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Abstract. A new linear classifier based on minimum circum circle (CMCC) is
proposed in this paper. It first calculates the minimum circum circle of samples
for each class. Then the distributions of the samples can be described by these
circles. The linear separating hyperplane will intersect the connecting line of the
centers of circles. Consequently, the perpendicular to the connecting line of each
two centers is defined as the classifier of these two classes. Moreover, some im-
proved classifiers are proposed when the separating hyperplane is not perpendicu-
lar to the connecting line or when there are outliers in the samples. The combined
classifier based on subclasses is also discussed.

In the experiments, the CMCC and its improved algorithms are compared with
some other classifiers such as support vector machine, linear discriminant anal-
ysis, etc. The experimental results show that the CMCC gives a relatively good
performance on both classification accuracy and time cost.

Keywords: classifier, minimum circum circle, machine learning.

1 Introduction

In the field of machine learning, the classification is a basic and important problem.
Many machine learning algorithms are based on the classification. The goal of classi-
fication is to capture the characteristics of an object to discriminate its class. A linear
classifier is a fast and valid approach to do this.

A linear classifier usually makes a classification decision based on the value of a
linear combination of the characteristics. These characteristics are also called a feature
vector because they are usually presented as a vector. So a linear classifier is in fact
a linear function to map a feature vector to the class of the object. For a two-class
classification problem, the operation of a linear classifier can be seen as splitting a
high-dimensional input space with a hyperplane. The points on the two sides of the
hyperplane are classified into two classes.

The linear function can also be seen as an inner product of weights vector and fea-
ture vector. Due to the different weight values, the classifiers will be different. So how
to find a proper classifier to discriminate the object accurately is the key problem of
classification. To solve the problem, the different learning algorithms are proposed. For
a supervised learning, the linear function is learned from a set of labeled training sam-
ples. An unsupervised learning algorithm only approximates the function by the input
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features. Semi-supervised learning combines both labeled and unlabeled samples to
generate an appropriate function or classifier [1].

Due to its high speed, a linear classifier is often used in situations where the speed
of classification is an issue. Besides, the linear classifier usually works well when the
number of dimensions is large or when the dataset is sparse. As a result, the linear
classifier is usually adopted in document classification [2], image recognition [3], virus
detection [4], etc.

2 Related Works

Generally speaking, the linear classifier can be classified into two classes based on its
algorithm to approximate the linear classifier.

The first class is based on the conditional density function. For this type of classifier,
the algorithm will assume the probability distributions of different classes, and then it
will discriminate the class of object based on the conditional density [5].

For example, linear discriminant analysis (LDA) assumes Gaussian conditional den-
sity models. Under the assumption, the optimal parameter of the classifier will be deter-
mined based on the training samples. Then the class of the object can be given by using
the trained classifier and its feature vector [6].

Naive Bayes classifier (NBC) is similar to the LDA. It assumes independent binomial
conditional density model for each feature. Depending on the probability model, the
NBC can be trained by a supervised learning algorithm. [7].

The second class of classifier usually includes discriminative model, which attempts
to maximize some object of classification on a training set.

Logistic regression (LR) is such a classifier. It assumes the observed samples are
generated by a binomial model, and attempt to fit the data to a logistic function. It is a
generalized linear model used for binomial regression [8].

Perceptron also belongs to this class. The perceptron is considered as the simplest
feed-forward neural network. It attempts to reduce the classification errors generated in
the training samples to revise the weight values of the classifier [9].

Support vector machine (SVM) is a widely used classifier. It constructs a separating
hyperplane in a high-dimensional space. The optimal classifier will maximum the mar-
gin between the decision hyperplane and the training samples of two classes to lower
the generalization error of the classifier. [10].

In this paper, the CMCC is proposed. It adopts the minimum circum circle to describe
the samples of different classes. The points on the circle can be seen as the “support
vector”. Then the classifier is the combination of these support vectors. The supervised
learning algorithm maximum the accuracy of the classification to generated the optimal
classifier. Then the object can be discriminated.

