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Abstract

The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm in-
telligence and robotics, which shows a great potential in several aspects. First of all, the cooperation of nature swarm and swarm intelligence are
briefly introduced, and the special features of the swarm robotics are summarized compared to a single robot and other multi-individual systems.
Then the modeling methods for swarm robotics are described, followed by a list of several widely used swarm robotics entity projects and
simulation platforms. Finally, as a main part of this paper, the current research on the swarm robotic algorithms are presented in detail, including
cooperative control mechanisms in swarm robotics for flocking, navigating and searching applications.
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1. From nature swarm to swarm intelligence
1.1. Cooperation of nature swarms

Most swarm intelligence researches are inspired from how
the nature swarms, such as social insects, fishes or mammals,
interact with each other in the swarm in real life [1]. These
swarms range in size from a few individuals living in the
small natural areas to highly organized colonies that may
occupy the large territories and consist of more than millions
of individuals. The group behaviors emerging in the swarms
show great flexibility and robustness [2], such as path plan-
ning [3], nest constructing [4], task allocation [5] and many

* Corresponding author.
E-mail address: ytan@pku.edu.cn (Y. TAN).
Peer review under responsibility of China Ordnance Society.

ELSEVIER

Production and hosting by Elsevier

other complex collective behaviors in various nature swarm
[6—8].

The individuals in the nature swarm shows very poor
abilities, yet the complex group behaviors can emerge in the
whole swarm, such as migrating of bird crowds and fish
schools, and foraging of ant and bee colonies as shown in
Fig. 1. It’s tough for an individual to complete the task itself,
even a human being without certain experiences finds it
difficultly, but a swarm of animals can handle it easily. Re-
searchers have observed the intelligent group behaviors
emerging from a group of individuals with poor abilities
through local communication and information transmission.

1.1.1. Bacteria colonies

Bacteria often function as multicellular aggregates known
as biofilms, exchanging the molecular signals for inter-cell
communication [9]. The communal benefits of multicellular
cooperation include a cellular division of labor, collectively
defending against antagonists, accessing more resources and
optimizing the population survival by differentiating the
distinct cell types. The resistance to antibacterial agents of the
bacteria in the biofilms is 500 times more than that of indi-
vidual bacteria of same kind [10].
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Fig. 1. Biological swarms in the nature.

1.1.2. Fish schools

Fish schools swim in the disciplined phalanxes and are able
to stream up and down at impressive speeds and make a
startling change in the shape of the school without collision as
if their motions were choreographed. The fishes pay close
attention to their neighbors when schooling with the help of
eyes on the sides of heads and “schooling marks” on their
shoulders [11]. The fishes can benefit from fish schools in
foraging [12] and predator avoidance [13].

1.1.3. Ant and Bee colonies

Ants communicate with each other using pheromone,
sound, and touch [14]. An ant with a successful attempt leaves
a trail marking the shortest route on its return. Successful trails
are followed by more ants, reinforcing the better routes and
gradually identifying the best path [15]. Experiments in
Ref. [16] suggest that the arts can choose the roles based on
previous performance. The ants with higher successful rate
intensify their foraging attempts while the others venture on
fewer times or even change to other roles.

1.1.4. Locusts

Buhl et al. [17] confirmed the prediction from theoretical
physics that, as the density of animals in the group increases,
the group rapidly transits from disordered movement of in-
dividuals to highly aligned collective movement. They also
demonstrated a dynamic instability in motion of that the
groups can switch a direction without external perturbation,
potentially facilitating the rapid transfer of directional
information.

1.1.5. Bird crowds

A long time ago, the human being has made use of birds’
ability to precisely location home from more than 5000 km
away. The birds gather into special formations during migra-
tion and locate the destinations with the aid of a variety of
senses including sun compass, time calculation, magnetic
fields, visual landmarks as well as olfactory cues [18].

1.1.6. Primates

The cooperation of primates can be complex, they can make
the tools and use them to acquire food or interact socially,
deception [19], recognize their kin and conspecifics [20] and
learn to use the symbols and understand the aspects of human
language. The primates also use vocalization, gestures, and
facial expression to convey their psychological state.

