis-
tics Toolbox since v6.2, nnmf()). ALS using 
Projected Gradient (ALSPG) (Lin, 2007), and 
BayesNMF and FastNMF (Schmidt & Laurberg, 
2008). Matlab code for NNDSVD (Section 1.1) 
is also publicly available (cf. Boutsidis & Gal-
lopoulos, 2008). Codes for PSO and DE were 
adapted from Pedersen (2010), and code for GA 
from the appendix of Haupt and Haupt (2005). 
For FWA we used the same implementation as 
in the introductory paper Tan and Zhu (2010), 
and FSS was self-implemented following the 
algorithm provided in Bastos Filho et al. (2009).

Hardware

All experiments were performed on a SUN 
FIRE X4600 M2 with eight AMD Opteron 
quad-core processors (32 cores overall) with 
3.2 GHz, 2MB L3 cache, and 32GB of main 
memory (DDR-II 666).

Parallel Implementation

We implemented parallel variants of the opti-
mization algorithms exploiting Matlab’s paral-
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lel computing potential. Matlab’s Distributed 
Computing Server (which requires a separate 
license) allows for parallelizing the optimiza-
tion process over a large number (currently 
up to 64) of workers (threads). These workers 
can be nodes in multi-core computers, GPUs, 
or a node in a cluster of simple desktop PCs. 
Matlab’s Parallel Computing Toolbox (which 
is included in the basic version of Matlab) al-

lows running up to eight workers concurrently, 
but is limited to local workers, i.e., nodes on 
a multi-core machine or local GPUs, but no 
cluster support.

Parameter Setup

The dimension of the optimization problem is 
always identical to the rank k  of the NMF (cf. 

Algorithm 6. Pseudo code for the iterative optimization for the Multiplicative Update algorithm. 
SIO = Swarm Intelligence Optimization. The methods used in this algorithm are explained. 
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Section 4). The upper/lower bound of the search 
space was set to the interval [ ,( * ( ))]0 4 max A  
and upper/lower bound of the initialization to 
[ ,  ( )]0max A . In order to achieve fair results 
which are not biased due to excessive param-
eter tuning we used the same parameter settings 
for all data sets. These parameter settings were 
found by running a self-written benchmark 
program that tested several parameter combina-
tions on randomly generated data. For some 
optimization strategies (PSO, FSS and FWA) 
the recommended parameter settings from the 
literature worked fine. However, for GA and 
DE the parameter settings that were used in 
most studies in the literature did not perform 
very well. For GA we found that a very aggres-
sive (high) mutation rate highly improved the 
results. For DE we observed a similar behavior 
and found that the maximum crossover prob-
ability (1) achieved the best results. For all 
experiments in this paper, the following param-
eter settings were used:

• GA: mutation rate of 0.5; selection rate 
of 0.65

• PSO: (Gbest  topology) following Bratton 
and Kennedy (2007)ω  = 0.8, and c1  = c2  
= 2.05

• DE: crossover probability ( pc ) set to upper 
limit 1

• FSS: stepind initial_ = 1, stepind final_ =0.001, 
Wscale = 10

• FWA: number of sons (sonnum) set to 10

Data Sets

We used three different data sets to evaluate 
our methods. DS-RAND is a randomly created, 
fully dense 100 100×  matrix which is used in 
order to provide unbiased results. To evaluate 
the proposed methods in a classification context 
we further used two data sets from the area of 
email classification (spam/phishing detection). 
Data set DS-SPAM1 consists of 3000 e-mail 
messages described by 133 features, divided 
into three groups: spam, phishing and legitimate 
email. An exact description of this data set can 

be found in Janecek and Gansterer (2010). Data 
set DS-SPAM2 is the spambase data set taken 
from Kjellerstrand (2011) which consists of 
1813 spam and 2788 non-spam messages. DS-
SPAM1 represents a ternary classification 
problem; DS-SPAM2 represents a typical bi-
nary classification problem.

6. EXPERIMENTAL 
EVALUATION

The evaluation is split up into two parts. First 
we evaluate the two optimization strategies 
proposed in Section 4.1 and Section 4.2, then 
we evaluate the quality of NMF in a classifica-
tion context.

6.1. Evaluation of 
Optimization Strategy 1

Initialization

Before evaluating the improvement of the NMF 
approximation quality as such, we first measure 
the initial error after initializing W  and H
(before running the NMF algorithm). Figure 3 
and Figure 4 show the average approximation 
error (i.e., Frobenius norm / fitness) per row 
(left) and per column (right) for data set DS-
RAND.

The figures on the left side show the aver-
age (mean) approximation error per row after 
initializing the rows of W  (first loop in Algo-
rithm 5). The figures on the right side show the 
average (mean) approximation error per column 
after initializing the columns of H  (second 
loop in Algorithm 5). The legends are ordered 
according to the average approximation error 
achieved after the maximum number of function 
evaluations for each figure (top = worst, bottom 
= best). When the NMF rank k is small (Figure 
3, k=5) all optimization algorithms except FWA 
achieve similar results. Except FWA, all opti-
mization algorithms quickly converge to a good 
result. With increasing complexity (i.e., increas-
ing rank k) FWA clearly improves its results, 
as shown in Figure 4. The gap between the 
optimization algorithms is much bigger for 
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larger rank k. Note that GA needs more than 
2000 evaluations to achieve a low approxima-
tion error for initializing the rows of W .  When 
initializing the columns of H , PSO and GA 
suffer from their high approximation error dur-
ing the first iterations, which is caused by the 
relatively sparse factor matrix W for PSO and 
GA. Although PSO is able to reduce the ap-
proximation error significantly during the first 
500 iterations, FSS and GA achieve slightly 
better final results. Generally, FSS achieves the 
best approximation accuracy after the initializa-
tion procedure for large k. However, as shown 
later the initial approximation error is not nec-
essarily an indicator for the approximation 
quality of NMF or the resulting classification 
accuracy.

Runtime Performance

When parallelizing a sequential algorithm over 
p  processors the speed-up indicates how much 
the parallel algorithm can perform specific tasks 
faster than the sequential algorithm. Speed-up 
is defined as S ET ETp sequential parallel= / , where 
ET  is the execution time. A linear speed-up 
is achieved when Sp  is equal to p . Efficiency 
is another metric that estimates how well-uti-
lized the processors are in solving the problem, 
compared to the cost of communication and 
synchronization. Efficiency is defined as 
E S pp p= / . For algorithms with linear speed-
up the efficiency is 1, for algorithms with 
lower speed-up ratio it is between 0 and 1.

Figure 5 shows the runtime behavior for 
optimization strategy 1 with increasing number 
of Matlab workers. Runtimes are shown for 
the FSS optimization algorithm – however, all 
optimization algorithms have rather similar 
runtimes. Due to license limitations we only 
had Matlab’s Parallel Computing Toolbox 
available which is limited to 8 workers (cf. 
Section 5). We measured runtimes and speed-
up for up to 8 workers (average efficiency 
of about 0.95) and estimated the behavior of 
speed-up and runtime for a larger number of 
workers (based on this efficiency). Upgrading 
to Matlab’s Distributed Computing Server is 
possible without any code-changes and thus 
only a license issue. When using eight work-
ers, the NNDSVD initialization (the best NMF 
initialization strategy from the literature, Section 
1.1) is a bit faster, but estimation shows that the 
proposed initialization strategy is faster when 12 
or more workers are used. NNDSVD is already 
optimized and cannot be parallelized further in 
its current implementation.

Approximation Quality

For evaluating the approximation results 
achieved by NMF using the factors W  and H  
initialized by the optimization algorithms, we 
compare our results to random initialization as 
well as to NNDSVD. Figure 6 shows the ap-
proximation error on the y-axis (log scale) after 
a given number of NMF iterations for four NMF 
algorithms using different initialization methods 
(for DS-RAND). The initialization methods in 

Figure 3. Left hand-side: average approximation error per row (after initializing rows of W). 
Right hand-side: average approximation error per column (after initializing of H). NMF rank k 
= 5. Legends are ordered according to approximation error (top = worst, bottom = best)
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the legend are ordered (top = worst, bottom = 
best). Since the MU algorithm (A) has low cost 
per iteration but converges slowly, the first 100 
iterations are shown (for all other algorithms 
the first 25 iterations are shown). For MU, all 
initialization variants achieve a smaller ap-
proximation error than random initialization. 
NNDSVD shows slightly better results than 
PSO and FWA, but GA, DE and especially FSS 
are able to achieve a smaller error per iteration 
than NNDSVD. For ALSPG (B), the new ini-
tialization strategy achieves better results than 
random initialization and also achieves a better 

approximation error than NNDSVD. This 
improvement is independent of the actual op-
timization algorithm. The same behavior can 
be seen for FastNMF (C) and BayesNMF (D). 
It has to be mentioned that FastNMF and 
BayesNMF were developed after the NNDSVD 
initialization. Surprisingly, when using Fast-
NMF, NNDSVD achieves a lower approxima-
tion than random initialization. When compar-
ing the different meta-heuristics, FSS achieves 
the best results amongst all optimization algo-
rithms and achieves the closest approximation 
after 100 (MU) and 25 (ALSPG, FastNMF, 

Figure 4 . Similar information as for Figure 3, but for NMF rank k = 30

Figure 5. Runtime and speed-up measurement/estimation for DS-RAND using 1500 function 
evaluations per row/column for k= 5. As a reference, NNDSVD needs about 0.16 seconds for 
k=5. This indicates that if the number of workers is larger than 12, the proposed optimization 
strategy is faster than NNDSVD
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BayesNMF) iterations, respectively. DE and 
GA follow with a small gap since they are not 
as stable as FSS (i.e., they achieve good results 
for some, but not for all NMF algorithms.