The paper will be organized as follows. In Section 3, the classification problem will
be defined. In Section 4, the algorithm of the CMCC will be presented. In Section
5, based on the basic algorithm, some improvements are proposed. In Section 6, the
experimental results will prove the effectiveness of the CMCC. At last, Section 7 is the
conclusion of this paper.
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3 Problem Definition

For a two-class classification problem, we are given some training data D including n
points as follows.

D = {(xi, yi)|xi ∈ R
p, yi ∈ {−1, 1}}ni=1 (1)

where the yi is either 1 or −1, indicating the class of the point xi. Each xi is a p-
dimensional real vector. We hope to find a hyperplane that separates the points having
yi = 1 and the ones having yi = −1.

For a linear classifier, the hyperplane or the classifier can be expressed as

yi = f(w · xi) = f(

p∑

j=1

wjxij) (2)

where w is a real vector of weights and f(·) is a function that converts the inner prod-
uct of the two vectors into the desired output class. Generally, the weight vector w is
obtained by maximizing the accuracy of the classification on the set of labeled training
samples. This process is the learning algorithm of the classifier. In the next section, we
will propose the algorithm based on the minimum circum circle to solve the problem.

4 Algorithm

To solve the above classification problem, we adopt the minimum circum circle to de-
scribe the samples of each class. The minimum circum circles can be seen as the bound-
ary of the samples. And all the points of the class will be included in the circle. If we can
find a separating hyperplane to divide the circle from the other, that will be the classifier.
The points on the circular boundary is similar to the “support vector” to represent the
samples. The classifier can be expressed by the combination of these “support vectors”.

For a two-class classification problem in 2 dimensions, the learning algorithm of the
CMCC is as follows.

– Step 1: Calculate the minimum circum circle of samples for each class and deter-
mine the centers of each minimum circum circle.

– Step 2: Calculate the connecting line passing through the two centers as follows.
If the centers of two circles are (x1, y1), (x2, y2), respectively. Then the points on
the connecting line can be expressed as

(
x1 + λx2

1 + λ
,
y1 + λy2
1 + λ

) (3)

where λ > 0 is a variable parameter. That means the intersecting points of perpen-
dicular and the connecting line will be variable.

– Step 3: Calculate the perpendicular of the connecting line.
Based on the above assumptions, the perpendicular will be expressed as

(x1 − x2)(x− x1 + λx2

1 + λ
) + (y1 − y2)(y − y1 + λy2

1 + λ
) = 0 (4)
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Fig. 1. A two-class classifier based on minimum circum circle

– Step 4: The above perpendicular which maximizing the accuracy of classification
will be the classifier of two class.

As shown in Fig. 1, all the samples of two classes are included in its minimum circum
circles. The dashed line is the classifier of the samples, which is perpendicular to the
connecting line of two centers and classify the samples accurately.

The difficulty of the above algorithm is to calculate the minimum circum circle, so
we give the algorithm as follows.

– Step 1: Select 3 points A, B, C from training samples randomly. We usually select
the most distant two points as A and B, which can speed up the algorithm.

– Step 2: Calculate the center of minimum circum circle including the points A, B,
C based on the analytic geometry method.

– Step 3: Search for a new point D which is most distant from the center of the
minimum circum circle. If point D is in the circle or on the circle, end the algorithm;
else, go to step 4.

– Step 4: Select 3 points from A, B, C and D, and generate a minimum circum circle
including these 4 points. Redefine these 3 points as new points A, B and C, go to
step 2. If there are only 2 of these 4 points on the circle, choose these 2 points as A
and B and select one point randomly as C from the other 2 points.

To obtain the appropriate classifier, we tune λ to make the accuracy reach the highest. If
the accuracy is the same on differentλ, we adopt the λ which make the classifier farthest
from the center of the minimum circum circle, which will lower the generalization error
of the classifier.