1.1.7. Human beings

Dyer et al. [21] has shown leadership and consensus decision
making can occur without verbal communication or obvious
signaling in a group of humans. They found that a small
informed minority could guide a group of naive individuals to a
target with improved time and accuracy efficiency. Even when
conflicting directional information was given to different
members, a consensus decision can be made efficiently.

From the introduction above, it can be easily seen that, as
the cooperation of the swarm increases, the group behaviors
become more complex while the population size goes down
and each individual plays a more important role in the
behavior.

It’s difficult to imagine how such sophisticated abilities can
emerge from the swarm consisting of such simple individuals
with limited cognitive and communicating abilities.
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Nevertheless, in the most cases, a whole swarm of individuals
do have the ability to solve many complex problems easily
while a single individual of the same species cannot. Of
course, in such organism without organizer, there still exist
some mechanisms yet undiscovered which promise to divide
the whole task into the small pieces for individuals to handle
the outputs of agents and aggregates them into the collective
behaviors [2]. The purpose of our research on swarm intelli-
gence and swarm robotics is to explore such mechanisms for
real-life applications [22].

1.2. Swarm intelligence

As an emerging research area, the swarm intelligence has
attracted many researchers’ attention since the concept was
proposed in 1980s. It has now become an interdisciplinary
frontier and focus of many disciplines including artificial in-
telligence, economics, sociology, biology, etc. It has been
observed a long time ago that some species survive in the cruel
nature taking the advantage of the power of swarms, rather
than the wisdom of individuals. The individuals in such swarm
are not highly intelligent, yet they complete the complex tasks
through cooperation and division of labor and show high in-
telligence as a whole swarm which is highly self-organized
and self-adaptive.

Swarm intelligence is a soft bionic of the nature swarms,
i.e. it simulates the social structures and interactions of the
swarm rather than the structure of an individual in traditional
artificial intelligence. The individuals can be regarded as
agents with simple and single abilities. Some of them have the
ability to evolve themselves when dealing with certain prob-
lems to make better compatibility [23]. A swarm intelligence
system usually consists of a group of simple individuals
autonomously controlled by a plain set of rules and local in-
teractions. These individuals are not necessarily unwise, but
are relatively simple compared to the global intelligence
achieved through the system. Some intelligent behaviors never
observed in a single individual will soon emerge when several
individuals begin cooperate or compete. The swarm can
complete the tasks that a complex individual can do while
having high robustness and flexibility and low cost. Swarm
intelligence takes the full advantage of the swarm without the
need of centralized control and global model, and provides a
great solution for large-scale sophisticated problems.

2. Definition and features
2.1. Definition of swarm robotics

Swarm robotics is a new approach to the coordination of
multi-robot systems which consist of large numbers of mostly
simple physical robots. It is supposed that a desired collective
behavior emerges from the interaction between the robots and
the interaction of robots with the environment. This approach
emerged in the field of artificial swarm intelligence as well as
the biological study of insects, ants and other fields in the
nature, where a swarm behavior occurs.

The research on the swarm robotics is to study the design of
large amount of relatively simple robots, their physical body
and their controlling behaviors. The individuals in the swarm
are normally simple, small and low cost so as to take the
advantage of a large population. A key component of the
system is the communication between the agents in the group
which is normally local, and guarantees the system to be
scalable and robust.

A plain set of rules at individual level can produce a large
set of complex behaviors at the swarm level. The rules of
controlling the individuals are abstracted from the cooperative
behavior in the nature swarm. The swarm is distributed and
de-centralized, and the system shows high efficiency, paral-
lelism, scalability and robustness.

The potential applications of swarm robotics include the
tasks that demand the miniaturization, like distributed sensing
tasks in micro machinery or the human body. On the other
hand, the swarm robotics can be suited to the tasks that de-
mand the cheap designs, such as mining task or agricultural
foraging task. The swarm robotics can be also involved in the
tasks that require large space and time cost, and are dangerous
to the human being or the robots themselves, such as post-
disaster relief, target searching, military applications, etc.

