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Abstract. This paper proposes a danger feature based negative selec-
tion algorithm (DFNSA). The DFNSA divides the danger feature space
into four parts, and reserves the information of danger features to the
utmost extent, laying a good foundation for measuring the danger of a
sample. In order to incorporate the DFNSA into the procedure of mal-
ware detection, a DFNSA-based malware detection (DFNSA-MD) model
is proposed. It maps a sample into the whole danger feature space by us-
ing the DFNSA. The danger of a sample is measured precisely in this way
and used to classify the sample. Eight groups of experiments on three
public malware datasets are exploited to evaluate the effectiveness of the
proposed DFNSA-MD model using cross validation. Comprehensive ex-
perimental results suggest that the DFNSA is able to reserve as much
information of danger features as possible, and the DFNSA-MD model is
effective to detect unseen malware. It outperforms the traditional nega-
tive selection algorithm based and the negative selection algorithm with
penalty factor based malware detection models in all the experiments for
about 5.34% and 0.67% on average, respectively.

Keywords: danger feature, negative selection algorithm, feature extrac-
tion, malware detection, artificial immune system.

1 Introduction

With the development of immunology, more and more immune mechanisms have
begun to be applied in computer security. Forrest et al. first proposed a negative
selection algorithm (NSA) to detect the abnormal modification on protected
data [1] and later to monitor the UNIX process [2]. Furthermore, they proposed
some design principles for computer immune system, such as anomaly detection,
diversity and adaptability [3].

The traditional NSA (TNSA) generates a detecting feature library, in which
any feature does not match any self, by deleting all the features matching self. It
assumes that all the self are harmless and all the non-self are harmful. However,
some self are harmful, for example, cancer cells, and some non-self are harmless,
taking food as an example.
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In order to overcome the drawback of the TNSA in defining the harmfulness
of self and non-self, the danger theory (DT) was proposed [4]. According to the
DT, the immune system reacts to danger, instead of reacting to non-self, and
the internal conversation between tissues and the cells of the immune system
controls immunity. The DT explains the autoimmune reaction perfectly.

Based on the DT, Aickelin et al. proposed the danger zone to translate the
DT into the field of computer security [5]. From then on, many artificial immune
models are proposed, for details, please refer to [6] [7] [8] [9] [10].

Pengtao Zhang et al. proposed a negative selection algorithm with penalty fac-
tor (NSAPF) based malware detection (NSAPF-MD) model [11]. The detecting
feature library of this model consists of all the non-self danger features, where
the features matching self are punished using a penalty factor. It performed well
in their experiments. However, this model needs to select a proper penalty fac-
tor. What is more, it merely takes advantage of non-self danger features, instead
of all the danger features extracted in a training set.

In this paper, a danger feature based negative selection algorithm (DFNSA)
is proposed, which reserves the information of danger features to the utmost
extent, laying a good foundation for measuring the danger of a sample. On this
basis, a DFNSA-based malware detection (DFNSA-MD) model is proposed. It
makes use of all the danger features and maps a sample into the whole danger
feature space by using the DFNSA. In this way, the proposed DFNSA-MD model
measures the danger of a sample precisely and archives good performance.

The remainder of the paper is organized as follows. In Section 2, we introduce
the DFNSA. In Section 3, the DFNSA-MD model is presented in detail. Section
4 gives the detailed experimental setup and results. Finally, we conclude the
paper with a detailed discussion.

2 Danger Feature Based Negative Selection Algorithm

2.1 Danger Feature

Definition: A danger feature is a feature with dangerous properties, which are
able to identify its corresponding dangerous operations. It is the basic element for
an immune system to decide whether an immune response should be produced.

In the malware detection field, a danger feature is a code segment which
executes a dangerous operation, such as formatting diskette, self-replicating.

There are many expressions for a danger feature. For example, we could use
binary string, sequences of assembly codes to express a danger feature in the
malware detection field. Generally speaking, a danger feature could appear in
both non-self and self. It is the foundation of measuring the danger of a sample.

The danger features can be classified into four categories: (1) danger features
only appearing in non-self; (2) danger features appearing in both non-self and
self, but tending to appear in non-self; (3) danger features appearing in both non-
self and self, but tending to appear in self; (4) danger features merely appearing
in self.
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2.2 DFNSA

The flow chart of the DFNSA is shown in Fig. 1, where the NCDFL denotes
the non-self candidate danger feature library, which is taken as non-self, and the
SCDFL means the self candidate danger feature library, which is self.

