
Enhanced Fireworks Algorithm
Shaoqiu Zheng†, Andreas Janecek‡ and Ying Tan†

† Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University
Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing,100871, P.R. China

Email: zhengshaoqiu@pku.edu.cn, ytan@pku.edu.cn
‡ University of Vienna, Research Group Entertainment Computing, 1090 Vienna, Austria

Email: andreas.janecek@univie.ac.at

Abstract—In this paper, we present an improved version of
the recently developed Fireworks Algorithm (FWA) based on
several modifications. A comprehensive study on the operators of
conventional FWA revealed that the algorithm works surprisingly
well on benchmark functions which have their optimum at the
origin of the search space. However, when being applied on
shifted functions, the quality of the results of conventional FWA
deteriorates severely and worsens with increasing shift values,
i.e., with increasing distance between function optimum and
origin of the search space. Moreover, compared to other meta-
heuristic optimization algorithms, FWA has high computational
cost per iteration. In order to tackle these limitations, we present
five major improvements of FWA: (i) a new minimal explosion
amplitude check, (ii) a new operator for generating explosion
sparks, (iii) a new mapping strategy for sparks which are out
of the search space, (iv) a new operator for generating Gaussian
sparks, and (v) a new operator for selecting the population for
the next iteration. The resulting algorithm is called Enhanced
Fireworks Algorithm (EFWA). Experimental evaluation on twelve
benchmark functions with different shift values shows that
EFWA outperforms conventional FWA in terms of convergence
capabilities, while reducing the runtime significantly.

I. INTRODUCTION

The Fireworks Algorithm (FWA) [1] is a recently devel-
oped swarm intelligence algorithm based on simulating the
explosion process of fireworks. In analogy with real fireworks
exploding and illuminating the night sky, the fireworks (i.e, in-
dividuals) in FWA are let off to the potential search space. For
each firework, an explosion process is initiated and a shower
of sparks fills the local space around it. Fireworks as well
as the newly generated sparks represent potential solutions
in the search space. Similar to other optimization algorithms,
the goal is to find a “good” (ideally the global) solution of
an optimization problem with bound constraints in the form
minx∈Ω f(x), where f : RN → R is a nonlinear function,
and Ω is the feasible region. FWA presents a new search
manner which searches the potential space by a stochastic
explosion process within a local space. A principle FWA works
as follows: At first, N fireworks are initialized randomly, and
their quality (i.e., fitness) is evaluated in order to determine
the explosion amplitude and the number of sparks for each
firework. Subsequently, the fireworks explode and generate
different types of sparks within their local space. Finally, N
candidate fireworks are selected among the set of candidates,
which includes the newly generated sparks as well as the N
original fireworks.

In order to ensure diversity and balance the global and local
search, the explosion amplitude and the population of the
newly generated explosion sparks differ among the fireworks.
A firework with better fitness can generate a larger population
of explosion sparks within a smaller range, i.e., with a small
explosion amplitude. Contrary, fireworks with lower fitness
can only generate a smaller population within a larger range,
i.e., with higher explosion amplitude. This technique allows
to balance between exploration and exploitation capabilities
of the algorithm. While exploration refers to the ability of the
algorithm to explore various regions of the search space in
order to locate promising good solutions, exploitation refers to
the ability to conduct a thorough search within a smaller area
recognized as promising in order to find the optimal solution
(cf. [2]). Exploration is achieved by those fireworks which
have a large explosion amplitude (i.e., lower fitness), since they
have the capability to escape from local minima. Exploitation
is achieved by those fireworks which have a small explosion
amplitude (i.e, high fitness), since they reinforce the local
search ability in promising areas. After the explosion, another
type of sparks are generated based on a Gaussian mutation of
randomly selected fireworks. The idea behind this is to further
ensure diversity of the swarm. In order to improve readability
we assign new notations to the two distinct types of sparks:
“explosion sparks” are generated by the explosion process, and
“Gaussian sparks” are generated by Gaussian mutation.
Contributions. In the original FWA paper [1], it has been
shown that FWA works very well on functions which have
their optimum at the origin. For all functions presented in [1],
FWA achieved better fitness than Standard PSO and Clonal
PSO [3], respectively, with a significantly smaller number
of function evaluations. However, we found that FWA has
problems when being applied on shifted functions, i.e., func-
tions which do not have their optimum at the origin. In
fact, with increasing distance between optimum and origin
of the function, the results of FWA decline. Until now, it
is unclear which operators of FWA are responsible for this
loss in accuracy. Thus, it is important to improve the current
operators of FWA in order to make the algorithm applicable
on different functions, which may be shifted and/or rotated.
Another problem of FWA is the high computational cost per
iteration. This is mostly caused by the operator which selects
the individuals for the next generation. The goal of this paper

is to improve the operators of FWA and to analyze to which ex-
tent each of these operators is responsible for its behavior. We
present improvements and/or alternatives of these operators
and propose a new algorithm called Enhanced FWA (EFWA).
Compared to FWA, EFWA achieves stable results for shifted
and non-shifted functions, and shows improvements over FWA
in terms of convergence capabilities and computational cost.

Related work. So far, FWA has been applied for solving
practical optimization problems [4]–[7], combined with other
optimization algorithms [8], [9], and improved in another study
[10]. Janecek and Tan [4]–[6] used FWA together with Particle
Swarm Optimization (PSO), Genetic Algorithms (GA), Differ-
ential Evolution (DE), and Fish School Search for improving
the initialization of Non-negative Matrix Factorization (NMF).
Their results indicate that FWA could not compete with the
other optimization algorithms when the number of dimensions
(i.e., the rank of NMF) was small, but achieved good results
when the number of dimensions was increased. Bureerat [7]
compared twelve different optimization algorithms on 35
benchmark functions with different dimensions ranging from
2 to 30. FWA was ranked as the 6-th best algorithm for
optimizing these benchmark functions, which is better than
GA and PSO. Gao and Diao [8] proposed the Cultural Fire-
work Algorithm (CFA) which combines ideas from Cultural
Algorithms (CAs) and FWA. CFA acquires problem-solving
knowledge (beliefs) from the explosion of fireworks and in
return makes use of that knowledge to better guide the search
(cf. [8]). Results indicate that CFA is well suited for optimizing
FIR and IIR digital filters, and outperforms various PSO
variants for this type of optimization problem. Zheng et al.
[9] proposed a hybrid algorithm between FWA and DE by
including operators from DE into FWA. The results indicate
that the hybrid algorithm outperforms both, the conventional
FWA and the conventional DE. However, the experiments were
only conducted on functions which have their optimum at the
origin and hence show similar effects as conventional FWA.

So far, one study [10] has focused on improving the con-
ventional FWA by investigating the influence of approximation
approaches for accelerating the FWA search by elite strategy.
The authors compared different approximation and sampling
methods, and also different sampling numbers, and analyzed
the acceleration performance of FWA based on ten benchmark
functions. Their results indicate that the random sampling
method with a two degree polynomial model gains the best
performance. We point out that different sampling methods
are able to improve and speed up the FWA. However, other
and probably more important operators of FWA have not been
analyzed nor improved in this study.

Synopsis. We present an overview of conventional FWA in
Section II, and discuss its limitations in Section III. In Sec-
tion IV we propose the new EFWA algorithm, which is based
on several improvements and/or alternatives of/to the FWA
operators. Our experiments are evaluated and discussed in
Section V. Finally, we conclude the paper and give directions
for future work in Section VI.