2.2. Characteristics of nature swarms

Since the swarm robotics is mostly inspired from the nature
swarms, it’s a good reference for analyzing the characteristics
of nature swarms. The research of swarm robotics started a
century ago.

The first hypothesis is quite personified [24] and assumes
that each individual has a unique ID for cooperation and
communication. The information exchange in the swarm is
regarded as a centralized network. The queens in ant and bee
colonies are supposed to be responsible for transmitting and
assigning the information to each agent [25]. However, Jha,
et al. [26] proved that the network in the swarm is decen-
tralized. Thanks to the research in recent half century, the
biologists can now assert that there are no unique IDs or other
globally storage information in the network. No single agent
can access to all the information in the network and a pace-
maker is therefore inexistent.

The biologists now believe that the social swarms are
organized as a decentralized system distributed in the whole
environment which can be described through a probabilistic
model [27]. The agents in the swarm follow their own rules
according to local information. The group behaviors emerge
from these local rules which affect information exchange and
topology structure in the swarm. The rules are also the key
component to keep the whole structure to be flexible and
robust even when the sophisticated behaviors are emerged.

2.3. Advantages of swarm robotics

The advantages and characteristics of the swarm robotics
system are presented by comparing a single robot and other
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similar systems with multiple individuals. These characteris-
tics are quite similar to that of nature swarm.

2.3.1. Comparing with a single robot

To complete a sophisticated task, a single robot must be
designed with complicated structure and control modules
resulting in high cost of design, construction and maintenance.
Single robot is vulnerable especially when a small broken part
of the robot may affect the whole system and it’s difficult to
predict what will happen. The swarm robotics can achieve the
same ability through inter-group cooperation and takes the
advantage of reusability of the simple agents and the low cost
of construction and maintenance. The swarm robotics also
takes the advantage of high parallelism and is especially
suitable for large scale tasks.

A single robot is inspired from human behaviors by
comparing the corresponding nature species of these
researching areas, while the swarm robotics is inspired from
the social animals. Due to the restriction of current technology,
it’s hard to simulate the human interactions using machines or
computers while the mechanisms in animal groups are easier
to apply. This gives the swarm robotics a bright future in
dealing with complex and large scale problems. The advan-
tages of swarm robotics are described below.

2.3.1.1. Parallel. The population size of swarm robotics is
usually quite large, and it can deal with multiple targets in one
task. This indicates that the swarm can perform the tasks
involving multiple targets distributed in a vast range in the
environment, and the search of the swarm would save time
significantly.

2.3.1.2. Scalable. The interaction in the swarm is local,
allowing the individuals to join or quit the task at any time
without interrupting the whole swarm. The swarm can adapt to
the change in population through implicit task re-allocating
schemes without the need of any external operation. This
also indicates that the system is adaptable for different sizes of
population without any modification of the software or hard-
ware which is very useful for real-life application.

2.3.1.3. Stable. Similar to scalability, the swarm robotics
systems are not affected greatly even when part of the swarm
quits due to the majeure factors. The swarm can still work

Table 1
Comparison of swarm robotics and other systems.

towards the objective of the task although their performances
may degrade inevitably with fewer robots. This feature is
especially useful for the tasks in a dangerous environment.

2.3.1.4. Economical. As mentioned above, the cost of swarm
robotics is significantly low in designing, manufacturing and
daily maintaining. The whole system is cheaper than a com-
plex single robot even, if hundreds or thousands of robots exist
in a swarm. Since the individuals in the swarm can be
massively produced while a single robot requires precision
machining.

2.3.1.5. Energy efficient. Since the individuals in the swarm
are much smaller and simpler than a giant robot, the energy
cost is far beyond the cost of a single robot compared with the
battery size. This means that the life time of the swarm is
enlarged. In an environment without fueling facilities or where
wired electricity is forbidden, the swarm robotics can be much
useful than traditional single robot.