Fig. 1. The flow chart of the DFNSA

Based on the matching of non-self and self, the DFNSA splits the non-self
features, which do not match any self, into the non-self danger feature library
1 (NDFL1), and the other non-self features, which match self, into the NDFL2.
According to the class tendency of danger features, the NDFL2 is further divided
into the NDFL21 and NDFL22, in which the features tend to appear in non-self
and self, respectively. The features in the NDFL22 are extracted from non-self,
but tend to appear in self, so they are considered to be invalid and deleted.

The measure of the class tendency of a feature is defined as T (f, C) = P (f, C),
where P (f, C) denotes the proportion of feature f appearing in class C. if
T (f, CN) > T (f, CS), then f is considered to tend to appear in non-self, other-
wise self. The CN and CS denote the classes of non-self and self, respectively.

In a similar way, the SCDFL is firstly split into the SDFL1 and SDFL2 by
the DFNSA. Then the SDFL2 is further divided into the SDFL21 and SDFL22.
The SDFL22 is deleted with the same reason as the NDFL22.

Definition: if a danger feature f1 matches a danger feature f2, the two features
are equivalent to each other, written as f1 = f2.

According to the above definition, since NDFL21 = SDFL22 and NDFL22
= SDFL21, deleting the NDFL22 and SDFL22 merely deletes redundant in-
formation, without losing any information of danger features. The proof about
NDFL21 = SDFL22 and NDFL22 = SDFL21 is given below.
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Proof. ∵ ∀fS ∈ SDFL2, ∃fN ∈ NDFL2, fS = fN
∴ T (fS, CS) = T (fN , CS) = P (fS, CS) and T (fS, CN) = T (fN , CN ) = P (fN , CN)
∴ if T (fS, CS) >= T (fS, CN), then fS ∈ SDFL21 and fN ∈ NDFL22,
if T (fS, CS) < T (fS, CN ), then fS ∈ SDFL22 and fN ∈ NDFL21

∴ ∀f ′
S ∈ SDFL21, ∃f ′

N ∈ NDFL22, f
′
S = f

′
N

and ∀f ′
S ∈ SDFL22, ∃f ′

N ∈ NDFL21, f
′
S = f

′
N ,

Similarly , ∀f ′
N ∈ NDFL21, ∃f ′

S ∈ SDFL22, f
′
N = f

′
S

and ∀f ′
N ∈ NDFL22, ∃f ′

S ∈ SDFL21, f
′
N = f

′
S

∴ NDFL21 = SDFL22, NDFL22 = SDFL21

The DFNSA divides the danger feature space into four parts, and reserves the
information of danger features to the utmost extent, laying a good foundation
for measuring the danger of a sample. The four categories of danger features are
stored in the NDFL1, NDFL21, SDFL21 and SDFL1, respectively.

Comparing to the NSAPF, the DFNSA does not need to optimize a penalty
factor, dramatically dropping down the training time of the DFNSA, and takes
full advantage of all the danger features extracted in a training set.

3 DFNSA-Based Malware Detection Model

In this paper, a danger feature is defined as a code segment which executes a
dangerous operation, and expressed as a binary string. The malware and benign
programs are taken as non-self and self, respectively.

3.1 Danger Feature Extraction

Malware Instruction Library. This paper defines an instruction as a binary
string of length 2 bytes. The class tendency of an instruction i to malware is
measured using Eq. 1. The top P% instructions with the highest tendency value
make up the malware instruction library (MIL).

Ii =
Iin/In

Iin/In + Iis/Is
, F i =

F i
n/Fn

F i
n/Fn + F i

s/Fs
, T i =

√
(Ii)2 + (F i)2 (1)

where Iin and Iis denote the instruction frequencies of an instruction i in non-self
and self, respectively, and F i

n and F i
s are the document frequencies of i in non-self

and self. In and Is indicate the number of instructions in the non-self and self,
respectively. Fn and Fs are the number of samples in non-self and self. Ii and
F i measure the tendency of i to the non-self in the perspectives of instruction
frequency and document frequency. T i is the tendency of i to the non-self.

Since the instructions in the MIL tend to appear in malware, they are danger-
ous. If the length of a binary string constructed by these instructions exceeds a
threshold R bytes, we believe the binary string contains enough danger informa-
tion and is a danger feature. All the danger features make up the danger feature
space.
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NCDFL and SCDFL. On the basis of the MIL, the NCDFL and SCDFL are
generated by traversing all the malware and benign programs in a training set,
respectively. The way to traverse a sample is described below.