6.2. Evaluation of Optimization 
Strategy 2

Figure 7 shows the convergence curves for the 
NMF approximation using optimization strat-
egy 2 for different values of rank k (data set 
DS-RAND). Due to the relatively high com-
putational cost of the meta-heuristics we applied 
our optimization procedure here only on the 
rows of W , while the columns in H  remained 
unchanged. Experiments showed that with this 
setting the loss in accuracy compared to opti-
mizing both, W andH , is relatively small while 
the runtime can be increased significantly. m  
was set to 2 which indicates that the optimiza-
tion is only applied in the first two iterations, 

and c was set to 20. As can be seen, the ap-
proximation error per iteration can be reduced 
when using optimization strategy 2. For small 
rank k (left side of Figure 7) the improvement 
is significant but decreases with increasing 
values of k (see right side of Figure 7). For 
larger k (larger than 10) the improvement over 
the basic MU is only marginal.

Runtime Performance

Figure 8 shows the reduction in runtime for 
different rank k when the same accuracy as for 
basic MU should be achieved. Runtimes are 
shown for a parallel implementation using 32 
Matlab workers. Basic MU sets the baseline (1 
= 100%), the runtimes of the optimization 
strategy 2 (using different optimization algo-
rithms) are given as t topt XX Basic MU− /   . For ex-
ample, for small rank k the runtime can often 
be reduced by more than 50%. With increasing 

Figure 6. Approximation error archived by different NMF algorithms using different initializa-
tion variants (k=30, after 1500 fitness evaluations)
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rank k the runtime savings get smaller and are 
only marginal for k=10. For rank k larger than 
12 the basic MU algorithm is faster than opti-
mization strategy 2.

6.3. Evaluation of the 
Classification Accuracy

Since optimization strategy 1 (initialization, 
Sections 4.1 and 6.1) achieves a faster, closer, 
and more stable approximation as optimization 
strategy 2 (iterative update, Sections 4.2 and 
6.2) we evaluate the classification accuracy 
for this strategy. In the following, we mea-
sure the quality of optimization strategy 1 as 
pre-processing step for the two classification 
approaches mentioned in Section 4.3. Within 
the static classification approach any machine 

learning algorithm can be used for classifica-
tion, but the approximation used for reducing 
the dimensionality of the data set (SVD, PCA, 
NMF) needs to be applied on the complete 
data set. Contrary, the dynamic classification 
approach can be applied on the training data, 
the test data does not need to be available at 
the time of computing the approximation. 
However, this approach cannot be applied to 
all classification methods.

Static Classification

We used three classification algorithms from 
the freely available WEKA toolkit (Witten and 
Frank 2005) to compare the classification ac-
curacies achieved with the NMF factor W  
based on different NMF initializations: A sup-

Figure 7. Accuracy per Iteration when updating only the row of W, m=2, c=20. Left: k=2, right: k=5

Figure 8. Proportional runtimes for achieving the same accuracy as basic MU after 30 iterations 
for different values of k when updating only the rows of W. (m=2, c=20)

IGI GLOBAL PROOF



International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011   29

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

port vector machine (SVM) based on the se-
quential minimal optimization (SOM) algorithm 
using a polynomial kernel with an exponent of 
1; a k-nearest neighbor (kNN) classifier; and a 
J4.8 decision tree based on the C4.5 decision 
tree algorithm. Results were achieved using a 
10-fold cross-validation, i.e., by randomly 

partitioning the data sets into 10 subsamples 
and then iteratively using one 9 subsamples as 
training data and 1 for testing.

Table 1 shows the overall classification 
results achieved with data set DS-SPAM1 using 
three different values of rank k and the three 
different classification methods mentioned 

Table 1. Classification results (static classification) for DS-SPAM1

J4.8 kNN(1) SVM (SMO)

all features: 0,973 all features: 0,977 all features: 0,976

NMF Alg Init k = 30 k = 15 k = 5 k = 30 k = 15 k = 5 k = 30 k = 15 k = 5

ALSPG DE 0,968 0,972 0,965 0,974 0,972 0,968 0,973 0,956 0,940

ALSPG FSS 0,961 0,972 0,967 0,971 0,972 0,969 0,973 0,954 0,939

ALSPG FWA 0,973 0,969 0,970 0,972 0,973 0,968 0,964 0,954 0,938

ALSPG GA 0,970 0,968 0,969 0,973 0,970 0,968 0,973 0,957 0,947

ALSPG PSO 0,971 0,972 0,969 0,977 0,971 0,968 0,972 0,954 0,937

ALSPG NNDSVD 0,963 0,976 0,964 0,969 0,972 0,968 0,966 0,952 0,938

ALSPG RAND 0,943 0,938 0,935 0,952 0,940 0,938 0,948 0,942 0,913

BAYES DE 0,971 0,970 0,970 0,974 0,973 0,968 0,971 0,954 0,946

BAYES FSS 0,966 0,973 0,971 0,976 0,971 0,969 0,975 0,953 0,947

BAYES FWA 0,970 0,970 0,968 0,972 0,974 0,968 0,957 0,954 0,941

BAYES GA 0,966 0,971 0,968 0,974 0,973 0,969 0,972 0,955 0,947

BAYES PSO 0,968 0,967 0,969 0,970 0,971 0,970 0,966 0,957 0,937

BAYES NNDSVD 0,968 0,972 0,968 0,970 0,973 0,969 0,966 0,952 0,947

BAYES RAND 0,952 0,941 0,953 0,961 0,951 0,947 0,958 0,937 0,926

FAST DE 0,966 0,969 0,969 0,977 0,973 0,968 0,970 0,955 0,946

FAST FSS 0,967 0,971 0,970 0,976 0,971 0,969 0,975 0,953 0,947

FAST FWA 0,968 0,970 0,969 0,971 0,974 0,968 0,957 0,954 0,941

FAST GA 0,966 0,965 0,968 0,973 0,971 0,969 0,973 0,955 0,947

FAST PSO 0,968 0,970 0,970 0,974 0,971 0,970 0,973 0,956 0,937

FAST NNDSVD 0,966 0,973 0,970 0,970 0,973 0,968 0,966 0,952 0,939

FAST RAND 0,954 0,949 0,937 0,958 0,951 0,941 0,957 0,935 0,917

MU DE 0,955 0,952 0,965 0,966 0,959 0,968 0,962 0,953 0,940

MU FSS 0,965 0,960 0,967 0,967 0,964 0,969 0,966 0,952 0,939

MU FWA 0,949 0,956 0,970 0,964 0,966 0,968 0,959 0,955 0,938

MU GA 0,954 0,961 0,969 0,966 0,966 0,968 0,961 0,944 0,947

MU PSO 0,958 0,939 0,969 0,949 0,946 0,968 0,953 0,940 0,937

MU NNDSVD 0,964 0,967 0,964 0,972 0,973 0,968 0,963 0,954 0,938

MU RAND 0,941 0,937 0,947 0,948 0,941 0,951 0,951 0,930 0,927
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above. The overall classification accuracy is 
computed as the number of correct classified 
email messages divided by the total number 
of messages. The most-left column indicates 
the NMF algorithm and the second column the 
initialization strategy used for computing the 
NMF (RAND = random initialization). Note 
that the number of features is reduced to 30, 
15 and 5, respectively, compared to 133. This 
reduction in the number of features signifi-
cantly speeds up both, the process of building 
the classification model and the classification 
process itself. The best result for each NMF 
algorithm and each rank k is highlighted in 
bold letters. The proposed initialization strate-
gies achieve better classification results as the 
state-of-the-art initialization method NNDSVD 
and significantly better results as random NMF 
initialization. Among the applied optimization 
algorithms there is not much difference, though 
FSS achieves a larger number of best results 
then the other algorithms. Results for J4.8 and 
kNN are very stable even for k=5 and are almost 
identical to the classification result achieved 
with all features. For SVM, the classification 
result tends to decrease with decreasing rank 
k. This behavior has been observed in another 
study (Janecek, Gansterer, Demel, & Ecker, 
2008) where SVM has been applied on data sets 
from other dimensionality reduction methods 
(PCA). However, compared to NNDSVD and 
random initialization the proposed initialization 
methods achieve better results for all ranks of 
k. Comparing the different NMF algorithms it 
can be seen the MU achieves lower classifica-
tion accuracy compared to ALSPG, FastNMF 
and BayesNMF.

Table 2 shows the static classification re-
sults achieved with data set DS-SPAM2. Results 
are shown for the FastNMF, which achieved 
the most stable results of all NMF algorithms 
for this data set. Again, the proposed initializa-
tion strategy again achieves better results as 
NNDSVD and random initialization. Compared 
to DS-SPAM1, the results for this data set tend 
to decrease with decreasing rank k. This indi-
cates that it is important to find a good trade-off 

between classification accuracy and computa-
tional cost.

Dynamic Classification

Table 3 shows the classification results achieved 
with the dynamic classification approach 
described in Section 4.3 for DS-SPAM1. In 
general, the classification accuracies achieved 
for data set DS-SPAM2 using the dynamic 
classification approach are rather similar to 
the results for DS-SPAM1 shown in Table 3. 
The baseline to which the NMF-LSI variants 
are compared are given by a standard LSI 
classification using SVD as approximation 
algorithm (Section 4.3). A basic vector space 
model achieves a classification accuracy of 
0.911, while LSI achieves 0.911, 0.914 and 
0.887, respectively, for rank k set to 30, 15 and 
5. Similar to Table 2 (DS-SPAM2) the results 
are sensible with respect to the value of rank k. 
For very small values of k (5) the classification 
results generally tend to decrease. Overall, the 
initialization strategy based on meta-heuristics 
achieve much better classification accuracy as 
NNDSVD and random initialization, and also 
outperform basic LSI in many cases. The best 
results are again highlighted in bold letters. 
Especially GA and FWA achieve good clas-
sification results.

7. CONCLUSION

In this article we presented two new optimiza-
tion strategies for improving the NMF using 
optimization algorithms based on swarm intel-
ligence. While strategy one uses swarm intel-
ligence algorithms to initialize the factors W  
and H prior to the factorization process of 
NMF, the second strategy aims at iteratively 
improving the approximation quality of NMF 
during the first iterations of the factorization. 
Overall, five different optimization algorithms 
were used for improving NMF: Particle Swarm 
Optimization (PSO), Genetic Algorithms (GA), 
Fish School Search (FSS), Differential Evolu-
tion (DE), and Fireworks Algorithm (FWA).