II. THE CONVENTIONAL FWA ALGORITHM

As already mentioned, FWA incorporates an automatic
procedure to balance exploration and exploitation capabilities.
Fireworks with better fitness will have a smaller explosion
amplitude and a larger number of explosion sparks than fire-
work with lower fitness. Assume that the number of fireworks
is N and the number of dimensions is d, then the explosion
amplitude A (Eq. 1) and the number of explosion sparks s
(Eq. 2) for each firework Xi are calculated as follows:

Ai = Â · f (Xi)− ymin + ε∑N
i=1 (f (Xi)− ymin) + ε

(1)

si = Me ·
ymax − f(Xi) + ε∑N

i=1(ymax − f(Xi)) + ε
(2)

where ymax = max(f(Xi)), ymin = min(f(Xi)), Â and Me

are two constants to control the explosion amplitude and the
number of explosion sparks, respectively, and ε is the machine
epsilon. To avoid the overwhelming effects of fireworks at
good locations, the number of sparks is bounded by

si =

round(aMe) if si < aMe,

round(bMe) if si > bMe,

round(si) otherwise.

(3)

where a and b are constant parameters that confine the range of
the population size. Based on Ai and si, the explosion operator
is performed (cf. Alg. 1). For each of the si explosion sparks
of each firework Xi, Algorithm 1 is performed once. In Line 7
of Algorithm 1, the operator % refers to the modulo operation
(remainder of division), and Xk

min and Xk
max refer to the lower

and upper bounds of the search space in dimension k.

Algorithm 1 – Generating “explosion sparks” in FWA

1: Initialize the location of the “explosion sparks”: X̂i = Xi

2: Calculate offset displacement: △X = Ai × rand(−1, 1)
3: Set zk = round(rand(0, 1)), k = 1, 2, ..., d
4: for each dimension of X̂k

i , where zk == 1 do
5: X̂k

i = X̂k
i +△X

6: if X̂k
i out of bounds then

7: X̂k
i = Xk

min + |X̂k
i | % (Xk

max −Xk
min)

8: end if
9: end for

After the explosion, another type of sparks, the Gaussian
sparks, are generated based on a Gaussian mutation process
(cf. Algorithm 2). This algorithm is performed Mg times, each
time with a randomly selected firework Xi (Mg is a constant
to control the number of Gaussian sparks).

In order to retain the information and pass it to the next
generation, a new population of fireworks is selected at the end
of each iteration. All original fireworks, as well as all explosion
and Gaussian sparks can be selected for the next iteration
(in total, N fireworks/sparks are selected). The current best
location is always kept for the next iterations. In order to
improve the diversity, the remaining N − 1 locations are

Algorithm 2 – Generating “Gaussian sparks” in FWA

1: Initialize the location of the “Gaussian sparks”: X̃i = Xi

2: Calculate offset displacement: e = Gaussian(1, 1)
3: Set zk = round(rand(0, 1)), k = 1, 2, ..., d
4: for each dimension of X̂k

i , where zk == 1 do
5: X̃k

i = X̃k
i × e

6: if X̃k
i out of bounds then

7: X̃k
i = Xk

min + |X̃k
i | % (Xk

max −Xk
min)

8: end if
9: end for

selected based on a distance based selection operator (cf. [11]).
For location Xi, the selection probability pi is calculated by:

p(Xi) =
R(Xi)∑

j∈K R(Xj)
(4)

R(Xi) =
∑
j∈K

d(Xi, Xj) =
∑
j∈K

||Xi −Xj || (5)

where K is the set of all current locations including original
fireworks and both types of sparks (without the best location).
As a result, fireworks or sparks in low crowded regions will
have a higher probability to be selected for the next iteration
than fireworks or sparks in crowded regions.

III. PROPERTIES OF CONVENTIONAL FWA
As already mentioned in the original FWA paper [1], FWA

outperformed SPSO and CPSO significantly and converged
in most cases towards the function optimum already after
a few iterations. However, when applying FWA on shifted
functions the results worsen progressively with increasing
distance between function optimum and origin of the search
space. By investigating the operators of FWA, we found that
some of them create [map] sparks at [to] locations which
are close to the origin of the search space, independent of
the function optimum. This behavior is mostly caused by
the mapping operator and the Gaussian sparks operator. In
terms of runtime we found that the cost per iteration of
FWA is significantly higher than for most other optimization
algorithms. In Section IV we analyze all operators of FWA
in detail and point out which operators are responsible for its
actual behavior and its high computational cost. In summary,
conventional FWA has the following drawbacks:

(i) For functions which have their optimum at the origin,
FWA will find the optimal solution very fast. However,
not due to the intelligence of the algorithm but due to
the specific mapping and Gaussian mutation operators
which map/create sparks close to the origin.

(ii) For functions which have their optimum far away from
the origin, FWA has to face the two drawbacks that the
mapping operator rebounds most solutions which are out
of the search space to locations which are far away from
the function optimum, and that the mutation operator
creates many sparks at locations close to the origin (i.e.,
again far away from the optimum).

(iii) FWA has a high computational cost per iteration.

IV. THE PROPOSED EFWA

In this section we present the new operators of EFWA in
detail. We point out the limitations of each operator in con-
ventional FWA and discuss the applied changes and novelties.

A. A new Minimal Explosion Amplitude Check

Eq. 1 shows how the explosion amplitude for each firework
is calculated in conventional FWA. A firework with better fit-
ness will have a smaller explosion amplitude while a firework
with lower fitness has a larger explosion amplitude. Although
this idea seems reasonable, the explosion amplitude of the
fireworks having the best (or a very good) fitness will usually
be very small, i.e., close to 0. If the explosion amplitude
is [close to] zero, the explosion sparks will be located at
[almost] the same location as the firework itself. As a result,
it may happen that the location of the best firework cannot be
improved until another firework has found a better location. In
order to avoid this problem, we introduce a lower bound Amin

of the explosion amplitude, which is based on the progress
of the algorithm. During the early phase of the search, Amin

is set to a higher value in order to facilitate exploration,
with increasing number of evaluations, Amin is decreased in
order to allow for better exploitation capabilities around good
locations. For each dimension k, the explosion amplitude Ak

i

is bound as follows:

Ak
i =

{
Ak

min if Ak
i < Ak

min,

Ak
i otherwise.

(6)

A new value for Amin is calculated in each iteration. In this
work, we use two different modes to calculate Amin. The first
approach is based on a linearly decreasing function (cf. Eq. 7),
and the other approach is based on a non-linearly decreasing
function (cf. Eq. 8).

Ak
min(t) = Ainit −

Ainit −Afinal

evalsmax
∗ t (7)

Ak
min(t) = Ainit−

Ainit −Afinal

evalsmax

√
(2 ∗ evalsmax − t)t (8)

In both equations, t refers the number of function evaluation
at the beginning of the current iteration, and evalsmax is the
maximum number of evaluations. Ainit and Afinal are the
initial and final minimum explosion amplitude, respectively.
Compared to the linear decrease of Amin, the non-linear
decrease enhances exploitation already at an earlier stage of
the algorithm (i.e., after fewer iterations). Figure 1 shows a
graphical representation of Eq. 7 and 8.

Evaluations0 evalsmax

Afinal

Ainit

(a) Linear decrease

Evaluations0 evalsmax

Afinal

Ainit

(b) Non-linear decrease

Fig. 1. Linearly and non-linearly decreasing minimal explosion amplitude

B. A new Operator for Generating Explosion Sparks

Lines 2 and 5 of Algorithm 1 show how the offset displace-
ment △X is added to the current location. As can be seen,
the offset displacement is only calculated once (Line 2) and
the same value is added to the location of selected dimensions.
Obviously, adding the same value in each dimension leads to a
bad local search ability. To avoid this problem, we calculate a
different offset displacement for selected dimensions (those
dimensions, where zk equals 1). Algorithm 3 shows the
proposed process of generating explosion sparks in EFWA.

