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Abstract. Hausdorff distance (HD) is an useful measurement to determine the
extent to which one shape is similar to another, which is one of the most important
problems in pattern recognition, computer vision and image analysis. Howeverm,
HD is sensitive to outliers. Many researchers proposed modifications of HD. HD
and its modifications are all based on computing the distance from each point in
the model image to its nearest point in the test image, collectively called nearest
neighbor based Hausdorff distances (NNHDs). In this paper, we propose modifi-
cations of Hausdorff distance measurements by using k-nearest neighbors (kNN).
We use the average distance from each point in the model image to its kNN in
the test image to replace the NN procedures of NNHDs and obtain the Hausdorff
distance based on kNN, named kNNHDs. When k = 1, kNNHDs are equal to
NNHDs. kNNHDs inherit the properties of outliers tolerance from the prototypes
in NNHDs and are more tolerant to noise.
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1 Hausdorff Distance

To determine the extent to which one shape is similar to another is one of the most
important problems in pattern recognition, computer vision and image analysis. The
performance of the matching method can be viewed as the measurements to determine
the difference between shapes, which is the similarity between two objects based on
their shape attributes [12,8]. The criterion of determining these measurements includes
the efficiency of computation, robust and reasonable results, and firmly theoretical ba-
sis [12]. Hausdorff distance (HD) is such a measurement that has been widely used in
pattern recognition [10,15,16].

HD is a non-linear operator to measure the mismatch of two given sets [6,8]. Given
two finite point sets M = m1,m2, ...,mm (representing a model image) and T =
t1, t2, ..., tt (representing a test image), Hausdorff distance is defined as [8]:

H(M,T ) = max (h(M,T ), h(T,M)) , (1)

and where
h(M,T ) = max

a∈M
min
b∈T

‖ a− b ‖. (2)
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The function H(M,T) is called undirected Hausdorff distance and the function h(M,T)
is called directed Hausdorff distance.

Hausdorff distance measures the similarity extent of a point set to another. Not like
most of other shape comparison methods, Hausdorff distance is not based on finding the
corresponding mode. Thus, it is more tolerant in the perturbations of points locations,
since it considers proximity more than exact superposition. However, Hausdorff dis-
tance is very sensitive to outliers [8]. In certain circumstances, given two sets of points
A and B, B is set A plus one single point which is far from other points in A. Thus,
the Hausdorff distance of A and B is determined by the distance of the single point to
other parts. The sensitive to outliers is fatal to measurement of similarity. Therefore,
many researchers propose modifications of the original Hausdorff distance to reduce
the influence of outliers. Several typical modifications are enumerated as below:

1. RHD
Huttenlocher et al. propose the Ranked Hausdorff distance (RHD) [8]. They pro-
pose a definition of “pth distance” for the model points (1 ≤ p ≤ |M |) which
takes the pth ranked point of M . This definition automatically selects the pth “best
matching” points of M to ignore obvious outliers and minimizes the directed Haus-
dorff distance. They define the directed Hausdorff distance of RHD as:

hp
RHD(M,T ) = pth max

a∈M
min
b∈T

‖ a− b ‖, (3)

which compute the pth maximum distance. When p=1, RHD equals to HD.
2. MHD

Dubuisson et al. propose the modified Hausdorff distance (MHD) [4]. Unlike pre-
vious item, they use the average distance from each point in M to its nearest point
in T to instead one single point. The directed Hausdorff distance is defined as:

hMHD(M,T ) =
1

|M |
∑

a∈M

min
b∈T

‖ a− b ‖ (4)

where |M | is the amount of points in M.
3. M-HD and LTS-HD

Kwon et al. propose two modifications of Hausdorff distance [9,13] based on the
robust statistics such as M-estimation and the LTS scheme.
The directed Hausdorff distance of M-HD is defined based on M-estimation to
replace the Euclidean distance by a cost function ρ to eliminate outliers.

hM HD(M,T ) =
1

|M |
∑

a∈M

ρ(min
b∈T

‖ a− b ‖). (5)

The cost function ρ is convex and symmetric, and has a unique minimum value at
zero. Thus, the large error outliers are discarded. The cost function ρ is defined as:

ρ(x) =

{ |x|, |x| ≤ τ,
τ, |x| > τ,

(6)

where τ is a threshold to eliminate the outliers.
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Based on the LTS scheme, the directed Hausdorff distance of LTS-HD is defined
by a linear combination of order statistics.

hLTS(M,T ) =
1

H

H∑

i=1

dT (a)i (7)

where H denotes the amount of points participate statistics H ≤ |M |, and dT (a)i
denotes the ith minimal distance value in the sorted sequence.