IGI GLOBAL PROOF



International Journal of Swarm Intelligence Research, 2(4), 12-34, October-December 2011   31

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Both optimization strategies allow for ef-
ficiently computing the optimization of single 
rows of W  and/or single columns of H  in 
parallel. The achieved results are evaluated in 
terms of accuracy per runtime and per iteration, 
final accuracy after a given number of NMF 
iterations, and in terms of the classification 

accuracy achieved with the reduced NMF fac-
tors when being applied for machine learning 
applications. Especially the initialization strat-
egy (optimization strategy 1) is able to sig-
nificantly improve the approximation results 
of NMF compared to random initialization and 
state-of-the-art methods. Among the different 

Table 2. Classification results (static classification) for DS-SPAM2 (FastNMF) 

J4.8 kNN(1) SVM (SMO)

all features: 0,921 all features: 0,907 all features: 0,904

NMF 
Alg Init k = 30 k = 15 k = 5 k = 30 k = 15 k = 5 k = 30 k = 15 k = 5

FAST DE 0,918 0,893 0,863 0,902 0,880 0,821 0,905 0,865 0,798

FAST FSS 0,920 0,920 0,773 0,895 0,889 0,826 0,894 0,880 0,773

FAST FWA 0,916 0,916 0,864 0,887 0,898 0,797 0,893 0,885 0,757

FAST GA 0,918 0,914 0,865 0,889 0,896 0,827 0,896 0,891 0,778

FAST PSO 0,921 0,911 0,878 0,895 0,892 0,850 0,896 0,881 0,827

FAST NNDSVD 0,919 0,911 0,811 0,895 0,894 0,816 0,894 0,882 0,766

FAST RAND 0,907 0,908 0,813 0,885 0,886 0,803 0,887 0,864 0,752

Table 3. Dynamic classification using DS-SPAM1. Basic vector space model (all features): 0,911 

Baseline LSI 0,911 0,914 0,887 LSI 0,911 0,914 0,887

NMF Alg Init k = 30 k = 15 k = 05 NMF 
Alg Init k = 30 k = 15 k = 05

ALSPG DE 0,911 0,898 0,889 FAST DE 0,912 0,895 0,888

ALSPG FSS 0,943 0,899 0,877 FAST FSS 0,926 0,897 0,879

ALSPG FWA 0,930 0,914 0,883 FAST FWA 0,913 0,912 0,891

ALSPG GA 0,927 0,901 0,896 FAST GA 0,927 0,914 0,875

ALSPG PSO 0,918 0,889 0,885 FAST PSO 0,923 0,914 0,847

ALSPG NNDSVD 0,914 0,911 0,840 FAST NNDSVD 0,911 0,913 0,846

ALSPG RAND 0,901 0,886 0,874 FAST RAND 0,898 0,899 0,838

BAYES DE 0,911 0,906 0,888 MU DE 0,893 0,897 0,834

BAYES FSS 0,926 0,897 0,879 MU FSS 0,892 0,882 0,807

BAYES FWA 0,914 0,911 0,891 MU FWA 0,913 0,882 0,843

BAYES GA 0,930 0,916 0,875 MU GA 0,899 0,899 0,795

BAYES PSO 0,922 0,915 0,848 MU PSO 0,922 0,900 0,812

BAYES NNDSVD 0,904 0,913 0,846 MU NNDSVD 0,906 0,908 0,795

BAYES RAND 0,898 0,896 0,854 MU RAND 0,876 0,889 0,817
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optimization algorithms, the recently developed 
fish school search algorithm achieves slightly 
better results than the other heuristics. The it-
erative strategy (optimization strategy 2) can 
improve one of the basic NMF algorithms (the 
multiplicative update strategy) for very small 
rank k and can thus be used if a rough and very 
fast approximation method is needed. Moreover, 
the NMF subsets achieved with optimization 
strategy 1 have shown to clearly improve the 
classification accuracy of NMF compared to 
state-of-the-art initialization strategies, and also 
achieve better results as feature subsets com-
puted with other low-approximation techniques.

Future Work

Our investigations provide several important 
and interesting directions for future work. First 
of all, we will set the focus on developing 
optimization strategies that update the factor 
matrices W  and H  concurrently instead of 
applying an alternating update fashion where 
one factor is fixed and the other one is optimized. 
Moreover, we will apply the optimization 
strategies on NMF problems were sparseness 
constraints are enforced, i.e., the optimization 
strategies are enforced to compute solutions 
with a certain percentage of zero values. We 
also plan to use different NMF optimization 
functions (not based on the Frobenius norm) 
for our optimization methods and several re-
cently developed NMF algorithms (HALS, 
multilayer NMF, etc.).
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INTRODUCTION

Many real-world applications can be represent-
ed as optimization problems of which algorithms 
are required to have the capability to search 
for optimum. Originally, these optimization 
problems were mathematically represented by 
continuous and differentiable functions so that 
algorithms such as hill-climbing algorithms can 
be designed and/or utilized to solve them. Tradi-
tionally, these hill-climbing like algorithms are 
single-point based algorithms such as gradient 
decent algorithms which move from the current 
point along the direction pointed by the negative 
of the gradient of the function at the current 
point. These hill-climbing algorithms can find 
solutions quickly for unimodal problems, but 

they have the problems of being sensitive to 
initial search point and being easily trapped 
into local optimum for nonlinear multimodal 
problems. Furthermore, these mathematical 
functions need to be continuous and differen-
tiable, which instead greatly narrows the range 
of real-world problems that can be solved by 
hill-climbing algorithms. Recently, evolution-
ary algorithms have been designed and utilized 
to solve optimization problems. Different from 
traditional single-point based algorithms such 
as hill-climbing algorithms, each evolutionary 
algorithm is a population-based algorithm, 
which consists of a set of points (population 
of individuals). The population of individuals 
is expected to have high tendency to move 
towards better and better solution areas itera-
tion over iteration through cooperation and/
or competition among themselves. There are 
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a lot of evolutionary algorithms out there in 
the literature. The most popular evolutionary 
algorithms are evolutionary programming (Fo-
gel, 1962), genetic algorithm (Holland, 1975), 
evolution strategy (Rechenberg, 1973), and 
genetic programming (Koza, 1992), which were 
inspired by biological evolution. In evolutionary 
algorithms, population of individuals survives 
into the next iteration. Which individual has 
higher probability to survive is proportional 
to its fitness value according to some evalu-
ation function. The survived individuals are 
then updated by utilizing evolutionary opera-
tors such as crossover operator and mutation 
operator, etc. In evolutionary programming and 
evolution strategy, only the mutation operation 
is employed, while in genetic algorithms and 
genetic programming, both the mutation op-
eration and crossover operation are employed. 
The optimization problems to be optimized 
by evolutionary algorithms do not need to be 
mathematically represented as continuous and 
differentiable functions, they can be represented 
in any form. Only requirement for representing 
optimization problems is that each individual 
can be evaluated as a value called fitness value. 
Therefore, evolutionary algorithms can be 
applied to solve more general optimization 
problems, especially those that are very difficult, 
if not impossible, for traditional hill-climbing 
algorithms to solve.

Recently, another kind of algorithms, called 
swarm intelligence algorithms, is attracting 
more and more attentions from researchers. 
Swarm intelligence algorithms are usually 
nature-inspired optimization algorithms instead 
of evolution-inspired optimization algorithms 
such as evolutionary algorithms. Similar to 
evolutionary algorithms, a swarm intelligence 
algorithm is also a population-based optimiza-
tion algorithm. Different from the evolutionary 
algorithms, each individual in a swarm intel-
ligence algorithm represents a simple object 
such as ant, bird, fish, etc. So far, a lot of swarm 
intelligence algorithms have been proposed 
and studied. Among them are particle swarm 
optimization(PSO) (Eberhart & Shi, 2007; 
Shi & Eberhart, 1998), ant colony optimiza-

tion algorithm(ACO) (Dorigo, Maniezzo, & 
Colorni, 1996), bacterial forging optimization 
algorithm(BFO) (Passino, 2010), firefly opti-
mization algorithm (FFO) (Yang, 2008), bee 
colony optimization algorithm (BCO) (Tovey, 
2004), artificial immune system (AIS) (de 
Castro & Von Zuben, 1999), fish school search 
optimization algorithm(FSO) (Bastos-Filho, 
De Lima Neto, Lins, Nascimento, & Lima, 
2008), shuffled frog-leaping algorithm (SFL) 
(Eusuff & Lansey, 2006), intelligent water 
drops algorithm (IWD) (Shah-Hosseini, 2009), 
to just name a few.

In a swarm intelligence algorithm, an 
individual represents a simple object such as 
birds in PSO, ants in ACO, bacteria in BFO, 
etc. These simple objects cooperate and compete 
among themselves to have a high tendency to 
move toward better and better search areas. 
As a consequence, it is the collective behavior 
of all individuals that makes a swarm intel-
ligence algorithm to be effective in problem 
optimization.

For example, in PSO, each particle (indi-
vidual) is associated with a velocity. The velocity 
of each particle is dynamically updated accord-
ing to its own historical best performance and 
its companions’ historical best performance. All 
the particles in the PSO population fly through 
the solution space in the hope that particles will 
fly towards better and better search areas with 
high probability.

Mathematically, the updating process of 
the population of individuals over iterations 
can be looked as a mapping process from one 
population of individuals to another population 
of individuals from one iteration to the next 
iteration, which can be represented as Pt+1 = 
f(Pt), where Pt is the population of individuals 
at the iteration t, f() is the mapping function. 
Different evolutionary algorithm or swarm 
intelligence algorithm has a different mapping 
function. Through the mapping function, we 
expect the population of individuals will update 
to better and better solutions over iterations. 
Therefore mapping functions should possess 
the property of convergence. For nonlinear and 
complicated problems, mapping functions more 
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like to move population of individuals toward 
local minima, which may not be good enough 
solutions to the optimization problems to be 
solved. A good mapping function should have 
not only the capability to converge, but also the 
capability to diverge when it gets trapped into 
local minima. As for evolutionary algorithms 
and swarm intelligence algorithms, they should 
have the capability to be in convergence or di-
vergence state accordingly. A lot of researches 
have been done and reported with regards to 
this. For example, in particle swarm optimiza-
tion algorithms, diversity has been preserved 
to keep the algorithm to have good search ca-
pability. Different diversity measurements have 
been defined and monitored (Shi & Eberhart, 
2008, 2009). A better designed population-
based algorithm should have a good balance 
of convergence and divergence.