A sliding window of length 2 bytes is used to traverse a sample to extract
candidate danger features. It moves forward 1 byte at a time. When the window
encounters an instruction contained in the MIL, it begins to generate a feature. If
the instructions in two adjacent windows do not belong to the MIL, the current
feature is terminated as the next feature would not connect with it. If the length
of the current feature exceeds R bytes, it is taken as a candidate danger feature.
The sliding window keeps on moving to the end of the sample.

This paper sets R = 4. The length of a candidate danger feature would be
adjusted based on the specific sample and MIL as described above, so R would
not affect the result significantly. The frequency of a feature is taken as its weight.

Detecting Feature Library. Taking the NCDFL and SCDFL as the inputs
of the DFNSA, four danger feature libraries are generated: NDFL1, NDFL21,
SDFL1 and SDFL21, which make up the detecting feature library (DFL) of the
proposed DFNSA-MD model. The features in the DFL are the basic elements
to construct the danger feature vector of a sample.

3.2 Danger Feature Vector

In this paper, a sample is expressed as a danger feature vector to measure the
danger of the sample. The danger feature vector is defined as

<
MNDFL1

LNDFL1
,
MNDFL21

LNDFL21
,
MSDFL1 +MSDFL21

LSDFL1 + LSDFL21
>

where Mi denotes the matching value of a sample and a library i, and Li is the
sum of weights of features in a library i, i =NDFL1, NDFL21, SDFL1, SDFL21.

The r-bit continuous matching is taken as the feature matching criteria. Here
r = R ∗ 8, i.e., the matching part of two features is also a danger feature. The
matching value of a sample and a danger feature library is the sum of weights
of the features in the library which match any feature of the sample.

The danger feature vector maps a sample into the whole danger feature space,
and characterizes a sample efficiently and completely, making the DFNSA-MD
model perform well. Every sample in a training set is expressed as a danger
feature vector, which is taken as the input of a classifier.

4 Experiments

4.1 Datasets

The experiments in this paper are conducted on three public malware datasets:
CILPKU08, Henchiri and VXHeanvens datasets. The three datasets and their
composition documents can download from www.cil.pku.edu.cn/resources/.

The benign program dataset used here consists of files of Windows XP and a
series of applications, which are the main paunching bag of malware.
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Table 1. Experimental platform

CPU Core 2 Duo 3.00 GHz

RAM 8 GB

Operating system Win 7 64-bit

4.2 Experimental Setup

The support vector machine (SVM), realized in LibSVM [12], is taken as the
classifier of the proposed DFNSA-MD model, and the area under the receiver
operating characteristic curve (AUC) is utilized as the performance evaluation
criteria. The information of the experimental platform is shown in Table 1.

In the experiments of Section 4.4, eight groups of experiments are taken on
the three public malware datasets using 5-fold cross validation, and the 95%
confidence intervals are computed to look into the stability of the proposed
DFNSA-MD model. Both the CILPKU08 and Henchiri datasets mainly consist
of computer viruses, so two experiments are carried on in the two datasets di-
rectly, ignoring the categories of malware. The VXHeavens dataset contains 7128
malware which fall into six categories, so we split this dataset into six smaller
datasets: backdoor, constructor, miscellaneous, trojan, virus and worm. The mis-
cellaneous includes DoS, Nuker, Hacktool and Flooder, while the malware in the
other five smaller datasets, respectively, fall into a category. Six experiments are
taken in the six smaller datasets.

In all the experiments, there is no overlap between a training set and a test set.
That is to say, to a training set, the malware in a test set are unseen malware.
This setting increases the reliability of the experiments.

The TNSA-based malware detection (TNSA-MD) model and the NSAPF-
based malware detection (NSAPF-MD) model are imported for comparison.

4.3 Selection of Parameters

This section selects the instruction proportion: P% used in the MIL, using liner
search, where P = 0.5, 1.0, ..., 10.0. We do not try larger P, since when P =
10, the MIL contains 6553 instructions and already covers a huge danger feature
space. The experimental results are shown in Fig. 2.

Fig. 2 illustrates that, with the growth of P, the performance of the DFNSA-
MD model shows steady downward trend as the MIL contains more and more in-
structions with unremarkable tendencies to malware. When P = 1, the DFNSA-
MD model obtains the optimal AUC = 0.9039.