Algorithm 3 – Generating “explosion sparks” in EFWA

1: Initialize the location of the “explosion sparks”: X̂i = Xi

2: Set zk = round(rand(0, 1)), k = 1, 2, ..., d.
3: for each dimension of X̂k

i , where zk == 1 do
4: Calculate offset displacement: △Xk = Ai ×

rand(−1, 1)
5: X̂k

i = X̂k
i +△Xk

6: if X̂k
i out of bounds then

7: map X̂k
i to the potential space (see next subsection)

8: end if
9: end for

Figure 2 shows the difference between the generation of
explosion sparks in FWA (cf. Algorithm 1), and EFWA (cf.
Algorithm 3). As discussed before, the offset displacement
in FWA is similar for all selected dimensions, in EFWA a
different offset displacement is calculated in each dimension.

(a) FWA (b) EFWA

Fig. 2. Generation of explosion sparks in FWA and EFWA

C. A new Mapping Operator

In conventional FWA, when the location of a new spark
exceeds the search range in dimension k, the new spark
will be mapped to another location according to X̄k

i =
Xk

min + |Xk
i |%(Xk

max − Xk
min) (cf. Algorithms 1 and 2).

In many cases, a spark will exceed the allowed search space
only by a rather small value. Moreover, as the search space
is often equally distributed (Xk

min ≡ −Xk
max), the adjusted

position X̄k
i will be very close to the origin in many cases. The

following example is used to explain this comment: Consider
an optimization problem within the search space [−20, 20]. If,
in dimension k, a new spark is created at the point Xk = 21,
it will be mapped to the location X̄k

i = −20 + |21|%(40).

Since the result of the modulo operation 21% (40) = 21, Xk

will be mapped to the location X̄k
i = 1, which is already

very close to the origin. In cases where Xmin ≡ −Xmax,
this mapping operator is partly responsible for drawbacks (i)
and (ii) as mentioned in Section III. In order to avoid the
problems caused by the conventional mapping operator we
replace this method with a uniform random mapping operator
X̄k

i = Xk
min+rand∗(Xk

max−Xk
min), which maps the sparks

to any location in the search space with uniform distribution.

D. A new Operator for Generating Gaussian Sparks

Together with the mapping operator, the Gaussian mutation
operator is the main reason why conventional FWA works
significantly better than other optimization algorithms for
functions which have their optimum at the origin (cf. the
results in [1]). Figures 3(a) and 3(b) show the location of
the Gaussian sparks for a two-dimensional Ackley function
with the optimum at [0, 0] and [-70, -55], respectively. In
each iteration, the location of (only) the Gaussian sparks is
plotted and not deleted. The location of the Gaussian sparks
in Figure 3(a) indicates that most sparks are located at the
origin, i.e., close to the optimum. Moreover, it can be seen that
the areas close to the coordinate axes are also more crowded
than other parts of the search space. Figure 3(b) reveals an
interesting fact about the location of the Gaussian sparks for
the shifted Ackley function. Even though the optimum is now
far away from the origin, many sparks are located close to the
center. Obviously, many sparks in Figure 3(a) are not located
close to the center because of the intelligence of the algorithm,
but rather because many Gaussian sparks are created near to
the origin of the search space, independent of the location of
the function optimum. We point out that Figures 3(a) and 3(b)
were created using the mapping operator of conventional FWA.

−100 −50 0 50 100

100

50

−0

−50

−100

Initialization range

Function optimum

(a) No shift – optimum at origin

−100 −50 0 50 100

100

50

−0

−50

−100

Initialization range
Function optimum

(b) Shift – optimum at (-70,-55)

Fig. 3. The locations of the Gaussian sparks using the conventional FWA
(Ackely function using 100 000 function evaluations)

The reason for this behavior is the calculation of the
Gaussian sparks as shown in Lines 2 and 5 of Algorithm 2. In
Line 2, e is set to a random value from a normal distribution
with expected value and variance both set to 1. In cases where
e is close to 0, X̃k

i will be close to 0 as well (Line 5). As
a result, many Gaussian sparks will be located close to the
origin of the search space in dimension k. Moreover, for large
e, many Gaussian sparks are created at locations which are out
of bounds. In this case, the mapping operator of conventional

FWA (cf. Section IV-C) will map the newly created spark
to a location which is in many cases close to the origin.
Another problem of the conventional Gaussian sparks operator
is the fact that fireworks which are already located close to the
origin of the search space cannot escape from this location;
if firework Xk

i is close to zero, the location of spark X̃k
i be

close to zero as well, since X̃k
i = Xk

i × e.

Initialization. Since conventional FWA is able to converge
towards the optimum already after very few function evalua-
tions (we again refer to the result in [1]), we also analyzed
the behavior of FWA during the first iteration. Figures 4(a)
to 4(d) show the distribution of the explosion and Gaus-
sian sparks, respectively, directly after the initialization with
different initialization ranges. We repeatedly initialized the
fireworks, created the two types of sparks, and plotted their
locations until we reached 5 000 function evaluations (around
100 repetitions). The distribution of the sparks is (expectedly)
independent of the function optimum, and shows a similar
behavior for different initialization ranges, which were set
to dim 1: [15, 30]; dim 2: [15, 30] for Figures 4(a) and 4(b)
and dim 1: [60, 75]; dim 2: [30, 45] for Figures 4(c) and 4(d).
Obviously, some Gaussian sparks are located very close to the
origin of the function, independent of the initialization range.
This is another indication why conventional FWA is able to
find the optimum of centered functions within a few iterations.

−100 −50 0 50 100

100

50

−0

−50

−100

Explosion sparks
Gaussian sparks

Initialization range

Function optimum

(a) No shift – optimum at origin

−100 −50 0 50 100

100

50

−0

−50

−100

Explosion sparks
Gaussian sparks

Initialization range

Function optimum

(b) Shift – optimum at (-70,-55)

−100 −50 0 50 100

100

50

−0

−50

−100

Explosion sparks
Gaussian sparks

Initialization range

Function optimum

(c) No shift – optimum at origin

−100 −50 0 50 100

100

50

−0

−50

−100

Explosion sparks
Gaussian sparks

Initialization range

Function optimum

(d) Shift – optimum at (-70,-55)

Fig. 4. Sparks after initialization in conventional FWA

The new Gaussian spark operator. In order to avoid the
problems of the conventional Gaussian mutation operator, we
propose a new Gaussian mutation operator which is computed
by Xk

i = Xk
i + (Xk

B −Xk
i) ∗ e, where XB is the location of

the currently best firework/explosion spark found so far, and
e = N (0, 1). Details are given in Algorithm 4.

Algorithm 4 – Generating “Gaussian sparks” in EFWA

1: Initialize the location of the “Gaussian sparks”: X̃i = Xi

2: Set zk = round(rand(0, 1)), k = 1, 2, ..., d
3: Calculate offset displacement: e = Gaussian(0, 1)
4: for each dimension X̂k

i , where zk == 1 do
5: X̂k

i = X̂k
i + (Xk

B − X̂k
i) ∗ e, where XB is the position

of the best firework found so far.
6: if X̃k

i out of bounds then
7: X̄k

i = Xk
min + rand ∗ (Xk

max −Xk
min)

8: end if
9: end for

As shown in Figure 5, the new mutation operator will stretch
out along the direction between the current location of the
firework and the location of the best firework. This ensures
diversity of the search but also involves some global movement
towards the best location found so far. This new operator only
involves a movement towards the origin of the search space if
the currently best firework is located at the origin.