In this paper, we will introduce a new 
optimization algorithm that is based on the 
collective behavior of human being, that is, 
the brainstorming process. It is natural to ex-
pect that an optimization algorithm based on 
human collective behavior could be a better 
optimization algorithm than existing swarm 
intelligence algorithms which are based on 
collective behavior of simple insects, because 
human beings are social animal and are the most 
intelligent animals in the world. The designed 
optimization algorithm will naturally have the 
capability of both convergence and divergence.

The remaining paper is organized as fol-
lows. The human brainstorming process is 
reviewed. The model of a brainstorming process 
is proposed and discussed. Two versions of 
novel optimization algorithms inspired by hu-
man brainstorming process are introduced and 
described, followed by experiments and result 
discussion on benchmark functions. Finally, 
conclusions are given.

BRAINSTORMING PROCESS

Brainstorming process has often been utilized 
for innovative problem solving. It can solve a 
lot of difficult problems which usually can’t be 

solved by a single person. In a brainstorming 
process, a group of people with diverse back-
ground are gathered together to brainstorm. A 
facilitator will usually be involved to facilitate 
the brainstorming process but not directly in-
volved in idea generation himself (or herself). 
The facilitator usually should have enough 
facilitation experience but have less knowledge 
about the problem to be solved so that generated 
ideas will have less, if not none, biases from the 
facilitator. The brainstorming process is used to 
generate many ideas as diverse as possible so 
that good solutions to solve the problem can be 
obtained from these ideas. The brainstorming 
process usually consists of several rounds of 
idea generation. In each round of idea genera-
tion, the brainstorming group is asked to come 
out a lot of ideas. At the end of each round of 
idea generation process, better ideas among 
them will be picked up and will serve as clues 
to generate ideas in the next round of idea gen-
eration process. In the brainstorming process, 
there is another group of persons that serve the 
purpose to pick up better ideas from the ideas 
generated in each round of idea generation 
process. Through the brainstorming process, 
hopefully great and un-expectable solution can 
occur from collective intelligence of human 
being, and the problem can usually be solved 
with high probability.

To help generate more diverse ideas, the 
Osborn’s original four rules of idea generation in 
a brainstorming process (Osborn, 1963; Smith, 
2002) should be obeyed. The four rules are listed 
in the Table 1. One major role of the facilitator 
is to facilitate the brainstorming group to obey 
the Osborn’s four rules.

The four rules in Table 1 guide the idea 
generation in each round of idea generation 
during a brainstorming process. In order to keep 
the brainstorming group to be open-minded, 
there is no idea as good idea or bad idea, any 
idea is welcomed. For any idea generated dur-
ing each round of idea generation process, there 
should be no judgment and/or criticism wheth-
er it is good idea or bad idea. Any judgment 
should be held back until the end of this round 
of idea generation process when better ideas 
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are picked up by problem owners. This is what 
the Rule 1 “Suspend Judgment” means. The 
Rule 2 “Anything Goes” means that any thought 
comes to your mind should be raised and re-
corded. Don’t let any idea or thought pass by 
without sharing with other brainstorming group 
members. The Rule 3 “Piggyback” says any 
generated idea could and should serve as a clue 
to inspire the brainstorming group to come out 
more ideas. Ideas are not independently gener-
ated. They are related. The late generated ideas 
are inspired and dependent on the previously 
generated ideas. The Rule 4 “Go for quantity” 
says that we focus on generating as many ideas 
as possible. Hopefully quality of ideas will 
come out of quantity of idea naturally. Without 
generating large quantity of ideas, it is naive to 
believe that good quality ideas will come out.

The purpose to generate ideas according 
to rules in Table 1 is to keep the brainstorming 
group to be open-minded as much as possible 
so that they will generate ideas as diverse as 
possible. A brainstorming process generally fol-
lows the steps listed in Table 2 (Shi, 2011).After 
some time of brainstorming, the brainstorming 
group will become tired and narrow-minded, 
and therefore it becomes harder to come out 

new diverse ideas. The operation of picking 
up an object in Step 6 in Table 2 serves for the 
purpose to help brainstorming group to diverge 
from previously generated ideas therefore to 
avoid being trapped by the previously generated 
ideas. Picking up several good ideas from ideas 
generated so far is to cause the brainstorming 
group to pay more attention to the better ideas 
which the brainstorming group believes to be. 
The ideas picked-up works like point-attraction 
for the idea generation process while ideas gen-
eration works like point-expansion. Therefore, 
there are attraction and expansion embedded in 
the brainstorming process naturally.

MODELING BRAINSTORMING 
PROCESS

The procedure of a brainstorming process listed 
in Table 2 can be described by the flow chart 
shown in Figure 1. There are three rounds of 
idea generation involved in a brainstorming pro-
cess in general. In each round of brainstorming 
process, there are several steps. For example, 
in the first round, there are idea generations, 
idea evaluations, and idea picking up. The idea 
evaluation step serves the purpose of finding 

Table 1. Osborn’s original rules for idea generation in a brainstorming process 

1. Suspend Judgment
2. Anything Goes
3. Cross-fertilize (Piggyback) 
4. Go for Quantity

Table 2. Steps in a brainstorming process 

1. Get together a brainstorming group of people with as diverse background as possible; 
2. Generate many ideas according to the rules in Table 1; 
3. Have several, say 3 or 5, clients act as the owners of the problem to pick up several, say one from each owner, 
ideas as better ideas for solving the problem; 
4. Use the ideas picked up in the Step 3 with higher probability than other ideas as clues, and generate more ideas 
according to the rules in Table 1; 
5. Have the owners to pick up several better ideas generated as did in Step 3; 
6. Randomly pick an object and use the functions and appearance of the object as clues, generate more ideas ac-
cording to the rules in Table 1;
7. Have the owners to pick up several better ideas; 
8. Hopefully a good enough solution can be obtained by considering the ideas generated.
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out better ideas. By idea evaluation, good 
ideas could be identified and picked up in the 
Picking up Better Ideas step, which simulates 
picking up good ideas by problem owners. The 
first round simulates Step 2 &3 in Table 2. The 
second round is the same as the first round which 
simulates Step 4 & 5 in Table 2. The third round 
is the same as the first two rounds except that 
one additional step Selecting an Object as Clue 
is added to simulate randomly picking up an 
object as clues in Step 6 in Table 2. Each step 
in a brainstorming process therefore can be 
modeled (and/or simulated) and put together as 
a model for the brainstorming process as shown 
in Figure 1, which will be further explained and 
modified in the following sub-sections.

Population

A solution to a problem with d variables to be 
optimized can be looked as a point in the d 
dimensional solution space. An idea can be con-
sidered as a potential solution, i.e., a point in the 

solution space. Therefore to find a good solution 
is equivalent to find a point or a solution in the 
solution space. A group of ideas can therefore 
be considered as a population of solutions or 
individuals in the solution space. If for every 
round of idea generation in the brainstorming 
process, a fixed number of n ideas will be gener-
ated before the problem owners pick up good 
ideas, then these n ideas can be considered as 
a population of individuals (or solutions) with 
population size being n in the solution space. 
Therefore, the human brainstorming process 
can be considered as generating a population 
of individuals iteratively three times as shown 
in Figure 1. One round of idea generation can 
be considered as one iteration of individual 
generations in population-based optimization 
algorithms such as particle swarm optimiza-
tion algorithm. The difference between them 
is the way how new population of individuals 
is generated based on the current population 
of individuals.

Figure 1. Flow chart of a brainstorming process
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Initialization

The Generating Ideas step in the very first 
round of idea generations can be considered as 
the population initialization in any population-
based optimization algorithm. During the 
population initialization, to gather a group of 
people with as diverse background as possible 
can be considered as initializing the population 
of individuals randomly with uniform distribu-
tion over the dynamic range of the solution 
space. The whole population of individuals can 
be totally randomly generated or only portion 
of the population is randomly generated and 
the rest of the population of individuals will 
be generated by adding noise to the already 
randomly generated individuals. To preserve 
the initialized population to be diversified, 
usually a priori domain knowledge should not 
be utilized in the initialization process, unless 
when computation cost is the first priority, in 
which the domain knowledge should be utilized 
to initialize the population to find good solution 
quickly at the risk of premature convergence.

Clustering

Each round of idea generation generates enough 
ideas, but not necessary too many ideas because 
otherwise all the generated ideas will more like 
to diverge, and therefore will be far away from 
expected ideas which are close to expected 
solutions. To have diverse ideas is good to seek 
around all possible ideas to help find good po-
tential solutions, but there should be a tradeoff 
between divergence and focus. We also need to 
pull the brainstorming group back to concentrate 
on generating ideas around some areas with high 
potential to speed up searching for good enough 
ideas. The problem owners in the brainstorming 
process serve this purpose. They are asked to 
pick good ideas from generated ideas. Because 
every problem owner has different expertise and 
knowledge, therefore the picked ideas will be 
different. They represent potential good ideas 
that have been generated so far. Next round of 
idea generation should better be conducted with 
focus on them. Certainly, it does not exclude 

idea generation by piggybacking other ideas, 
but with small probability. One way to simulate 
the idea picking up by problem owners is to 
use clustering algorithms. All the individuals 
(ideas) in the population are clustered into 
several clusters. The number of clusters cor-
responds to the number of problem owners. 
The cluster center of each cluster corresponds 
to the idea(s) picked up by a problem owner. 
The cluster center for each cluster can be the 
best performed individual within this cluster. It 
can also be the centroid of the cluster.