These measurements treat noise as “true” feature points and have no idea to avoid the
influence of noise. In practice, the feature image obtained from original image contains
many noise. If there exists noises in images with some probability, then the measure-
ments would be inaccurate with some probability. Therefore, it is important to reduce
the noise influence in Hausdorff distance computation. In previous work, only Zhao et
al.’s work involves this aspect [17].

2 Hausdorff Distance with k-Nearest Neighbors

In this paper, We propose modifications of Hausdorff distance measurements based on
k-nearest neighbors. At first, we notice that in the computational procedure, HD, RHD,
MHD, M-HD and LTS-HD all contain same procedure

min
a,b∈T

‖ a− b ‖ (a ∈ M),

which computes the distance from each point in M to its nearest neighbor in T . This
is the nearest neighbor (NN) problem and can be optimized by computing the distance
transform [8]. For purposes of discussion, these five measurements are collectively
called Hausdorff distances based on nearest neighbor (NNHDs). The nearest neighbor
(NN) problem aims to find the closest point of a given test point among a set of points.
The k-nearest neighbor (kNN) problem can be considered as an extension of NN, which
aims to find k closest points of a given test point among a set of points. The k-nearest
neighbor approach is an important technique for pattern recognition [5]. The influence
of noise — the points appear on T but do not belong to target object, is improperly
treated as the nearest neighbor of the point in M , which will mislead the measurement.
Therefore, we use the information of k-nearest points in T for each point in M to
replace the single nearest point. The average of the distances to the k-nearest points is
more robust than the distance to one single point.

2.1 Principle

As usual, the proposed measurements take two finite point sets M as a model image
and T as a test image. The image is an n by m array of which each element has a value
0 or 1, referred as background or feature (foreground) point, respectively. The feature
points of T are denoted by FT . Let fd(a, T ) denote the dth closet feature point in FT

of a ∈ FM (‖ · ‖ denotes the Euclidean metric).

fd(a, T ) = argmin
b∈FT−

⋃d−1

i=1
fi(a,T )

‖a− b‖2, a ∈ FM . (8)
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Let NNk(a, T ) denote the k-nearest points in T of point a.

NNk(a, T ) =

k⋃

d=1

fd(a, T ), a ∈ FM . (9)

There are many effective methods to compute the k-nearest neighbor problem [3,11].
Hence, it is easy to compute the k-nearest neighbor in T of each point in M , which will
be discussed in more detail in following section. The average distance of point a to its
k-nearest neighbor feature points in T is defined as:

Averagek(a, T ) =
1

k

∑

b∈NNk(a,T )

‖a− b‖ (10)

We use the average distance of k-nearest points to replace the distance to the near-
est point in the computation of Hausdorff distance. Thus, we propose modifications of
Hausdorff distance measurements based on k-nearest neighbors (kNNHDs), as follows:

1. k-HD is defined as

Hk
HD(M,T ) = max

(
hk
HD(M,T ), hk

HD(T,M)
)
, (11)

and
hk
HD(M,T ) = max

a∈M
(Averagek(a, T )) , (12)

where k denotes k-nearest neighbors.
2. k-RHD is defined as

Hp,k
RHD(M,T ) = max

(
hp,k
RHD(M,T ), hp,k

RHD(T,M)
)
, (13)

and
hp,k
RHD(M,T ) = pth max

a∈M
Averagek(a, T ), (14)

where k denotes k-nearest neighbors and p denotes the pth maximum distance.
3. k-MHD is defined as

Hk
MHD(M,T ) = max

(
(hk

MHD(M,T ), hk
MHD(T,M)

)
, (15)

and

hk
MHD(M,T ) =

1

|M |
∑

m∈M

Averagek(a, T ), (16)

where k denotes k-nearest neighbors.
4. k-M-HD is defined as

Hk
M−HD(M,T ) = max

(
hk
M HD(M,T ), hk

M HD(T,M)
)
, (17)

and

hk
M HD(M,T ) =

1

|M |
∑

m∈M

M Averagek(a, T ), (18)

where k denotes k-nearest neighbors.
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M Averagek(a, T ) denotes the average distance to kNN of a restricted by the
cost function ρ. There are two forms of M Averagek(a, T ) definition:

M Averagek(a, T ) = ρ(Averagek(a, T )) (19)

or

M ′ Averagek(a, T ) =
1

k

∑

b∈NNk(a,T )

ρ(‖a− b‖) (20)

The former one more conform the original intention of M-estimation. We choose
(19) for the directed Hausdorff distance of k-M-HD.