In higher-dimensional case, the expression or form of classifier is similar to
2-dimensional problem. However, when the number of dimension is over 3, the mini-
mum circum circles are difficult to calculate. We adopt the minimum circum rectangle
to replace the circle. The center is substituted by the center of rectangle correspond-
ingly. If the samples belong to some class are x1, x2, . . . , xn, the center of the minimum
circum rectangle of this class will be



78 X. Huang, Y. Tan, and X. He

xo =
1

2
(xmax + xmin) =

1

2
(max(x1, x2, . . . , xn) + min(x1, x2, . . . , xn)) (5)

where max(x) and min(x) indicate the vector containing the maximum value and min-
imum value of x in each dimension, respectively.

5 Improved Algorithm

5.1 Improved Algorithm 1

In the experiments, the perpendicular classifier can not always give a high classification
accuracy. As a result, the constraint of the problem is extended. The angle between
the classifier and the connecting line of two centers is set variable. We give a linear
regression equation for the samples of each classes. The angle range of the classifier
will be between this two regression line. The classifier can be expressed as follows.

For a two-class problem, if the linear regression equations are

a1x+ b1y + c1 = 0 (6)

a2x+ b2y + c2 = 0 (7)

the improved classifier will be

(a1 + ηa2)

1 + η
(x− x1 + λx2

1 + λ
) +

(b1 + ηb2)

1 + η
(y − y1 + λy2

1 + λ
) = 0 (8)

where η �∈ {0,−1} and λ > 0 are both variable parameters. They will control the angle
and intersection of the classifier and the connecting line of two centers, respectively.

The improved classifier is presented as Fig. 2. In the figure, the samples of two
classes can not be classified correctly based on the dashed line which is perpendic-
ular to the connecting line of the centers. However, the improved classifier, which is
shown as the solid line and not perpendicular to the connecting line of the centers, can
discriminate the samples correctly.

5.2 Improved Algorithm 2

For most datesets, we could find some outliers in the training samples. The outlier is
usually distant from the gravity center of the samples and will affect the performance
of the classifier. So we use the distance between center of gravity and the minimum cir-
cum circle center as a parameter to improve the accuracy. If the distance between them
exceed some limit, we drop the point farthest form the center of gravity and recalculate
the minimum circum circle as follows.

We first calculate the center of minimum circum circle s0 based on the original algo-
rithm of CMCC. Then the center of gravity s should be calculated, where

s =
1

n

n∑

i=1

xi (9)
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Fig. 2. An improved classifier based on mini-
mum circum circle
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Fig. 3. A combined CMCC based on subclasses
classifiers

We define the distance between these two centers as d(s, s0). If

d(s, s0)
R

> ξ, (10)

we drop the sample points on the circle, where 0 < ξ < 1 is the limit or threshold value,
R is the radius of minimum circum circle.

When there are outlier in the samples, the center of minimum circum circle will
deviate from the center of gravity. The distribution of samples can not be described
well by this circle. The accuracy of classification will also decrease. Based on the above
algorithm, the outliers on the minimum circum circle can be deleted. The performance
of the classifier will be improved.

5.3 Improved Algorithm 3

The linear classifier cannot solve the nonlinear problem. As a result, we adopt the com-
bined classifier based on subclasses to solve this problem.

First, the samples of each class was divided into some subclasses by the clustering al-
gorithm such as k-means. Then we build one subclass classifier for each two subclasses
belong to the different classes as showed in Fig. 3. The final classifier is combined by
these subclass classifiers. When we discriminate an object, each subclass classifier can
give a discriminant class. Then we will determine the final class of the object by the
voting of all the subclass classifiers. The class obtains the most votes will be the class
of the object.

In Fig. 3, the samples of two classes is linear unseparable. Then these samples are
divided into four subclasses, and four subclass classifiers are built. Based on the com-
bination of the subclass classifiers, the classification problem can be solved accurately.
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6 Experiments and Results Analysis

In the experiments, we adopted 9 UCI machine learning datasets1 to train and test the
performance of our classifier. The description of all the datasets was listed in the table
2, which showed the number of samples, features and classes for each dataset.