One possible clustering algorithm is the 
k-means clustering algorithm (MacQueen, 
1967), which requires to know the number of 
clusters k a priori. The number k corresponds 
to the number of problem owners, that is, the 
number of problem owners is fixed. The self-
organizing feature map (Kohonen & Honkela, 
2007) is another kind of clustering algorithm, in 
which the number of clusters is unknown before 
running the algorithm. The number of clusters 
will be determined by the algorithm itself ac-
cording to the distribution of individuals in the 
population. Other clustering algorithms (Xu 
& Wunsch, 2005) such as partitioning around 
medoids (Theodoridis & Koutroumbas, 2006), 
fuzzy c-means (FCM) (Nock & Nielsen, 2006), 
etc. can also be employed.

Individual Generation

For idea generations by piggyback, it is similar to 
randomly select one or several existing individu-
als (or ideas) and generate a new individual by 
adding noise to the selected individual(s). The 
purpose of doing this is to guarantee that new 
individuals (ideas) are generated by piggyback-
ing existing individuals as diverse as possible. 
If a new idea (individual) xnew is generated by 
piggybacking one existing idea (individual) xold, 
it can be written as

x x t random tnew
i

old
i= + ( )ξ * ( )  (1)

where xnew
i and xold

i are the ith dimension of xnew 
and xold, respectively; random(t) is a random 
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function; ξ(t) is a coefficient that weights the 
contribution of random value to the new indi-
vidual. The formula is similar to the mutation 
operation in evolutionary programming algo-
rithm. The commonly utilized random function 
in mutation operation is the Gaussian function 
(Yao, Liu, & Lin, 1997). Other random func-
tions that can be used are Cauchy function (Yao, 

Liu, & Lin, 1997), Le
�

vy flights (Pavlyukevich, 
2007), etc. Compared with Gaussian function, 
Cauchy function has a longer tail which makes 
it preferable if wider areas need to be explored 
(Yao, Liu, & Lin, 1997).

If a new idea (individual) xnew is generated 
by piggybacking two existing ideas (individu-
als) xold1 and xold2, it can be written as

x x t random tnew
i

old
i= + ( ) ( )ξ *  (2a)

x w x w xold
i

old
i

old
i= +1 1 2 2* *  (2b)

where xold
i is the weighted summation of the ith 

dimension of xold1 and xold2; w1 and w2 are two 
coefficients to weight the contribution of two 
existing individuals. The formula simulates 
generating new idea by piggybacking two 
existing ideas. Certainly, a new idea can also 
be generated by piggybacking more than two 
existing ideas.

No matter how many existing ideas (indi-
viduals) will be piggybacked to generate new 
ideas (individuals), the cluster centers will have 
high probability to be chosen to generate new 
ideas (individuals) compared with the other 
non-cluster-center ideas (individuals) which 
usually can be chosen with small probability.

The coefficient ξ(t) weights the contribu-
tion of randomly generated value to the new 
individual. Generally, large ξ(t) value facilitates 
exploration while small ξ(t) values facilitates 
exploitation. When global search capability 
is preferred, for example, at the beginning of 
search process, ξ(t) should give large value, 
while when local search capability is preferred, 
for example, at the end of search process, ξ(t) 
should give small value. One possible function 
for ξ(t) is

ξ t logsig

T t

k
random t( ) =

−












2 * ( )

 
(3)

where logsig() is a logarithmic sigmoid transfer 
function, T is the maximum number of itera-
tions, and t is the current iteration number, k 
is for changing logsig() function’s slope, and 
random() is a random value within (0,1).

Disruption

After two rounds of idea generation, the mind-
set of the brainstorming group usually will be 
narrowed and therefore it becomes more dif-
ficult, if not impossible, for them to come out 
different ideas efficiently. To further explore 
whether there are potential good ideas out there 
somewhere, in the brainstorming process, an 
object will be randomly picked up, and the 
brainstorming group will be asked to generate 
new ideas which are more or less related to the 
functions and appearance of the object. The pur-
pose of this is to help the brainstorming group 
to disrupt from their current mindset, which 
is usually difficult to achieve. This disruption 
operation can be simulated by replacing selected 
ideas (individuals) with randomly generated 
individuals. Therefore, wider areas could be 
explored with high probability by utilizing 
disruption operation.

As shown in Figure 1, there are three 
rounds of idea generation. The first two rounds 
are identical while the third round serves as the 
purpose of disruption with the step Selecting 
an Object as Clue. To further modulate the 
operations, this disruption operation could be 
distributed and shared among all three rounds 
of idea generation. Figure 2 shows the modi-
fied flow chart of the brainstorming process, 
which includes three identical rounds of idea 
generation. Each round of idea generation is 
shown in Figure 3 in which the step Selecting 
an Object as Clue is changed to be the step 
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Disrupting Selected Ideas and it is put at the 
end of each round.

Selection

In a population-based optimization algorithm, 
generally speaking, if it is not because of specific 
requirements, the population size p is fixed and 
not changed during the algorithm running time. 
During each iteration, number of new individu-
als will be generated, say n (n≥p), therefore 
there will exist p+n number of individuals, 
among which only p will be copied into the 
next iteration due to the fixed population size. 
Similar to other population-based algorithms, 
how to select p from p+n individuals is critical 
to the optimization algorithm inspired by the 
brainstorming process. One simple way is that 
for each existing individual in the population, 

a new individual is generated. This pair of in-
dividuals is compared. The better one will be 
kept as the individual into the next iteration. 
Another way could be to randomly pick up p 
pairs of individuals from the n+p individuals, 
and the better one of each pair will be kept into 
the next iteration.

To further take advantage of information 
embedded in each pair of individuals, crossover 
operations could also be applied to each pair 
of individuals to generate two new offspring. 
The best of the four will then be copied into 
the next iteration.

In each round of idea generation shown 
in Figure 3, one more step Selecting Ideas is 
inserted right below the step Generating Ideas. 
Figure 4 shows the new flow chart of each round 
of idea generation.

Figure 2. Flow chart of a brainstorming process

Figure 3. Flow chart of one round of idea generation
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In practice, limited time will be taken for 
a brainstorming process, otherwise, the brain-
storming group will be tired to generate new 
meaningful ideas efficiently. Usually as a good 
practice, a brainstorming process takes ap-
proximately 60 minutes. As shown in the 
Figure 1, there are only three rounds of idea 
generation in a brainstorming process. But for 
a model to be executed by computers, the 
number of rounds of idea generation can be as 
large as that we want. Figure 5 shows the flow 

chart for a brainstorming process that can be 
simulated by computers. In Figure 5, the step 
1st Round of Idea Generations is the same as 
the step One Round of Idea Generation shown 
in Figure 5. The purpose to have the extra step 
1st Round of Idea Generations at the beginning 
is to be similar to the Initialization step in 
population-based algorithms. The max_i is the 
maximum number of rounds of idea generation 
we want to conduct. Therefore totally, max_i 
rounds of idea generation will be conducted in 

Figure 4. Flow chart of one round of idea generation

Figure 5. Flow chart of a brainstorming process
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the brainstorming process shown in the Figure 
5.

By implementing Figure 5, a model or 
algorithm to mimic the human being brainstorm-
ing process can be built.

BRAIN STORM OPTIMIZATION 
ALGORITHM

According to the Figure 5, a brain storm op-
timization (BSO) algorithm can be designed 
by directly mapping the steps in the Figure 5. 
By some straightforward rearrangement, one 
possible flow chart of the BSO algorithm is 
shown in Figure 6. In Figure 6, there are five 
main operations among which three operations 
are unique to the BSO algorithm and the other 
two operations are similar to those in other 
evolutionary algorithms.

In the procedure of the Brain Storm Opti-
mization (BSO) algorithm shown in the Figure 
6, the first two steps are the initialization step 

and evaluation step which are the same as that 
in other swarm intelligence algorithms. In the 
initialization step, the population of individuals 
is usually uniformly and randomly initialized 
within the dynamic range of solution space. 
The population size n simulates the number of 
ideas generated in each round of idea generation 
in the brainstorming process. For the simplic-
ity of the algorithm, the population size usu-
ally is set to be a constant number for all itera-
tions in the BSO algorithm. In the evaluation 
step, each individual will be evaluated. An 
evaluation value (fitness) will be obtained to 
measure how good the individual as a potential 
solution to the problem to be solved. The third 
step is to cluster the population of individuals 
into several clusters. Different kind of cluster-
ing algorithms could be employed. In this paper, 
the k-means clustering algorithm will be used 
as the clustering algorithm. The disruption step 
randomly selects a cluster center and replace it 
with a randomly generated individual. This step 

Figure 6. An implementation of BSO algorithm
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will not be executed in every iteration, but will 
only be selected to execute with small probabil-
ity.

The Updating Individuals step generally 
includes two sub-operations, i.e., Generating 
Individuals and Selecting Individuals, which 
is shown in Figure 7. As discussed in previous 
section, crossover operation could be utilized 
to further take advantage of existing search 
information. Figure 8 shows another possi-
bility of the Updating Individuals operation 
which adds one additional sub-operation, i.e., 
crossover operation. One implementation of the 
BSO algorithm was introduced in Shi (2011) 
and is given in Table 3 here for convenience, 
in which the Updating Individuals operation 
shown in Figure 7 is implemented. By replac-
ing the Step 6.d in Table 3 with two sub-steps 
shown in Table 4, another implementation of 
BSO algorithm can be achieved. To distin-
guish the two different implementations, the 
first one is noted as BSO-I and the second is 
noted as BSO-II for the purpose of description 
convenience. Intuitively, the BSO algorithms 
should be superior to other swarm intelligence 
algorithms, which are inspired by collective 

behaviors of inferior animals, because of the 
highest intelligence unique to human beings.

In the BSO algorithm, the number of clus-
ter centers is usually set to be a small number, 
say m=5, and the number of generated indi-
viduals in each iteration is usually set to be a 
relatively large number, say n=100.