Generally speaking, the instruction proportion P% varies with different
datasets. Hence we just set the optimization interval of P as [0.5, 3] in the
rest of experiments, instead of setting P = 1. In the rest of experiments, the P,
which makes the DFNSA-MD model perform best in a training set, is set as the
optimal P.
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Fig. 2. The experimental results of the selection of parameters

Table 2. Experimental results

TNSA-MD model NSAPF-MD model DFNSA-MD model

CILPKU08 0.9684 ± 0.00568 0.9688 ± 0.00907 0.9761 ± 0.00781

Hechiri 0.9634 ± 0.00755 0.9679 ± 0.01404 0.9808 ± 0.00428

Backdoor 0.8100 ± 0.02060 0.8190 ± 0.01764 0.8247 ± 0.01024

Constructor 0.9095 ± 0.03120 0.9202 ± 0.01545 0.9244 ± 0.01213

Miscellaneous 0.8243 ± 0.01603 0.8255 ± 0.01912 0.8394 ± 0.01028

Trojan 0.7901 ± 0.01332 0.8729 ± 0.01897 0.8735 ± 0.01714

Virus 0.6275 ± 0.01738 0.8746 ± 0.01187 0.8774 ± 0.01784

Worm 0.8252 ± 0.03697 0.8430 ± 0.04788 0.8489 ± 0.04101

4.4 Experimental Results

The experimental results of the proposed DFNSA-MD model are listed in Table
2. The experimental results of the TNSA-MD and NSAPF-MD models are also
given in Table 2 for comparison.

From Table 2, the NSAPF-MD model is 4.67% better than the TNSA-MD
model in all the experiments on average by making advantage of danger features
extracted from malware. The detailed analysis will be given in Section 5.

The DFNSA-MD model outperforms the TNSA-MD and NSAPF-MD mod-
els for about 5.34% and 0.67% in all the experiments on average, respectively,
without any losing in any experiment. The DFNSA-MD model makes use of all
the danger features extracted from a training set, regardless of their categories.
Hence the DFNSA-MD model is considered to be able to measure the danger of
a sample more precisely, and achieves the best performance.
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Table 3. The composition of the DFLs of the three models

Detecting feature library

TNSA-MD model NDFL1

NSAPF-MD model NDFL1, NDFL21, NDFL22

DFNSA-MD model NDFL1, NDFL21, SDFL1, SDFL21

The 95% confidence intervals of the three models are relatively small from
Table 2, indicating that the results of these models are very stable and believable.

5 Discussions

5.1 Comparison of Detecting Feature Library

Table 3 lists the composition of the DFLs of the TNSA-MD, NSAPF-MD and
DFNSA-MD models. It is easy to see that the DFL of the TNSA-MD model
is the smallest DFL, consisting of NDFL1, i.e., the features merely appearing
in non-self. Since the TNSA discards lots of danger features which are believed
helpful, the performance of the TNSA-MD model is relatively bad.

The DFL of the NSAPF-MDmodel consists of NDFL1, NDFL21 and NDFL22,
i.e., all the danger features appearing in non-self. The NSAPF reserves the non-
self danger features which match self danger features by punishing these features,
and obtains a larger DFL. Based on this DFL, the NSAPF-MD model detects
malware by measuring the danger of a sample, and achieves good results.

The DFNSA-MD model owns the largest DFL which consists of all the danger
features extracted from a training set. The DFNSA divides the danger feature
space into four parts, and reserves the information of danger features to the
utmost extent. It makes the danger feature vector of a sample contain as much
information as possible and measure the danger of a sample better. In this way,
the DFNSA-MD model outperforms the TNSA-MD and NSAPF-MD models in
all the experiments.

5.2 Comparison of Detecting Time

The detecting time of a sample is proportionate to the number of the features in
a DFL. We analyze the average detecting time of the three models for a sample
in the virus dataset, in which the average size of a sample is 104 KB.

– The DFL of the TNSA-MD model is the smallest DFL, so it is faster than the
other two models to detect a sample, just assuming 0.05 seconds on average.

– The size of the DFL of the NSAPF-MD model lays between that of the
TNSA-MD and DFNSA-MD models, taking 0.12 seconds on average for
detecting a sample.

– The DFNSA-MD model has the largest DFL, which consists of all the danger
features extracted in a training set, so its detecting time is the longest, 0.15
seconds on average, basically meeting the demand of a real-time system.
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6 Conclusions

In this paper, the DFNSA has been proposed and applied to detect malware.
The DFNSA divides the danger feature space into four parts, and reserves the
information of danger features to the utmost extent. Comprehensive experimen-
tal results suggest that the DFNSA is able to reserve as much information of
danger features as possible, and the DFNSA-MD model is effective to detect un-
seen malware by measuring the danger of a sample precisely. It outperforms the
TNSA-MD and NSAPF-MD models for about 5.36% and 0.67%, respectively.

In future work, we want to find a better way to measure the danger of a
sample by importing the danger theory and text categorization methods.
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