The original dataset was randomly partitioned into 2 subsamples. One subsamples
was used for testing, and the other one was used as training data. The classifiers would
be estimated by their accuracy on the test set.

When the number of class in a dateset was over two, we changed the multiclass prob-
lem into multiple binary classification problems. We build a series of binary classifiers
which distinguish between every pair of classes (one-versus-one). When there was a
new sample to discriminate, every binary classifier would assign the sample to one of
the two classes. Then the vote for this class was increased by one. Finally, the class
with the most votes would be the class of this new sample. We compared the following
classifiers in our experiment.

– CMCC: original classifier based on minimum circum circle.
– CMCC1: improved algorithm 1 of CMCC.
– CMCC2: improved algorithm 2 of CMCC.
– CMCC3: improved algorithm 2 of CMCC.
– ICMCC: improved CMCC based on algorithm 1, 2 and 3.
– LDA: linear discriminant analysis.
– SVM: support vector machine.
– LDAS: LDA based on subclass classifier.
– SVMS: linear SVM based on subclass classifier.

First, we compared the CMCC with other linear classifiers including linear SVM (SVM
without kernel), LDA, CMCC1 and CMCC2. The experimental results on all the datasets
were shown in the table 1.

Table 1. Accuracy comparison of the linear classifiers on data sets

Accuracy linear SVM LDA CMCC CMCC1 CMCC2

Iris 96.00% 96.00% 92.00% 97.33% 96.00%
Haberman 62.74% 65.35% 60.13% 64.05% 61.43%

Vote 93.10% 93.10% 91.38% 93.97% 91.38%
Dermatology 93.99% 94.54% 93.44% 95.63% 93.44%

Cancer 95.96% 95.96% 92.93% 95.96% 94.95%
Heart 79.05% 78.38% 75.67% 78.38% 78.38%
Sonar 58.65% 57.69% 56.73% 59.62% 57.69%
Teach 52.00% 52.00% 50.67% 53.33% 52.00%
Wine 97.75% 96.63% 96.63% 97.75% 96.63%

1 The datasets can be found in http://archive.ics.uci.edu/ml/datasets.html
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Table 2. Description of all the datasets

Data Set Samples Features Classes

Iris 150 4 3
Haberman 306 3 2

Vote 232 16 2
Dermatology 366 33 6

Cancer 198 32 2
Heart 297 13 5
Sonar 208 60 2
Teach 151 3 3
Wine 178 13 3

Table 3. Accuracy of combined classifiers on
data sets

Accuracy SVMS LDAS CMCC3

Iris 96.00% 96.00% 96.00%
Haberman 71.24% 71.90% 73.85%

Vote 94.83% 93.97% 93.10%
Dermatology 93.44% 94.54% 93.99%

Cancer 94.95% 94.95% 95.96%
Heart 77.03% 78.38% 79.05%
Sonar 69.23% 71.15% 70.19%
Teach 59.21% 61.33% 59.21%
Wine 97.75% 97.75% 97.75%

From the table, the accuracy of CMCC1 is higher than CMCC on all the datasets and
the accuracy of CMCC2 is not lower than CMCC. That proves the proposed algorithms
indeed improve the performance of the CMCC. The CMCC1 increases the freedom
degree of the CMCC. As a result, the accuracy of CMCC1 is raised. Due to removing
of the outliers, the performance of CMCC2 is better. However, the improvement of
CMCC2 is not so significant as CMCC1. That means the increasing of the freedom
degree is more important for our classifier.

Compared with the LDA and linear SVM, the accuracy of CMCC1 is higher except
on the datasets of Haberman and Heart, which shows the effectiveness of CMCC1. On
the most datasets, the linear SVM is not better than LDA or CMCC1. That means the
SVM without kernel has not enough ability to discriminate the object accurately.

Then we compared the combined classifiers. In the table 3, the accuracy of combined
classifiers on all the datasets was presented, including SVMS, LDAS and CMCC3.