EXPERIMENTS AND 
DISCUSSIONS

Test Problems

To validate the brain storm optimization algo-
rithms, ten benchmark functions listed in Table 5 
are tested. Among them, the first five functions 
are unimodal functions and the remaining five 
functions are multimodal functions. They all are 
minimization problems with minimum zero. The 
third column in the Table 5 is the dynamic ranges 
for the ten benchmark functions, which have 
been used to test population-based algorithms 
in the literature. For each benchmark function, 
the tested BSO algorithm will be run 50 times 
to obtain reasonable statistical results.

Figure 7. One implementation of updating individual operation

Figure 8. Another implementation of updating individual operation
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Simulations on k

In Shi (2011), the BSO-I algorithm was tested 
on two benchmark functions, i.e., the Sphere 
function and the Rastrigin function. The pa-
rameters are setup as that listed in Table 6. The 
purpose there is to validate the usefulness and 
effectiveness of the proposed BSO-I algorithm. 
Generally speaking, the parameter k determines 
the slope of the logsig() functions, therefore it 
determines the decreasing speed of the step-
size ξ(t) over iterations. Different k should 
have different impacts on the performance of 
BSO algorithms. In order to test the impact of 

k on BSO performance, we change the k value 
while all other parameter values are kept to 
be the same as that listed in Table 6. For this 
purpose, again only one unimodal function, 
Sphere function, and one multimodal function, 
Rastrigin function, are utilized. The dimension 
of the two functions is set to be 20.

Table 7 gives the simulation results. The 
results given in the Table 7 are mean, best, worst 
function values and their variance at the final 
iteration over 50 runs. From the Table 7, it can 
be observed that generally there is no single 
parameter k value with which the BSO algorithm 

Table 3. The procedure of the brain storm optimization algorithm in Shi (2011)

      1. Randomly generate n potential solutions (individuals); 
      2. Evaluate the n individuals; 
      3. Cluster n individuals into m clusters by k-means clustering algorithm; 
      4. Rank individuals in each cluster and record the best individual as cluster center in each cluster; 
      5. Randomly generate a value between 0 and 1; 
            a) If the value is smaller than a pre-determined probability p5a,
                  i. Randomly select a cluster center; 
                  ii. Randomly generate an individual to replace the selected cluster center; 
            b) Otherwise, do nothing. 
      6. Generate new individuals 
            a) Randomly generate a value between 0 and 1; 
            b) If the value is less than a probability p6b,
                  i. Randomly select a cluster with a probability p6bi;
                  ii. Generate a random value between 0 and 1; 
                  iii. If the value is smaller than a pre-determined probability p6biii,
                        1) Select the cluster center and add random values to it to generate new individual. 
                  iv. Otherwise randomly select an individual from this cluster and add random value to the individual to 
generate new individual. 
            c) Otherwise randomly select two clusters to generate new individual 
                  i. Generate a random value; 
                  ii. If it is less than a pre-determined probability p6c, the two cluster centers are combined and then added 
with random values to generate new individual; 
                  iii. Otherwise, two individuals from each selected cluster are randomly selected to be combined and 
added with random values to generate new individual. 
            d) The newly generated individual is compared with the existing individual with the same individual index, 
the better one is kept and recorded as the new individual; 
      7. If n new individuals have been generated, go to step 8; otherwise go to step 6; 
                  8. Terminate if pre-determined maximum number of iterations has been reached; otherwise go to step 2.

Table 4. Two sub-steps to replace step 6.d in table 3

d) The newly generated individual crossovers with the existing individual with the same individual index to gener-
ate two more individuals (offspring); 
e) The four individuals are compared, the best one is kept and recorded as the new individual;
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can have the best performance. From the Table 
7, relatively speaking, unimodal function 
(Sphere function) prefers relatively small k 
value while multimodal function (Rastrigin 
function) prefers relatively large k value. By 
considering the robustness of the BSO algorithm 
and from the results given in Table 7 itself, 
generally speaking, a good choice for the pa-
rameter k is 25 as a tradeoff between uni-
modal function and multimodal function. The 
obtained mean function values over 2000 it-
erations with parameter k =25 are shown in 

Figure 9. From the Figure 9, it can be observed 
that the BSO-I with k =25 can converge fast 
when solving the Sphere function and Rstrigin 
function. In all simulations, we will set the 
parameter k to be 25 with all other parameters 
are set as the same as that in Table 6.

Simulations on BSO-I Algorithm

The BSO-I algorithm is tested on the ten bench-
mark functions listed in Table 5 to illustrate 
the effectiveness and efficiency of the BSO-I 

Table 5. Benchmark functions tested in this paper 

Function Expressions Range

Sphere f xii

d
1

2
1

=
=∑ [ , ]−100 100 d

Schwefel’s P221 f x
i i2 = max{ } [ , ]−100 100 d

Step f xii

d
3 1

20 5= + =∑ ( . ) [ , ]−100 100 d

Schwefel’s P222 f x xi
d

i
d

i i4 1 1
= +

= =∑ ∏ [ , ]−10 10 d

Quartic Noise f ix
i i
d

5 1
4 0 1= +

=∑ random[ , ) [ . , . ]−1 28 1 28 d

Ackely

f
d

xi
i

d

6
2

1

20 0 2
1

= − −










=
∑exp .

−








+ +

=
∑exp cos( )
1

2 20
1d

x e
i

i

d

π

[ , ]−32 32 d

Rastrigin f x xi ii

d
7

2
1

10 2 10= − +
=∑ [ cos( ) ]π [ . , . ]−5 12 5 12 d

Rosenbrock f x x
i

d

i i8 1
2 2

1

1
100= −

=

−

+∑ [ ( ) + −( ) ]xi 1 2 [ , ]−30 30 d

Schwefel’s P226 f x x d
i

d

i i9 1
418 9829= − +

=∑ ( sin( ) . [ , ]−500 500 d

Griewank

f xii

d
10

2
1

1
4000

=
=∑

− +
=∏ cos( )
i

id x
i1
1

[ , ]−600 600 d
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algorithm instead of only two benchmark func-
tions in Shi (2011). Each function is tested with 
three different dimension setting, 10, 20, and 
30, respectively. The experimental results are 
given in Tables 8 and 9 for unimodal functions 
and multimodal functions, respectively. From 
the Table 8, it can be seen that good results 

can be achieved by BSO-I algorithm, and the 
results also show that the BSO-I is robust and 
reliable when it is applied to solve benchmark 
unimodal functions. From the Table 9, it can 
be seen that good results can be obtained for 
function f6, relatively good results can be ob-
tained for functions f7 and f8, but not relatively 

Table 6. Set of parameters for BSO algorithm 

n m p5a p6b p6biii p6c k Max_ iteration μ σ

100 5 0.2 0.8 0.4 0.5 20 2000 0 1

Table 7. Simulation results of BSO-I with different k 

function k mean best worst variance

Sphere

10 1.20381E-11 2.55674E-86 5.27132E-10 5.61316E-21

20 2.30827E-43 1.24079E-43 3.17853E-43 2.5931E-87

25 9.4726E-35 5.55931E-35 1.33105E-34 3.78414E-70

30 5.35092E-29 3.01328E-29 7.6509E-29 1.30974E-58

40 7.70746E-22 4.18609E-22 1.10552E-21 2.74116E-44

50 1.60782E-17 7.60191E-18 2.22015E-17 1.18045E-35

Rastrigin

10 17.11636 5.969754 29.84873 28.93288

20 18.00875 8.954632 31.83866 20.98068

25 17.17298 6.964713 23.879 13.24541

30 17.15308 7.959667 29.84871 26.04389

40 15.81984 6.964713 24.87396 17.95025

50 16.21782 8.954632 25.8689 16.85928

Figure 9. Obtained Mean Minimum Values vs. Iterations for BSO-I with k = 25
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Table 8. Simulation results of BSO-I on unimodal functions 

Function Dimension mean best worst variance

f1

10 1.3989E-35 3.90855E-36 2.71203E-35 2.75801E-71

20 9.77845E-35 6.11475E-35 1.37856E-34 3.55418E-70

30 2.66069E-34 1.79135E-34 3.59892E-34 2.02141E-69

f2

10 2.31285E-18 1.49658E-18 3.11619E-18 1.47169E-37

20 5.05671E-18 3.69394E-18 6.40744E-18 4.41064E-37

30 0.000235 3.18538E-08 0.001718355 1.55583E-07

f3

10 0 0 0 0

20 0 0 0 0

30 0 0 0 0

f4

10 9.28917E-18 5.51341E-18 1.21942E-17 1.81665E-36

20 3.4224E-17 2.63097E-17 4.25525E-17 1.03733E-35

30 1.9978E-06 5.84794E-17 9.94736E-05 1.97869E-10

f5

10 0.000424 4.52215E-05 0.001140455 6.14016E-08

20 0.002636 0.000613 0.008465 2.8024E-06

30 0.00835095 0.001967 0.020706 1.33183E-05

Table 9. Simulation results of BSO-I on multimodal functions 

Function Dimension mean best worst variance

f6

10 4.44089E-15 4.44089E-15 4.44089E-15 0

20 4.44089E-15 4.44089E-15 4.44089E-15 0

30 5.93303E-15 4.44089E-15 7.99361E-15 3.13741E-30

f7

10 3.502256 0 5.969754 1.949178

20 17.75005 8.954632 26.86387 15.12629

30 34.56484 13.92943 51.7378 51.65143

f8

10 6.330642 2.587793 29.36235 11.77892

20 21.60337 15.83735 87.11474 255.4539

30 42.02786 25.91331 296.7523 2073.832

f9

10 1350.782 454.0165 2270.172 192322.2

20 3012.657 1598.991 4501.054 570878.2

30 4951.779 3652.088 6771.33 563448.4

f10

10 1.35123 0.497182 2.21245 0.158512

20 0.058446 0 0.9467 0.022289

30 0.010777 0 0.056496 0.000163
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good results are obtained for f9 which is in 
general a difficult function to optimize, and 
for function f10, good results can be obtained 
for it with dimension 20 and 30, but not with 
dimension10, for which only relatively good 
results are obtained instead.