(0,0)

dim 1

d
im

 2

Currently best firework

Current

firework

Gaussian m
utatio

n

operator in
 FWA

Gaussian mutation

operator in EFW
A

Fig. 5. Difference between the Gaussian sparks operator in FWA and EFWA

Figure 6 shows similar plots as Figure 3, however, for the
newly proposed operator. The Gaussian sparks are uniformly
distributed over the whole search space, with the largest
amount of sparks being created close to the optimum. When
comparing Figures 3(b) and 6(b) the differences between the
old and the new operator are clearly visible. With the new
operator, the sparks are not located around the origin of the
search space if the optimum is far away from it. Figures 6(a)
and 6(b) were created using the new mapping operator.

−100 −50 0 50 100

100

50

−0

−50

−100

Initialization range

Function optimum

(a) No shift – optimum at origin

−100 −50 0 50 100

100

50

−0

−50

−100

Initialization range
Function optimum

(b) Shift – optimum at (-70,-55)

Fig. 6. The locations of the Gaussian sparks in EFWA (Ackely function
using 100 000 function evaluations)

E. A new Selection Operator

FWA involves a distance based selection strategy which
favors to select fireworks/sparks in less crowded regions of the
search space (cf. Eq. 4 and 5). Although selecting locations
in low crowded regions with higher probability increases
diversity, this selection operator has the drawback of being
computational very expensive. A runtime profiling of the
original FWA code revealed that the selection operator of
conventional FWA is responsible for the majority of the
runtime. In order to speed up the selection process of the
population for the next generation, we apply another selection
method, which is referred to as Elitism-Random Selection
(ERP) method [12]. In this selection process, the optima of
the set will be selected first. Then, the other individuals are
selected randomly. Obviously, the computational complexity
of ERP is only linear with respect to the number of fireworks,
and therefore reduces the runtime of EFWA significantly.

V. EXPERIMENTS

In order to investigate the performances of the new operators
we compare conventional FWA not only to the newly proposed
Enhanced Fireworks Algorithm (EFWA), but also three vari-
ants of EFWA (denoted as eFWA-X) which can be regarded
as a hybridization of FWA and EFWA. While EFWA uses
all newly proposed operators, the eFWA-X variants use only
some of them. Table I summarizes which of the new operators
are used by the different algorithms. The abbreviations of the
operators refer to EXP: new operator for generating explosion
sparks; MAP: new mapping operator; GAU: new operator
for generating Gaussian sparks; AMP 1: minimal explosion
amplitude check linear decrease; AMP 2: minimal explosion
amplitude check non-linear decrease; SEL: new selection
operator. E.g., eFWA-I uses the new operators EXP, MAP and
GAU, the new operator AMP is not included, and the selection
operator is taken from conventional FWA. Besides comparing
different FWA variants with each other, Standard PSO (SPSO)
is used for performance comparison.

TABLE I
ALGORITHMS AND NEW OPERATORS

EXP MAP GAU AMP 1 AMP 2 SEL

FWA ◦ ◦ ◦ ◦ ◦ ◦
eFWA-I • • • ◦ ◦ ◦
eFWA-II • • • • ◦ ◦
eFWA-III • • • ◦ • ◦
EFWA • • • ◦ • •

A. Experimental Setup

Twelve functions are selected as a test suite. Table II
illustrates the names, numbers, search space (Range), optimal
locations (Opt x⃗), fitness at the optimal location (Opt f(x⃗)),
and dimensions (Dim.). For each function, the initial range
is set to [Xmax

k /2, Xmax
k], where Xmax

k is the upper bound
of the search space in the kth dimension. In the experiments,
a number of shift values are added to these basic functions

TABLE II
BENCHMARK FUNCTIONS USED FOR EVALUATION

Function name # Range Opt. x⃗ Opt. f(x⃗) Dim.

Sphere 1 [±100] 0.0D 0 30
Schwefel 1.2 2 [±100] 0.0D 0 30
General. Rosenbrock 3 [±30] 1.0D 0 30
Ackley 4 [±32] 0.0D 0 30
Generalized Griewank 5 [±600] 0.0D 0 30
Generalized Rastrigin 6 [±5.12] 0.0D 0 30
Penalized Func. P16 7 [±50] 1.0D 0 30

Six-hump Camel-back 8 [±5] (−.09, .71) −1.032 2
(.09,−.71)

Goldstein-Price 9 [±2] (0,−1) 3 2
Schaffer 10 [±100] 0.0D 0 2
Axis Par. Hyp. Ell. 11 [±5.12] 0.0D 0 30
Rotated Hyp. Ell. 12 [±65.5] 0.0D 0 30

in order to shift the global optimum. We used seven different
shift indexes in order to analyze the influence of different shift
values on the performance of the algorithms (see Table III).
For each shift value SI, the position of the function will be
shifted (in each dimension) by the corresponding shift value
SV. If SI is equal to zero, the function is not shifted. E.g.,
for function f1 and an SI of 6, the function will be shifted in
each dimension by 0.7 ∗ ((100− (−100))/2) = 70, while the
search range remains unaffected.

TABLE III
SHIFT INDEX (SI) AND SHIFT VALUE (SV). A SHIFT INDEX OF ZERO

INDICATES THAT THE FUNCTION IS NOT SHIFTED.

SI SV SI SV SI SV

1 0.05 ∗ Xmax
k −Xmin

k
2

2 0.1 ∗ Xmax
k −Xmin

k
2

3 0.2 ∗ Xmax
k −Xmin

k
2

4 0.3 ∗ Xmax
k −Xmin

k
2

5 0.5 ∗ Xmax
k −Xmin

k
2

6 0.7 ∗ Xmax
k −Xmin

k
2

For all experiments, Ainit and Afinal (Eq. 7 and 8) are set
to (Xk

max −Xk
min)× 0.02 and (Xk

max −Xk
min)× 0.001, re-

spectively. All other parameters of (E)FWA are taken from [1],
and SPSO parameters are taken from [13]. As experimental
platform we used MATLAB 2011b, running Win 7 on an
Intel Core i7-2600 CPU; 3.7GHZ; 8GB RAM. Compared to
conventional FWA, the only additional parameters of EFWA
are Ainit and Afinal, which can be fixed as fractions of the
search space. The other parameters are (Â, Me, a, b, N , Mg).

B. Experimental Results

In this section, we first evaluate the influence of the newly
proposed operators presented in Section IV. After that, we
compare EFWA with conventional FWA and also with SPSO,
our baseline reference. The final results after 300 000 function
evaluations are presented for all twelve benchmark functions
in Table V as mean fitness and standard deviation over 30 runs.
Moreover, for selected functions we show the convergence
plots in Figures 8 to 10.

Evaluation of EXP, MAP and GAU. Since these three 1

operators are responsible for the fact that conventional FWA

1We note that the questionable part of the explosion sparks operator of
conventional FWA is the mapping operation, not the explosion operation itself.

performs better on function which have their optimum at the
origin of the search space than on functions whose optimum is
far away from the center (cf. Section III), all eFWA variants
use the new operators EXP, MAP and GAU. As expected,
when SI=0 conventional FWA reaches the optimum of all
functions that have their optimum at 0.0D (marked in red
font in Table V). However, as already mentioned, this good
performance is not due to the intelligence of the algorithm
but rather because the Gaussian explosion operator and the
mapping operator of conventional FWA create/map many
sparks to locations which are very close to the search space.
Indeed, Table V reveals that when SI=0, conventional FWA
only fails to find the optimum of two function, f3 and f7 –
both functions have their optimum at 1.0D, and thus not at
the origin of the search space. With increasing SI, the results
of FWA worsen significantly for most functions, especially
so for f1, f2, f5, f7, f11, f12. When comparing the results of
conventional FWA with eFWA-I (using the new operators EXP,
MAP, GAU), it can be seen that changing these three operators
alone does not improve the performance of the algorithm.
Although the results are more stable with respect to different
shift values, in most cases they are worse than the results of
conventional FWA. In the next paragraph we will discuss how
the AMP operator is able to improve eFWA-I.