The cost function ρ is defined as:

ρ(x) =

{ |x|, |x| ≤ τ,
τ, |x| > τ,

(21)

where τ is a threshold to eliminate the outliers.
5. k-LTS-HD is defined as

Hk
LTS(M,T ) = max

(
hk
LTS(M,T ), hk

LTS(T,M)
)
, (22)

and

hk
LTS(M,T ) =

1

H

H∑

i=1

dk,iLTS(M,T ), (23)

where k denotes k-nearest neighbors.
dk,iLTS(M,T ) denotes the ith minimal distance value in the sorted sequence, and

H denotes the amount of points participate statistics H ≤ |M |.

dk,iLTS(M,T ) = ith min

(
⋃

a∈M

Averagek(a, T )

)
. (24)

In all these measurements, the inner parts of the directed Hausdorff distance are the
average distance to its k-nearest neighbors. These measurements are the kNN version
of NNHDs, collectively called kNNHDs (Hausdorff distance based on k-nearest neigh-
bors). It should be noticed, when k = 1, the k-nearest neighbor is equal to nearest neigh-
bor, and kNNHDs are equal to NNHDs, respectively.

3 Implementation

The efficiency of the measurement computation is also an important factor. Here, we
implement kNNHDs in a efficient way. Huttenlocher et al. use the distance transform
to optimize the computation of Hausdorff distance [8].
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Algorithm 1 Compute hk
HD(M,T )

Require: model image M, test image T and order k
1: compute the kNNT of T, and obtain k arrays A1...Ak;
2: for i = 2 to k do
3: A1 = A1 +Ai; //matrix operation
4: end for
5: A1 = A1 ·M ; //matrix operation
6: value = the maximum element of A1;
7: value = value/k;
8: return value;

Similarly, we compute the
k-nearest feature points for
each point of the test image.
We propose a k-nearest neigh-
bor transform (kNNT) for bi-
nary images in [3]. The goal
of kNNT is to assign each
point in the binary image with
its k-nearest feature points.
The computational complex-
ity of constructing kNNT for

a binary image is O(Nk2) (N is the size of the image) with using O(Nk) space [3].
Due to limitations on space, we only give the pseudo-code algorithm of the directed
Hausdorff distance of k-HD. The implementations of other algorithms of kNNHDs are
similar to this one.

Totally, O(Nk2 + Nk + N + N) = O(Nk2) (M and T have same image size N).
The other computational complexities of NNHDs and kNNHDs can also be analyzed,
as follows:

Table 1. Computational complexity of measurments

Measurements HD RHD MHD M-HD LTS-HD
NNHDs O(N) O(Np) O(N) O(N) O(NH)

kNNHDs O(Nk2) O(Nk2) O(Nk2) O(Nk2 +NH) O(Nk2 +Np)

As Table.1 shows, the computational complexities of kNNHDs are similar to those
of NNHDs, which are all linear with the image size. The only difference is that the
computational complexities of kNNHDs are based on O(Nk2), which comes from the
KNNT computation. Therefore, although the computational complexities of kNNHDs
are a bit higher than those of NNHDs, there are still at same level.

4 Experiments

4.1 Synthetic Images

We used the binary images of the English letters as the synthetic images. First, we
generated images of ten letters from “A” to ”J”; next, and we use random noise to
destroy these images with probability from 1% to 10% (Fig.1). Zhao et al. use similar
English letters as synthetic images in [17] and they only use one kind of lower noise
images. The experiment strategy is that: we compute the distance from the original
images to the images with variant noise probability by the proposed measurements; for
each level noise images, the right recognized letters is count as good and ten groups of
recognition rates for each measurements are obtained.