From the table, the accuracy of LDAS and CMCC3 are both higher than SVMS
except on the dataset of Vote. That proves the effectiveness of LDAS and CMCC3.
The performance of LDAS is similar to CMCC3. The accuracy of LDAS is higher on
Dermatology, Sonar and Teach and the accuracy of CMCC3 is higher on Haberman,
Cancer and Heart. That means, when the subclass is small, the the performances of
LDA and CMCC are close.

Besides, we compared CMCC3 with CMCC in table 1. The accuracy of CMCC3
is significantly higher than CMCC on all the datasets. That means the performance of
CMCC is improved significantly by CMCC3 and the nonlinear classifier is usually more
effective on these datasets.

At last, we compared performance of all the nonlinear classifiers. In the table 4,
the accuracies of SVM (with kernel), LDAS, CMCC3 and ICMCC were shown. From
the table, the ICMCC obtains the the highest classification accuracy except on Der-
matology, Heart and Sonar. The effectiveness of our classifier can be proved. The per-
formance of SVM is close to ICMCC. It gives the highest accuracy on Dermatology,
Heart and Sonar. Compared with the linear SVM in table 1 and SVMS in table 3, The
importance of kernel function for SVM is obvious.
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Table 4. Accuracy of nonlinear classifiers on data sets

Accuracy SVM LDAS CMCC3 ICMCC

Iris 96.00% 96.00% 96.00% 97.33%
Haberman 76.47% 71.90% 73.85% 77.12%

Vote 95.69% 93.97% 93.10% 95.69%
Dermatology 96.72% 94.54% 93.99% 95.63%

Cancer 95.96% 94.95% 95.96% 96.97%
Heart 87.16% 78.38% 79.05% 83.78%
Sonar 75.00% 71.15% 70.19% 74.04%
Teach 62.67% 61.33% 59.21% 64.00%
Wine 97.75% 97.75% 97.75% 98.88%

We also compared the time cost of these classifiers, which were presented in the table
5. From the table, LDAS is the fastest due to its small amount of computation. The time
cost of SVM is higher than LDAS and lower than CMCC3 and ICMCC. However, when
the dimension is high, the ICMCC and CMCC3 can be faster than SVM. For example,
the time cost of CMCC3 is lowest on Sonar and Dermatology. The ICMCC is also faster
on Sonar. That proves our classifier is more effective for high dimensional data.

Over all, the improved CMCC is an effective classifier and gives a good performance
on all the datasets.

Table 5. Time cost of nonlinear classifiers on data sets

Time SVM LDAS CMCC3 ICMCC

Iris 0.1755 0.1074 0.2669 0.3566
Haberman 0.4023 0.3671 1.8242 2.5231

Vote 2.8757 2.1896 2.0307 3.0364
Dermatology 4.3756 3.3358 3.9489 4.3808

Cancer 5.1666 4.0829 6.1187 8.1171
Heart 1.3782 0.7444 1.5763 2.0315
Sonar 1.8208 1.9296 1.7258 1.8018
Teach 0.249 0.1022 0.3675 0.4248
Wine 0.6398 0.3666 1.3718 1.5807

7 Conclusion

In this paper, we proposed a classifier based on minimum circum circle. As a new linear
classifier, it calculates the minimum circum circle for the samples of each class. Then
the linear classifier is determined by the center of the minimum circum circle. The
connecting line of the centers will be perpendicular to the separating hyperplane and
the linear classifier who gives the highest accuracy will be the final classifier.
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Based on the original CMCC, we proposed three improved algorithms. The improved
CMCC increases the freedom degree of the classifier, deletes the outliers in the training
samples and solves the linear unseparable problem. The performance of CMCC has
been improved based on these algorithms.

In the experiments, we compared CMCC and its improved algorithms with other
classifiers. From the experimental results, CMCC showed a relatively high classifica-
tion accuracy. The proposed improved algorithms improved the performance of CMCC
effectively. The effectiveness of the CMCC can be proved.

In the future work, an algorithm to calculate the minimum circum circle in higher
dimension will be discussed and the kernel method will be introduced in our classifier.
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