Evaluation of AMP. Table V reveals that the minimal explo-
sion amplitude check strategy (AMP) is crucial for improving
the diversity of the fireworks. The difference between the
results of eFWA-I, which does not use an explosion amplitude
check, and eFWA-II (linear decrease of Ak

min) and eFWA-III
(non-linear decrease of Ak

min) are obvious. Both, eFWA-II and
eFWA-III, clearly outperform eFWA-I. Comparing the results
of eFWA-II and III, it can be seen that eFWA-III achieves
slightly better results. Hence, the non-linear decrease of the
minumum explosion amplitude Ak

min is preferred over the
linear decrease of Ak

min, and will be used in EFWA.

Evaluation of SEL. Compared to eFWA-III, EFWA replaces
the time consuming distance based selection operator (cf.
Eq. 4) with the new selection operator (cf. Section IV-E).
In terms of convergence, final fitness and standard deviation,
there is almost no difference between the selection operators.
The results of eFWA-III and EFWA are almost identical for
all functions (cf. Table V). The only exceptions are function
f4, with advantages for the distance based selection operator
(eFWA-III), and f6, with advantages for the elitism-random
selection operator (EFWA). In terms of computation cost the
picture is different. The new selection operator decreases the
runtime of EFWA drastically, as shown in Figure 7 for the
function f10. As can be seen, the runtime of EFWA is much
shorter than the runtimes of conventional FWA or the eFWA-
X variants, which all use the conventional distance based
selection operator. We note that the fractions of runtimes for
all other functions are very similar to Figure 7.

EFWA vs. conventional FWA. A comparison between all
eFWA-X variants and EFWA reveals that EFWA is the best

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

Shift Index

SPSO
FWA
eFWA−I
eFWA−II
eFWA−III
EFWA

Fig. 7. Runtime

algorithm in terms of convergence, final result and runtime.
Hence, in the remaining parts of this section we use EFWA
for comparison with conventional FWA and with the baseline
algorithm SPSO. To show whether the improvement of EFWA
over conventional FWA is significant or not, a number of t-
tests were conducted and the recorded p-values are given in
Table IV. The null hypothesis that EFWA achieves similar
mean results than FWA is tested against the alternative that
EFWA achieves better mean results over FWA. If p < 0.05,
and the mean results of EFWA are lower than the results of
FWA, the null hypothesis will be rejected and the test will
be reported as significant; otherwise it will be reported as not
significant. Hence, bold values in Table IV indicate that the
improvement of EFWA is significant for the corresponding
function / SI combination.

TABLE IV
t-TEST RESULTS FOR EFWA VS. CONVENTIONAL FWA.

SI 0 1 2 3 4 5 6

f1 6.6E-17 2.3E-15 3.6E-16 3.7E-15 1.E-14 6.4E-16 1.E-17
f2 1.2E-15 7.1E-12 7.7E-11 2.9E-12 2.5E-12 9.1E-15 3.7E-21
f3 6.1E-04 8.5E-06 2.1E-01 2.7E-01 1.5E-02 5.5E-05 8.E-04
f4 2.5E-01 1.7E-01 8.0E-05 3.1E-63 2.7E-48 9.8E-46 1.2E-52
f5 1.9E-10 5.2E-02 4.E-12 2.6E-14 4.E-16 1.8E-18 4.7E-20
f6 8.5E-21 1.1E-20 4.0E-17 6.6E-19 1.3E-14 8.5E-15 6.1E-15
f7 6.7E-07 2.5E-08 3.7E-12 1.6E-15 1.6E-13 1.1E-13 8.7E-15
f8 1.0E+00 3.3E-01 1.8E-01 5.7E-02 6.E-03 3.6E-04 2.8E-04
f9 2.4E-02 6.7E-05 2.4E-03 2.8E-05 5.5E-05 1.2E-04 8.7E-04
f10 NaN 5.9E-03 5.8E-03 4.5E-09 8.5E-07 4.3E-09 8.5E-08
f11 1.4E-12 6.1E-05 3.2E-13 1.2E-13 1.2E-15 2.E-11 2.8E-14
f12 1.1E-16 9.3E-16 3.8E-15 2.4E-15 8.7E-17 1.9E-12 1.3E-15

We draw the following conclusions from Tables IV and V:

Functions are not shifted (i.e, SI= 0): FWA achieves better
results than EFWA for all functions which have their optimum
at the origin, and also for function f3 which has the optimum
at 1.0D (cf. Table II). For the other functions which have their
optimum at a different location than the origin (f7, f8, and f9),
we can see that EFWA can improve the results of FWA for
functions f7 and f9. For function f8, both algorithms achieved
similar results, however, with smaller variance for EFWA.

Functions are shifted (i.e, SI != 0): With increasing SI, EFWA
is able to improve the results of FWA progressively. The results
of EFWA are much more stable with respect to increasing

SI for most functions. Figure 8 (function f2) 2 is an example
of a function where the results of FWA are worsening with
increasing SI, while the results of EFWA remain unaffected.
The results in Table IV indicate that the improvement of
EFWA over conventional FWA is significant for almost all
functions, when SI is increased. However, we also note that for
the functions f4 and f6, FWA has very stable results even for
increasing SI. Surprisingly, for these functions FWA outper-
forms EFWA and also SPSO. Figure 9 shows the convergence
plot for function f4. As can be seen, FWA is able to improve
its results continuously over the full duration of the algorithm.
Although the results worsen with increasing SI, the results are
superior to all other algorithms, which often get stuck in local
minima for larger SI.

EFWA vs. SPSO. Figure 9 reveals that not only EFWA has
problems with this function, but also SPSO. Although this
function is an extreme case, Table V shows that SPSO is rather
sensitive to increasing SI values and fails to converge towards
the optimum for several functions when the value of SI is large.
For small SI, SPSO is often able to achieve better results than
EFWA, and also outperforms EFWA for any SI for function f5.
However, for functions f1, f3, f7, f11 and f12, the results of
SPSO worsen significantly when SI is increased. An example
of this behavior is shown in Figure 10. For small SI, SPSO
converges quickly to the optimum and achieves better results
than EFWA. However, for SI ∈ {3, 5, 6}, SPSO converges to
results which are by several orders of magnitude larger (worse)
than the results of EFWA. We also note that for the functions
f2 and f6 the results of SPSO are generally worse than the
results of EFWA.

C. Discussion

From the results of our experimental evaluation, we con-
clude the following observations:
- In general, EFWA shows significant improvements over
conventional FWA for most functions.
- With increasing shift values, EFWA achieves much better
results than FWA.
- SPSO often achieves better results than EFWA for small SI.
- However, SPSO often fails to converge towards the optimum
for large SI, which is not the case with EFWA.
- The results of EFWA remain almost unaffected even if the
optimum of the function is shifted towards the edges of the
search space.
- The new operator AMP, which limits the lower bound of the
explosion amplitude, is an important tool to balance between
exploration and exploitation abilities.
- EFWA reduces the runtime of FWA by a factor of six.