Fig.2 shows that kNNHDs all present better performance than NNHDs. In Fig.2(a),
HD and k-HD are all sensitive to outliers and show poor performance. At most time,
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

Fig. 1. Synthetic images of English letters. (a) — (j) the original image of corresponding letters;
(k) — (t) demonstration of letter “A” destroyed by random noise with probability from 1% to
10%.
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Fig. 2. Results on the synthetic images. (a) Comparison between HD and k-HD, variant k for
different level noise images is shown in the figure ; (b) Comparison between MHD and k-MHD,
k = 40; (c) Comparison between RHD and k-RHD, k = 155, p = 1/4 amount of total feature points;
(d) Comparison between M-HD and k-M-HD, k=6, τ=4.5; (e) Comparison between LTS-HD and
k-LTS-HD, k= 110, H = 90% of amount of feature points.

the results of k-HD are same as HD, and k-HD only has a slight improvement than HD
at several levels of noise images with different k. The other four of kNNHDs achieve
the highest recognitions rates at a single “k”. Fig.2(b)(c)(d)(e) show the NN version and
kNN version of MHD, RHD, M-HD and LTS-HD all effectively reduce the affection
of outliers as we mentioned before. In Fig.2(b), by increasing noise, the recognition
rate of MHD drops quickly, and the recognition rate of k-MHD is 60% with 10% of
noise. In Fig.2(c), RHD represents better than MHD and shows poor performance after
the noise upper than 5%. At the same time, the recognition of k-RHD is 70% with
10% of noise. In Fig.2(d), k-M-HD shows the best performance than all others — its
recognition rate are 100% at all level noise percentage. In Fig.2(e), k-LTS-HD shows
significant improvement compared with LTS-HD.
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4.2 Face Recognition

We examined kNNHDs on real objects recognition. Many researchers use Hausdorff
distance in face recognition [6,7,10,14,15,16]. We compared kNNHDs with NNHDs
by face recognition on two favorite databases, the ORL database of faces [1] and the
Yale faces database [2]. Images of the two databases are processed by same procedures
to obtain the edge feature images(Fig.3, Fig.4):

1. Locate the face part of each original image and cut the redundant part, then nor-
malize image to same size;

2. Use the Sobel filter on face image to get the edge image [6,15];
3. Threshold the image with dynamic threshold value, ensure the amount of feature

points approximates 20% of the total edge image.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

Fig. 3. Sample images of the ORL database of faces. (a) — (e) Original images of same individi-
aul; (f) — (j) Region of interest of face images; (k) — (o) Edge image extracted by Sobel filter;
(p) — (t) Edge feature after threshold.

Next, we use kNNHDs and NNHDs to measure the similarity of the edge images
of faces in proper order. The classify method is Nearest Neighbor [5], and the experi-
mental strategy is Leave-One-Out. As shown in Fig.5 and Fig.6, the recognition rates
of kNNHDs are better than those of NNHDs on both databases, expect k-MHD keeps
same as MHD on the ORL database of faces (Fig.5(b)). The results of HD are poor
compared with others and k-HD has a small increment than HD (Fig.5(a), Fig.6(a)).
The results of k-RHD and k-M-HD show significant improvements than RHD and M-
HD on both databases (Fig.5(c)(d), Fig.6(c)(d)). k-LTS-HD is better on the Yale faces
database than on the ORL database of faces.

These results illustrate that kNNHDs promote the recognition rates in various de-
gree. On the whole, kNNHDs, eliminating more noises from feature extraction, are
more capable to measure the similarity of objects. Actually, in the research on the face
recognition, many other information is also considered to improve the recognition rates,
such as face gradient [16], spacial eigen-weighted [10] and shape contexture [15], etc.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p) (q) (r) (s) (t)

Fig. 4. Sample images of the Yale faces database. (a) — (e) Original images of same individiaul;
(f) — (j) Region of interest of face images; (k) — (o) Edge image extracted by Sobel filter; (p)
— (t) Edge feature after threshold.
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Fig. 5. The recognition rates of kNNHDs on the ORL database of faces with variable k. When k
= 1, the results are of NNHDs.
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Fig. 6. The recognition rates of kNNHDs on the Yale faces database with variable k. When k = 1,
the results are of NNHDs.

5 Conclusion

In this paper, we propose modifications of Hausdorff distance measurements by using
k-nearest neighbors (kNN). Experiments on synthetic images and face recognition show
that kNNHDs performs better than NNHDs, respectively. kNNHDs have several char-
acters:(1) kNNHDs inherit the properties of reducing the sensitivity to outliers from the
prototypes in NNHDs; (2) kNNHDs are more tolerable to noise; (3) kNNHDs are easy
to compute. Therefore, kNNHDs are favorable measurements for pattern recognition
and image matching. The methods based on NNHDs can be easily modified to adopt
kNNHDs, which can benefit substantially from this modification. Although, we illus-
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trate kNNHDs with Euclidean metric here. Other metrics, such as the city-block (L1),
the chessboard (L∞), the octagonal, can all be employed by kNNHDs for different
situations.
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