Simulation on BSO-II Algorithm

The BSO-II algorithm further exploits the search 
areas by generating two new offspring through 
utilizing crossover operation to crossover the 
newly generated individual with the existing 
individual with the same individual index. 
The BSO-II is applied to the ten benchmark 
functions with dimensions 10, 20, and 30, re-
spectively. The simulation results are given in 
Tables 10 and 11 for unimodal functions and 
multimodal functions, respectively. From the 
Table 10, we can observe that good results can 
be achieved by the BSO-II algorithm, and the 
results also show that the BSO-II is robust and 
reliable when it is applied to solve benchmark 
unimodal functions. From the Table 11, it can 
be seen that good results can be obtained for 
function f6, relatively good results can be ob-
tained for functions f7 with dimension 30 and 
f8, but not relatively good results are obtained 
for f9 which is in general a difficult function to 
optimize, and for function f10, reasonable good 
results can be obtained. Compared with the 
observation from the BSO-I algorithm, very 
good results (the optimum) can be obtained 
for f7 with dimension 10 and 20. For f7 with 
dimension 30, the best results over 50 runs is 
0 which is the optimum of the problem, but the 
worst and variance over 50 runs are 3.979836 
and 1.010551, which indicates that the BSO-II 
is better than the BSO-I, but it is still not robust 
when solving f7 function.

To further compare the BSO-I and BSO-II 
algorithm, Figures 10 through 19 show curves 
which display the average evaluation function 
values over 50 runs vs. iterations for the ten 
benchmark functions tested. From the figures, 
it can be easily seen that the BSO-II algorithm 
performs better than the BSO-I algorithm for 
all the benchmark functions with all three dif-

ferent dimensions except the Griewank function 
with dimension 20 and 30. For Griewnak func-
tion with dimension 10, the BSO-I can’t obtain 
very good results but the BSO-II could. There-
fore, even for the Griewank function, the BSO-
II could be a better choice compared with the 
BSO-I algorithm. For function f9, even though 
still not very good results are obtained by BSO-
II, but BSO-II performs much better than BSO-
I does.

Diversity

During each iteration, the population of indi-
viduals is clustered into m clusters. Individu-
als in each cluster are scattered with different 
distribution over iterations. To measure and 
monitor the distribution of individuals in each 
cluster, the following average intra-cluster 
distance is defined

d x x x xc i j i j( , )= −  (4a)

�d x x
d x x
a bc i j
c i j( , )
( , )

=
−

 (4b)

D
q q

d x xc i j
j i

q

i

q

=
− = +=

∑∑2
1 11( )

( , )�  (4c)

where q is the number of individuals in a clus-
ter; d(xi,xj) is the Euclidean distance between 
individual xi and xj; a and b are dynamic range; 

d
�

(xi,xj) is the normalized Euclidean distance 
between individual xi and xj; Dc is the normal-
ized distance for a cluster. For m=5, there will 
be 5 intra-cluster diversities. In addition to m 
average intra-cluster distances, there will be 
one average inter-cluster distance to measure 
and/or monitor the distribution of cluster cen-
ters. The formula for calculating average intra-
cluster distance can also be utilized to calculate 
the average inter-cluster distance except that 
here the xi is the ith cluster center and number 
of individuals is m.

Over iterations, the number of individuals 
in each cluster will change. To measure and 
monitor the distribution of number of individu-
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Table 10. Simulation results of BSO-II on unimodal functions 

Function Dimension mean best worst variance

f1

10 4.56E-36 2.61244E-36 7.53912E-36 1.13477E-72

20 4.54E-35 2.98742E-35 6.19235E-35 7.00667E-71

30 1.33E-34 9.34047E-35 1.65808E-34 2.53466E-70

f2

10 1.52E-18 1.10811E-18 1.94476E-18 3.80565E-38

20 3.86E-18 3.23175E-18 4.44916E-18 8.94695E-38

30 5.85E-18 4.80866E-18 6.91767E-18 2.62081E-37

f3

10 0 0 0 0

20 0 0 0 0

30 0 0 0 0

f4

10 4.76E-18 3.30555E-18 6.17314E-18 5.02845E-37

20 2.13E-17 1.54076E-17 2.52198E-17 5.11026E-36

30 4.49E-17 3.56463E-17 5.22311E-17 1.57E-35

f5

10 8.85E-05 3.18035E-05 0.000256579 1.69387E-09

20 0.000319 0.000104 0.000853 2.24337E-08

30 0.000766 0.000176 0.001733 1.00554E-07

Table 11. Simulation results of BSO-II on multimodal functions 

Function Dimension mean best worst variance

f6

10 4.16E-15 8.88178E-16 4.44089E-15 9.47921E-31

20 4.44E-15 4.44089E-15 4.44089E-15 0

30 4.44E-15 4.44089E-15 4.44089E-15 0

f7

10 0 0 0 0

20 0 0 0 0

30 0.855665 0 3.979836 1.010551

f8

10 4.558798 2.019811 9.069095 0.862945

20 28.514436 15.49093 83.89686 604.2519

30 34.06948 25.85653 128.9086 505.6776

f9

10 56.23811 0.000127 236.8768 5855.616

20 499.023 118.4386 927.8028 48176.18

30 1128.729 335.5784 1993.748 157231

f10

10 0.150697 0.022151 0.531254 0.019883

20 0.311937 0.017241 1.519837 0.110482

30 0.090445 0 0.568672 0.011172
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Figure 13. Mean Function Evaluation Values vs. Iterations of Schwefel’s P222

Figure 11. Mean Function Evaluation Values vs. Iterations of Schwefel’s P221

Figure 12. Mean Function Evaluation Values vs. Iterations of Step Function

Figure 10. Mean Function Evaluation Values vs. Iterations of Sphere Function
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Figure 14. Mean Function Evaluation Values vs. Iterations of Quartic Noise

Figure 15. Mean Function Evaluation Values vs. Iterations of Ackely Function

Figure 16. Mean Function Evaluation Values vs. Iterations of Rastrigin Function

Figure 17. Mean Function Evaluation Values vs. Iterations of Rosenbrock Function

IGI GLOBAL PROOF



54   International Journal of Swarm Intelligence Research, 2(4), 35-62, October-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

als in each cluster over whole population, the 
following inter-cluster diversity is defined

D
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i i
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where m is the number of clusters, ni is the 
number of individuals in the ith cluster. Dv is 
similar to the definition of variance for distribu-
tion of number of individuals in each cluster 
among the population.

Another similar definition of the inter-
cluster diversity can be defined as
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i= − ( ) =

=
∑
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where m is the number of clusters, ni is the 
number individuals in the ith cluster. Therefore 
pi is the percentage of individuals that the ith 
cluster has over the population. De is similar to 

the definition of information entropy. Therefore, 
it can be looked as a measurement of informa-
tion entropy for the population. When all the 
individuals are located in one cluster, the De 
has the smallest value, which is 0; when all 
the individuals are equally distributed into 
each cluster, De has the largest value, which is 
log(m). If m =5, De = log(5) = 0.699.

Tables 12 and 13 give the results of aver-
age inter-cluster distance Dc and inter-cluster 
diversity De for ten tested benchmark func-
tions at the end of BSO-I running. Tables 14 
and 15 give the results of average inter-cluster 
distance Dc and inter-cluster diversity De for 
ten tested benchmark functions at the end of 
BSO-II running. Figures 20 through 29 show 
mean average inter-cluster distance over 50 runs 
vs. iterations for the ten benchmark functions, 
respectively. From both the Tables 12 through 
15 and Figures 20 through 29, it could be easily 
observed that the average inter-cluster distance 
quickly decreases over iterations and gets to very 
small values way before reaching the prefixed 

Figure 19. Mean Function Evaluation Values vs. Iterations of Griewank Function

Figure 18. Mean Function Evaluation Values vs. Iterations of Schwefel’s P226
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Table 12. Simulation results of Dc and De for BSO-I on unimodal functions 