Although the results indicate the usefulness and benefits of
EFWA, some open question remain in this context. At first,
the behavior of FWA on the functions f4 and f6 is not fully
understood at the moment. A second open research question

2 We omitted the convergence plots for SI=0, since the FWA results for SI=0
would increase the necessary scale on the y-axis and hamper the readability

refers to the improvement of EFWA for small SI. The results
indicate that SPSO achieves good results for small SI, but
worsens when SI is increased. EFWA, on the other hand,
remains unaffected when SI is increased, but has a slower
convergence that SPSO for some functions, and converges to
a larger fitness for small SI. Improving the convergence speed
and quality of EFWA would result in a very stable algorithm
that is absolutely not influenced by the location of the function
optimum within the search space.

VI. CONCLUSION

In this paper, we have presented the Enhanced Fireworks
Algorithm (EFWA), a significant improvement of the recently
developed Fireworks Algorithm (FWA). In order to eliminate
the drawbacks of conventional FWA, we performed a com-
prehensive study on the basic FWA operators and presented
several improvements: besides improving the operators for cre-
ating explosion and Gaussian sparks, we fixed some problems
of the mapping operator, and introduced a new operator which
limits the lower bound of the explosion amplitude, a parameter
which allows to balance between exploration and exploitation.
In order to speed up the runtime, we further introduced a new
selection operator.

Experimental evaluation showed that, with the exception
of one benchmark function, the results of EFWA are very
stable and remain almost unaffected even if the optimum
of the function is shifted towards the edges of the search
space. In general, EFWA shows significant improvements over
conventional FWA. Compared to SPSO, which turned out to
be rather sensitive to increasing shift values, EFWA achieves
very stable results, and has the advantage that its results
do not deteriorate even for large shift values. In terms of
computational cost, the new selection operator is faster by a
factor of 6 compared to the distance based selection operator
of conventional FWA, making EFWA as fast as SPSO.

In future work, we will focus on further improving EFWA
by exploiting the full potential of exploration and exploitation
capabilities of the algorithm. We are currently extending
our work on improving the explosion sparks and Gaussian
sparks operator, and on optimizing the newly introduced AMP
operators, which seems to be crucial for EFWA. Besides that,
we plan to include an in-depth analysis of the influence of
different parameters for EFWA, and to compare our algorithms
with other nature-inspired optimization techniques.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under grants number 61170057 and
60875080.

REFERENCES

[1] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” Advances
in Swarm Intelligence, pp. 355–364, 2010.

[2] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and
convergence in a multidimensional complex space,” Trans. Evol. Comp,
vol. 6, no. 1, pp. 58–73, 2002.

TABLE V
MEAN AND VARIANCE (IN PARENTHESIS) OF ALL TWELVE BENCHMARK FUNCTIONS USED IN THE EXPERIMENTS (SI=SHIFT INDEX).

SI Alg. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

0

SPSO 0.000e+0(0.0e+0) 6.515e+0(6.4e+0) 1.740e+1(2.5e+1) 1.982e+1(1.6e-1) 5.751e-4(2.2e-3) 1.508e+2(2.5e+1) 0.000e+0(0.0e+0) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0)
FWA 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 1.807e+1(1.1e+1) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 7.088e-3(6.1e-3) -1.032e+0(0.0e+0) 3.000e+0(1.2e-6) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0)

eFWA-I 3.744e+1(1.7e+1) 2.916e+3(1.1e+3) 3.098e+3(1.9e+3) 2.673e+0(3.1e-1) 2.773e-1(1.8e-1) 1.720e+1(3.5e+0) 8.316e+0(4.2e+0) -1.032e+0(1.2e-5) 3.000e+0(7.5e-5) 3.245e-3(4.7e-3) 8.834e+0(3.5e+0) 4.313e+2(1.7e+2)
eFWA-II 7.031e-3(2.5e-3) 9.426e-1(2.5e-1) 1.065e+2(1.2e+2) 1.745e-2(2.7e-3) 7.989e-2(4.4e-2) 7.262e+1(1.9e+1) 2.514e-4(1.2e-4) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 1.966e-4(8.9e-5) 3.634e-2(1.6e-2)
eFWA-II 1.144e-3(4.1e-4) 2.300e-1(6.8e-2) 7.877e+1(9.9e+1) 2.357e-1(9.6e-1) 8.776e-2(5.3e-2) 5.331e+1(1.3e+1) 4.273e-5(1.7e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.947e-5(1.4e-5) 6.128e-3(2.2e-3)
EFWA 9.704e-4(3.0e-4) 2.221e-1(7.8e-2) 7.933e+1(8.7e+1) 6.430e-2(3.0e-1) 7.204e-2(4.1e-2) 1.597e+1(3.6e+0) 3.540e-5(1.5e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 4.027e-5(1.9e-5) 5.765e-3(1.8e-3)

1

SPSO 0.000e+0(0.0e+0) 1.244e+1(1.4e+1) 1.687e+1(2.2e+1) 1.979e+1(9.6e-2) 7.396e-4(2.3e-3) 1.334e+2(3.2e+1) 0.000e+0(0.0e+0) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 3.239e-4(1.8e-3) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0)
FWA 2.370e-1(8.5e-2) 6.169e+1(3.1e+1) 1.469e+0(8.7e-1) 2.191e-1(2.6e-1) 1.117e-1(4.0e-2) 4.344e+0(2.6e+0) 1.323e-2(9.6e-3) -1.032e+0(1.8e-7) 3.000e+0(4.4e-6) 2.269e-3(4.2e-3) 1.603e-2(1.9e-2) 2.254e+0(7.8e-1)

eFWA-I 3.668e+1(1.0e+1) 3.105e+3(6.8e+2) 9.627e+3(4.2e+3) 3.304e+0(3.7e-1) 3.256e-1(2.1e-1) 2.257e+1(5.0e+0) 8.016e+0(3.5e+0) -1.032e+0(1.0e-5) 3.000e+0(4.4e-5) 3.244e-3(4.7e-3) 1.040e+1(3.5e+0) 4.506e+2(1.3e+2)
eFWA-II 6.621e-3(2.9e-3) 9.042e-1(2.2e-1) 9.748e+1(9.6e+1) 1.668e-2(3.3e-3) 6.811e-2(3.9e-2) 7.973e+1(2.0e+1) 2.405e-4(1.4e-4) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 2.239e-4(9.2e-5) 3.602e-2(1.4e-2)
eFWA-II 9.933e-4(2.9e-4) 2.241e-1(7.2e-2) 6.288e+1(6.8e+1) 7.038e-2(3.5e-1) 7.930e-2(5.6e-2) 5.579e+1(9.6e+0) 3.887e-5(1.6e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.327e-5(1.5e-5) 6.482e-3(2.1e-3)
EFWA 9.592e-4(2.5e-4) 2.120e-1(7.7e-2) 1.212e+2(1.2e+2) 5.209e-1(1.1e+0) 8.800e-2(5.2e-2) 1.860e+1(4.2e+0) 3.633e-5(1.4e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.657e-5(1.5e-5) 5.166e-3(1.7e-3)

2

SPSO 0.000e+0(0.0e+0) 1.495e+2(7.4e+2) 3.059e+1(4.8e+1) 1.997e+1(1.8e-1) 8.212e-4(3.4e-3) 1.160e+2(2.5e+1) 0.000e+0(0.0e+0) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0)
FWA 6.743e-1(2.3e-1) 1.691e+2(9.3e+1) 8.140e+1(4.2e+1) 7.262e-1(4.1e-1) 2.036e-1(6.0e-2) 6.834e+0(2.1e+0) 6.801e-2(3.3e-2) -1.032e+0(4.0e-7) 3.000e+0(1.7e-5) 2.270e-3(4.2e-3) 6.040e-2(2.6e-2) 5.654e+0(2.1e+0)

eFWA-I 3.781e+1(1.5e+1) 2.893e+3(9.9e+2) 1.837e+4(8.3e+3) 3.504e+0(4.9e-1) 5.993e-1(2.3e-1) 2.454e+1(4.3e+0) 7.558e+0(2.8e+0) -1.032e+0(7.0e-6) 3.000e+0(5.3e-5) 3.570e-3(4.8e-3) 1.062e+1(3.7e+0) 5.173e+2(1.6e+2)
eFWA-II 6.984e-3(2.5e-3) 9.910e-1(4.0e-1) 1.076e+2(9.6e+1) 1.677e-2(3.1e-3) 7.924e-2(5.0e-2) 7.571e+1(1.9e+1) 2.565e-4(1.3e-4) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 2.095e-4(8.6e-5) 3.749e-2(1.5e-2)
eFWA-II 1.082e-3(3.4e-4) 2.186e-1(6.5e-2) 7.765e+1(1.1e+2) 2.542e-1(7.8e-1) 7.496e-2(5.1e-2) 5.782e+1(1.2e+1) 4.273e-5(1.9e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.030e-5(1.1e-5) 6.516e-3(3.3e-3)
EFWA 9.298e-4(3.3e-4) 2.139e-1(6.4e-2) 1.072e+2(1.0e+2) 8.745e+0(9.6e+0) 8.202e-2(4.5e-2) 1.822e+1(4.1e+0) 3.400e-5(1.2e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.433e-5(1.1e-5) 6.667e-3(2.1e-3)

3

SPSO 0.000e+0(0.0e+0) 9.758e+2(1.6e+3) 2.533e+1(2.9e+1) 1.993e+1(3.4e-2) 4.105e-4(2.2e-3) 1.125e+2(2.2e+1) 3.662e-4(2.0e-3) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 4.123e+2(2.3e+3)
FWA 1.580e+0(5.8e-1) 7.699e+2(3.7e+2) 1.626e+2(1.5e+2) 1.425e+0(5.6e-1) 2.984e-1(9.1e-2) 3.701e+0(2.2e+0) 1.917e-1(6.8e-2) -1.032e+0(4.6e-7) 3.000e+0(1.3e-5) 6.803e-3(4.5e-3) 1.315e-1(5.5e-2) 1.475e+1(5.3e+0)

eFWA-I 4.452e+1(1.6e+1) 2.908e+3(7.1e+2) 2.427e+4(1.2e+4) 3.597e+0(4.9e-1) 7.671e-1(1.5e-1) 2.252e+1(3.9e+0) 8.726e+0(3.7e+0) -1.032e+0(1.1e-5) 3.000e+0(7.3e-5) 4.227e-3(4.9e-3) 1.246e+1(3.6e+0) 4.762e+2(1.7e+2)
eFWA-II 6.899e-3(2.6e-3) 9.309e-1(3.7e-1) 1.090e+2(1.1e+2) 4.718e-1(1.2e+0) 7.603e-2(6.0e-2) 9.446e+1(2.0e+1) 2.412e-4(1.2e-4) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 2.259e-4(7.8e-5) 3.647e-2(1.3e-2)
eFWA-II 1.077e-3(3.5e-4) 2.255e-1(9.0e-2) 7.070e+1(9.0e+1) 5.836e-1(1.5e+0) 8.533e-2(5.1e-2) 6.029e+1(1.3e+1) 4.063e-5(1.9e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 4.040e-5(1.7e-5) 6.686e-3(3.3e-3)
EFWA 9.764e-4(4.4e-4) 2.275e-1(7.9e-2) 1.196e+2(1.5e+2) 1.984e+1(3.0e-1) 8.905e-2(6.0e-2) 1.954e+1(5.0e+0) 3.747e-5(2.5e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.350e-5(1.4e-5) 6.378e-3(2.2e-3)

4

SPSO 0.000e+0(0.0e+0) 1.088e+3(1.6e+3) 1.887e+1(1.7e+1) 1.998e+1(3.1e-2) 0.000e+0(0.0e+0) 8.588e+1(1.6e+1) 0.000e+0(0.0e+0) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0) 0.000e+0(0.0e+0)
FWA 2.423e+0(9.2e-1) 1.735e+3(8.3e+2) 2.708e+2(1.3e+2) 1.924e+0(4.5e-1) 3.325e-1(9.6e-2) 9.380e+0(2.8e+0) 3.432e-1(1.5e-1) -1.032e+0(2.2e-6) 3.000e+0(2.0e-5) 5.533e-3(4.9e-3) 2.340e-1(8.2e-2) 2.168e+1(6.9e+0)

eFWA-I 3.587e+1(1.2e+1) 3.209e+3(9.4e+2) 3.009e+4(1.8e+4) 4.344e+0(5.1e-1) 7.931e-1(1.5e-1) 2.770e+1(4.9e+0) 9.571e+0(3.2e+0) -1.032e+0(1.8e-5) 3.000e+0(1.2e-4) 2.603e-3(4.4e-3) 1.254e+1(5.0e+0) 5.213e+2(1.7e+2)
eFWA-II 6.770e-3(2.4e-3) 9.315e-1(4.4e-1) 1.368e+2(1.4e+2) 9.402e+0(9.1e+0) 8.309e-2(4.7e-2) 1.023e+2(2.2e+1) 2.594e-4(1.4e-4) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 2.206e-4(1.0e-4) 3.914e-2(1.7e-2)
eFWA-II 1.101e-3(3.7e-4) 2.284e-1(7.1e-2) 8.679e+1(1.3e+2) 4.419e+0(6.3e+0) 6.719e-2(5.2e-2) 7.012e+1(1.1e+1) 3.480e-5(1.6e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.833e-5(1.6e-5) 6.959e-3(2.7e-3)
EFWA 1.108e-3(4.5e-4) 2.323e-1(7.8e-2) 1.747e+2(1.6e+2) 1.996e+1(2.1e-2) 7.947e-2(4.4e-2) 1.919e+1(4.2e+0) 2.943e-5(1.1e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.673e-5(1.7e-5) 5.984e-3(2.1e-3)

5

SPSO 0.000e+0(0.0e+0) 2.794e+3(2.4e+3) 2.370e+1(2.8e+1) 1.999e+1(5.5e-3) 0.000e+0(0.0e+0) 6.956e+1(1.7e+1) 0.000e+0(0.0e+0) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 1.966e+0(1.1e+1) 2.147e+2(1.2e+3)
FWA 3.222e+0(1.1e+0) 6.081e+3(2.3e+3) 6.202e+2(5.6e+2) 2.144e+0(5.4e-1) 3.748e-1(9.6e-2) 9.403e+0(2.3e+0) 6.438e-1(2.7e-1) -1.032e+0(4.2e-6) 3.000e+0(5.6e-5) 6.807e-3(4.5e-3) 4.358e-1(2.3e-1) 4.245e+1(2.0e+1)

eFWA-I 3.997e+1(1.1e+1) 2.886e+3(7.5e+2) 2.620e+4(1.7e+4) 5.788e+0(1.0e+0) 8.246e-1(1.3e-1) 2.503e+1(5.6e+0) 9.795e+0(5.9e+0) -1.032e+0(1.5e-5) 3.000e+0(1.2e-4) 3.898e-3(4.8e-3) 1.142e+1(3.9e+0) 4.953e+2(1.6e+2)
eFWA-II 6.710e-3(2.9e-3) 9.733e-1(2.8e-1) 1.988e+2(1.8e+2) 1.993e+1(2.9e-1) 7.305e-2(4.0e-2) 1.112e+2(2.7e+1) 2.530e-4(1.5e-4) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 2.195e-4(7.1e-5) 3.622e-2(1.2e-2)
eFWA-II 1.088e-3(2.9e-4) 2.330e-1(6.5e-2) 1.335e+2(1.7e+2) 1.824e+1(4.5e+0) 7.295e-2(4.4e-2) 7.583e+1(1.3e+1) 4.390e-5(1.6e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.603e-5(1.3e-5) 5.990e-3(2.1e-3)
EFWA 1.080e-3(3.4e-4) 2.299e-1(6.3e-2) 1.328e+2(1.3e+2) 1.999e+1(5.6e-3) 8.474e-2(4.8e-2) 1.830e+1(3.8e+0) 3.360e-5(1.1e-5) -1.032e+0(0.0e+0) 3.000e+0(0.0e+0) 0.000e+0(0.0e+0) 3.950e-5(1.9e-5) 6.432e-3(1.9e-3)