F d
Dc De

mean short long variance mean small large variance

f1

10 3.99E-20 3.02E-20 5.45E-20 2.87E-41 0.674 0.576 0.697 0.00056

20 7.73E-20 5.84E-20 9.83-20 7.02E-41 0.658 0.566 0.697 0.000893

30 9.92E-20 7.47E-20 1.16E-19 1.10E-40 0.645 0.473 0.695 0.001978

f2

10 4.6E-20 3.31E-20 5.58E-20 2.71E-41 0.671 0.583 0.695 0.000528

20 9.11E-20 6.98E-20 1.15E-19 1.17E-40 0.653 0.579 0.693 0.000653

30 2.2E-19 1.40E-19 3.57E-19 2.36E-39 0.624 0.488 0.694 0.002807

f3

10 0.006908 0.005538 0.008269 2.80E-07 0.685 0.666 0.697 7.604E-05

20 0.007145 0.005921 0.007997 1.89E-07 0.666 0.572 0.695 0.000567

30 0.006818 0.005485 0.007595 2.15E-07 0.653 0.499 0.693 0.001402

f4

10 4.44E-19 3.24E-19 5.95E-19 3.44E-39 0.674 0.608 0.699 0.000481

20 8.54E-19 6.73E-19 1.12E-18 1.01E-38 0.652 0.567 0.698 0.000925

30 1.12E-18 8.86E-19 1.55E-18 1.83E-38 0.640 0.554 0.694 0.001363

f5

10 0.06774 0.031242 0.107543 0.000272 0.609 0.484 0.681 0.002202

20 0.041977 0.016624 0.071656 0.000163 0.604 0.394 0.686 0.003644

30 0.029224 0.010858 0.04638 6.94E-05 0.591 0.389 0.682 0.004305

Table 13. Simulation results of Dc and De for BSO-I on multimodal functions 

F d
Dc De

mean short long variance mean small large variance

f6

10 1.01E-16 7.83E-17 1.24E-16 6.71E-35 0.677 0.617 0.698 0.00023

20 1.01E-16 7.28E-17 1.25E-16 1.30E-34 0.642 0.560 0.695 0.001086

30 1.14E-16 1.01E-18 2.21E-16 5.69E-33 0.613 0.384 0.692 0.003186

f7

10 2.57E-10 1.31E-16 4.39E-10 1.16E-10 0.607 0.450 0.692 0.002966

20 1.90E-10 4.56E-17 7.13E-10 3.82E-20 0.604 0.448 0.690 0.002892

30 1.22E-10 1.22E-17 7.10E-10 3.49E-20 0.589 0.378 0.695 0.004818

f8

10 1.15E-17 6.43E-19 5.77E-17 1.06E-34 0.622 0.505 0.688 0.002294

20 2.22E-17 1.17E-18 8.01E-17 3.61E-34 0.600 0.456 0.686 0.003408

30 2.75E-17 1.49E-18 1.81E-16 1.05E-33 0.588 0.349 0.692 0.00625

f9

10 1.91E-09 5.68E-17 3.89E-09 7.92E-19 0.618 0.115 0.685 0.007802

20 2.32E-09 3.22E-16 4.14E-09 8.62E-19 0.603 0.378 0.692 0.004574

30 2.16E-09 6.82E-17 4.30E-09 1.30E-18 0.593 0.097 0.683 0.00893

f10

10 1.21E-11 7.22E-19 8.07E-11 3.72E-22 0.589 0.097 0.693 0.01162

20 5.01E-11 5.05E-18 9.57E-11 6.74E-22 0.602 0.362 0.689 0.003937

30 5.21E-11 3.854E-16 9.28E-11 5.74E-22 0.610 0.506 0.696 0.002307
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Table 15. Simulation results of Dc and De for BSO-II on multimodal functions 

F d
Dc De

mean short long variance mean small large variance

f6

10 9.83E-17 1.13E-18 1.25E-16 8.10E-34 0.684 0.616 0.698 0.00025

20 1.17E-16 7.84E-17 1.47E-16 1.68E-34 0.655 0.570 0.693 0.000735

30 1.02E-16 5.82E-17 1.38E-16 3.12E-34 0.597 0.419 0.691 0.00392

f7

10 4.63E-10 3.95E-10 5.28E-10 1.12E-21 0.688 0.665 0.698 5.111E-05

20 4.9E-10 4.10E-10 5.46E-10 8.55E-22 0.681 0.615 0.698 0.000203

30 4.85E-10 4.03E-10 5.68E-10 8.28E-22 0.663 0.590 0.698 0.000578

f8

10 1.93E-13 3.12E-19 9.66E-12 1.87E-24 0.589 0.411 0.687 0.004572

20 1.52E-16 7.17E-19 6.67E-16 1.98E-32 0.599 0.434 0.683 0.003304

30 1.38E-16 8.33E-19 6.48E-16 2.28E-32 0.585 0.468 0.668 0.002776

f9

10 2.13E-09 0 3.22E-09 6.53E-19 0.571 0.097 0.685 0.024857

20 3.42E-09 0 4.95E-09 1.38E-18 0.595 0.097 0.693 0.024992

30 5.79E-09 3.21E-09 7.72E-09 9.25E-19 0.634 0.443 0.697 0.003643

f10

10 3.24E-11 1.51E-19 6.07E-11 5.18E-22 0.623 0.421 0.694 0.002855

20 5.89E-11 1.35E-18 1.04E-10 1.04E-21 0.625 0.493 0.694 0.002619

30 8.63E-11 2.99E-20 1.24E-10 1.40E-21 0.631 0.499 0.691 0.002384

Table 14. Simulation results of Dc and De for BSO-II on unimodal functions 

F d
Dc De

mean short long variance mean small large variance

f1

10 2.35E-20 1.80E-20 3.00E-20 5.86E-42 0.674 0.609 0.696 0.000435

20 5.3E-20 4.39E-20 6.41E-20 2.37E-41 0.676 0.568 0.696 0.000443

30 7.5E-20 6.48E-20 8.77E-20 3.51E-41 0.674 0.612 0.695 0.000363

f2

10 3.16E-20 2.50E-20 4.16E-20 1.36E-41 0.675 0.597 0.697 0.000592

20 7.4E-20 5.56E-20 8.36E-20 3.47E-41 0.658 0.586 0.694 0.000782

30 1.06E-19 9.13E-20 1.22E-19 5.64E-41 0.658 0.540 0.696 0.001079

f3

10 0.007209 0.005138 0.008104 2.81E-07 0.685 0.652 0.698 8.749E-05

20 0.007577 0.006727 0.008262 1.37E-07 0.685 0.610 0.697 0.000214

30 0.00797 0.007136 0.008711 1.77E-07 0.677 0.622 0.695 0.000298

f4

10 2.51E-19 1.77E-19 3.58E-19 1.42E-39 0.667 0.546 0.697 0.000904

20 5.58E-19 4.59E-19 8.08E-19 5.04E-39 0.658 0.509 0.699 0.001228

30 8.14E-19 5.89E-19 1.11E-18 9.52E-39 0.662 0.567 0.696 0.001039

f5

10 0.073914 0.052208 0.104325 0.000129 0.649 0.509 0.695 0.00143

20 0.066032 0.044808 0.095853 0.000149 0.638 0.515 0.692 0.001513

30 0.062562 0.041369 0.102545 0.000142 0.624 0.326 0.688 0.003219
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Figure 22. Mean Average Inter-cluster Distance vs. Iterations of Step Function

Figure 23. Mean Average Inter-cluster Distance vs. Iterations of Schwefel’s P222

Figure 24. Mean Average Inter-cluster Distance vs. Iterations of Quartic Noise

Figure 21. Mean Average Inter-cluster Distance vs. Iterations of Schwefel’s P221
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Figure 25. Mean Average Inter-cluster Distance vs. Iterations of Ackely Function

Figure 26. Mean Average Inter-cluster Distance vs. Iterations of Rastrigin Function

Figure 27. Mean Average Inter-cluster Distance vs. Iterations of Rosenbrock Function

Figure 28. Mean Average Inter-cluster Distance vs. Iterations of Schwefel’s P226
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maximum iteration number for both BSO al-
gorithms, which indicates that m clusters move 
close to each other very quickly, and therefore 
the algorithms may lose their search capabilities 
quickly, may converge quickly, or may be stuck 
in (local) optima quickly. By double checking 
the cluster centers over iterations, the same 
observation can be obtained. That tells us that 
when the situation occurs, further improvement 
could be achieved by randomly move away 
from current cluster centers and at the same 
time increase the step-size to a relatively large 
value which then will be dynamically adjusted 
according to the formula (3).

The mean inter-cluster diversities of 50 
runs over iterations for all benchmark functions 
seem to have similar behaviors except function 
f9 with dimension 10 and 20. Figures 30 and 31 
display the curves of mean inter-cluster diver-
sities over 50 runs vs. iterations for function f1 
as an example for unimodal functions and for 
function f7 as an example for multimodal func-
tions. Figure 32 displays the curves of mean 
inter-cluster diversities over 50 runs vs. itera-
tions for function f9 with dimension 20. From 
Figures 30 and 31, the mean inter-cluster di-
versities tend to have relatively large values, 
which indicate that the population of individu-
als is generally well-uniformly divided into m 
clusters. This may be because the fixed number 
of clusters and the k-means clustering algorithm 
with randomly selecting k individuals as initial 
cluster centroid positions are used over itera-
tions in the implementation of the BSO algo-
rithms. If different initialization method for 
k-means clustering algorithm or a different 

clustering algorithm especially those with un-
fixed number of clusters such as the self-orga-
nizing feature map is utilized, the mean inter-
cluster diversity may behave quite different. 
From Figure 32 and Table 15, it can be seen 
that toward the end of BSO-II running for func-
tion f9, the number of individuals in each clus-
ter is not uniformly distributed anymore, but 
clustered into one cluster with other 4 clusters 
with only 1 individual, in which the 
D log loge = −
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CONCLUSION

In this paper, we first modeled the human brain-
storming process, then introduced two versions 
of Brain Storm Optimization algorithms It is 
natural to believe that BSO algorithms should 
be superior to the optimization algorithms 
inspired by collective behavior of injects such 
as ants, birds, etc. because the BSO algorithms 
were inspired by the human brainstorming 
process. The proposed BSO algorithms were 
implemented and tested on ten benchmark 
functions, of which five are unimodal func-
tions and the other five are multimodal func-
tions. Simulation results showed that both 
BSO algorithms performed reasonably well, 
and BSO-II performs better than BSO-I does 
in general. Furthermore, average inter-cluster 
distance Dc and inter-cluster diversity De were 
defined to measure and monitor the distribution 
of cluster centroids and the information entropy 
of the BSO population. Simulation results on Dc 

Figure 29. Mean Average Inter-cluster Distance vs. Iterations of Griewank Function
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Figure 32. Mean De over 50 Runs vs. Iterations for Schwefel’s P226 with Dimension d = 20

Figure 31. Mean De over 50 Runs vs. Iterations for Rastrigin Function with Dimension d = 20

Figure 30. Mean De over 50 Runs vs. Iterations for Sphere Function with Dimension d = 20
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showed that further performance improvement 
for the BSO algorithms could be achieved by 
taking advantage of information revealed by the 
Dc, which is one of future research directions.

Good optimization algorithms for solving 
complicated and nonlinear optimization prob-
lems should have the capability to converge in 
order to find better and better solutions, but at 
the same time, it should have the capability to 
diverge in order to escape from local optima 
which are not good enough solutions for the 
problem to be solved. The BSO algorithm 
during each iteration involves two opposite 
operations. One is to converge or contract by 
utilizing clustering methods to converge to 
the m cluster centers. Another is to diverge or 
expand by adding noise to generate new indi-
viduals. Depending on the amplitude of noise, 
different scales of areas can be searched by the 
BSO algorithm. Therefore, the BSO algorithms 
naturally include contraction and expansion 
operations during each iteration by design. It 
should be a good choice for solving complicated 
and nonlinear optimization problems.
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