6

SPSO 4.200e+2(6.6e+2) 3.541e+3(2.9e+3) 2.282e+5(5.3e+5) 2.000e+1(6.5e-4) 0.000e+0(0.0e+0) 4.655e+1(2.0e+1) 1.000e+5(3.1e+5) -1.032e+0(0.0e+0) 3.000e+1(0.0e+0) 0.000e+0(0.0e+0) 3.209e+1(3.8e+1) 3.943e+3(5.0e+3)
FWA 3.596e+0(1.1e+0) 7.910e+3(1.7e+3) 7.382e+2(7.5e+2) 2.488e+0(3.1e-1) 4.050e-1(9.7e-2) 9.641e+0(2.5e+0) 7.653e-1(2.9e-1) -1.032e+0(2.7e-6) 3.000e+1(3.4e-3) 6.156e-3(4.8e-3) 4.951e-1(2.0e-1) 4.277e+1(1.5e+1)

eFWA-I 3.923e+1(1.5e+1) 2.509e+3(6.6e+2) 2.662e+4(1.3e+4) 1.109e+1(4.0e+0) 8.873e-1(1.1e-1) 2.444e+1(4.4e+0) 7.906e+0(2.8e+0) -1.032e+0(4.5e-6) 3.000e+1(1.5e-3) 4.866e-3(4.9e-3) 9.823e+0(3.6e+0) 4.403e+2(1.6e+2)
eFWA-II 6.704e-3(3.0e-3) 9.404e-1(2.7e-1) 2.339e+2(2.2e+2) 2.000e+1(1.7e-3) 7.339e-2(4.7e-2) 1.323e+2(3.0e+1) 2.425e-4(1.4e-4) -1.032e+0(0.0e+0) 3.000e+1(0.0e+0) 0.000e+0(0.0e+0) 2.464e-4(6.8e-5) 3.659e-2(1.2e-2)
eFWA-II 1.045e-3(3.5e-4) 2.170e-1(7.7e-2) 1.374e+2(1.2e+2) 1.986e+1(1.3e-1) 8.347e-2(4.1e-2) 9.067e+1(2.6e+1) 4.267e-5(2.0e-5) -1.032e+0(0.0e+0) 3.000e+1(0.0e+0) 0.000e+0(0.0e+0) 3.603e-5(1.0e-5) 6.369e-3(2.7e-3)
EFWA 1.086e-3(3.6e-4) 2.115e-1(6.4e-2) 2.129e+2(2.1e+2) 2.000e+1(1.3e-3) 7.208e-2(4.4e-2) 1.992e+1(4.3e+0) 3.687e-5(1.5e-5) -1.032e+0(0.0e+0) 3.000e+1(0.0e+0) 0.000e+0(0.0e+0) 3.443e-5(1.8e-5) 6.195e-3(2.5e-3)

0 1E+5 2E+5 3E+5

10
0

10
5

Evaluations

F
itn

es
s

S−I = 1
S−I = 2
S−I = 3
S−I = 4
S−I = 5
S−I = 6

(a) SPSO

0 1E+5 2E+5 3E+5

10
0

10
5

Evaluations

F
itn

es
s

(b) FWA

0 1E+5 2E+5 3E+5

10
0

10
5

Evaluations

F
itn

es
s

(c) eFWA-III

0 1E+5 2E+5 3E+5

10
0

10
5

Evaluations

F
itn

es
s

(d) EFWA

Fig. 8. Function f2 – Schwefel 1.2.

0 1E+5 2E+5 3E+5
10

−2

10
0

10
2

Evaluations

F
itn

es
s

S−I = 1
S−I = 2
S−I = 3
S−I = 4
S−I = 5
S−I = 6

(a) SPSO

0 1E+5 2E+5 3E+5
10

−2

10
0

10
2

Evaluations

F
itn

es
s

(b) FWA

0 1E+5 2E+5 3E+5
10

−2

10
0

10
2

Evaluations

F
itn

es
s

(c) EWA-III

0 1E+5 2E+5 3E+5
10

−2

10
0

10
2

Evaluations

F
itn

es
s

(d) EFWA

Fig. 9. Function f4 – Ackley

0 1E+5 2E+5 3E+5
10

−10

10
0

Evaluations

F
itn

es
s

S−I = 1
S−I = 2
S−I = 3
S−I = 4
S−I = 5
S−I = 6

(a) SPSO

0 1E+5 2E+5 3E+5
10

−10

10
0

Evaluations

F
itn

es
s

(b) FWA

0 1E+5 2E+5 3E+5
10

−10

10
0

Evaluations

F
itn

es
s

(c) EWA-III

0 1E+5 2E+5 3E+5
10

−10

10
0

Evaluations
F

itn
es

s

(d) EFWA

Fig. 10. Function f12 – Rotated Hyper Ellipsoid

[3] Y. Tan and Z. Xiao, “Clonal particle swarm optimization and its
applications,” in Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, 2007, pp. 2303 –2309.

[4] A. Janecek and Y. Tan, “Iterative improvement of the multiplicative
update nmf algorithm using nature-inspired optimization,” in Natural
Computation (ICNC), 2011 Seventh International Conference on, vol. 3.
IEEE, 2011, pp. 1668–1672.

[5] ——, “Swarm intelligence for non-negative matrix factorization,”
International Journal of Swarm Intelligence Research (IJSIR), vol. 2,
no. 4, pp. 12–34, 2011.

[6] ——, “Using population based algorithms for initializing nonnega-
tive matrix factorization,” in Proceedings of the second international
conference on Advances in swarm intelligence, ser. ICSI’11. Springer-
Verlag, 2011, pp. 307–316.

[7] S. Bureerat, “Hybrid population-based incremental learning using real
codes,” Learning and Intelligent Optimization, pp. 379–391, 2011.

[8] H. Gao and M. Diao, “Cultural firework algorithm and its application for
digital filters design,” International Journal of Modelling, Identification
and Control, vol. 14, no. 4, pp. 324–331, 2011.

[9] Y. Zheng, X. Xu, and H. Ling, “A hybrid fireworks optimization method
with differential evolution,” Neurocomputing, 2012.

[10] Y. Pei, S. Zheng, Y. Tan, and T. Hideyuki, “An empirical study on
influence of approximation approaches on enhancing fireworks algorith-
m,” in Proceedings of the 2012 IEEE Congress on System, Man and
Cybernetics. IEEE, 2012, pp. 1322–1327.

[11] G. Lu, D. Tan, and H. Zhao, “Improvement on regulating definition
of antibody density of immune algorithm,” in Neural Information
Processing, 2002. ICONIP’02. Proceedings of the 9th International
Conference on, vol. 5. IEEE, 2002, pp. 2669–2672.

[12] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
John Wiley & Sons, 2006.

[13] D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” in Swarm Intelligence Symposium, 2007. SIS 2007.
IEEE. IEEE, 2007, pp. 120–127.