In conclusion, the swarm robotics can be applied to so-
phisticated problems involving large amount of time, space or
targets, and a certain danger may exist in the environment.
The typical applications are as follows: UAV controlling,
post-disaster relief, mining, geological survey, military ap-
plications and cooperative transportation. The swarm robotics
can complete these tasks through cooperative behavior
emerged from the individuals while a single robot can barely
adapt to such situation. This is the reason why the swarm
robotics has become an important research field in last
decade.

2.3.2. Different from other multi-agent systems

There exist several research areas inspired from the nature
swarm, which are often confused with swarm robotics, such
as multi-agent system and sensor network. These research
areas also utilize the cooperative behavior emerged from the
multiple agents in the group for specialized tasks. However,
there are several differences between these systems, which
can distinguish these systems fundamentally, as shown in
Table 1.

From Table 1, it can be easily deduced that the main dif-
ferences among swarm robotics and other systems are popu-
lation, control, homogeneity and functional extension. Multi-
agent and sensor network systems mainly focus on the

Swarm robotics

Multi-robot system

Sensor network Multi-agent system

Population Size Variation in great range Small Fixed In a small range

Control Decentralized and autonomous Centralized or remote Centralized or remote Centralized or hierarchical or network
Homogeneity Homogeneous Usually heterogeneous Homogeneous Homogeneous or heterogeneous
Flexibility High Low Low Medium

Scalability High Low Medium Medium

Environment Unknown Known or unknown Known Known

Motion Yes Yes No Rare

Post-disaster relief
Military application
Dangerous application

Typical applications Transportation
Sensing

Robot football

Surveillance
Medical care
Environmental protection

Net resources management
Distributed control
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behaviors of multiple static agents in the known environments
while the robots in the multi-robot systems are quite small,
usually heterogeneous and are externally controlled.

Since homogeneity and scalability are considered at the
beginning of the system design, the swarm robotics shows
great flexibility and adaptability compared with other systems.
The multi-robot systems usually involve the heterogeneous
robots, and may achieve better performance on specialized
tasks at the cost of flexibility, reusability and scalability. Be-
sides scalability which is introduced in previous section, the
characteristics of swarm robotics among other three coopera-
tive systems are listed in Table 1.

2.3.2.1. Autonomous. The individuals in swarm robotics sys-
tems must be autonomous, i.e. capable of interacting and
motioning in the environment. With these key functions, the
cooperative mechanisms inspired from the nature swarms can
be introduced into the swarm robotics. Although the systems,
like sensor networks, are far different from the swarm robotics
from such point of view, but the research on the area can
indeed throw some lights on swarm robotics research.

2.3.2.2. Decentralization. With a good set of cooperative
rules, the individuals can complete the task without centralized
controls which promises the scalability and flexibility of the
swarm. At the same time, the swarm can benefit more in the
environments when communication is interrupted or lagged
and improves the reaction speed and precision of the swarm.

2.3.2.3. Local sensing and communications. Due to the re-
striction of hardware and cost, the robots in the swarm usually
have a limited range of sensing and communicating and thus
the whole swarm is distributed in the environment. Actually,
the use of global communications will lead to a significant
decline in scalability and flexibility, as the communication cost
is explode exponentially as the population grows. Neverthe-
less, certain controlling global communications are accept-
able, for instance, updating the controlling strategies or
sending the terminal signals, so long as it’s not used in the
interaction between individuals.

2.3.2.4. Homogenous. In a swarm robotics system, the robots
should be divided into the roles as few as possible and the
number of robots acting as each role should be as large as
possible. The role here indicates the physical structure of the
robot or other states that cannot be changed into one another
dynamically during the task. A state in a finite state machine
does not count in our definition. This definition indicates a
swarm, no matter how large it is, is not considered as swarm
robotics if the roles of robots are divided meticulously. For
instance, the robots football usually is not considered as
swarm robotics, since each individual in the team is assigned a
special role during the game.

2.3.2.5. Flexibility. A swarm with high flexibility can deal
with different tasks with the same hardware and minor
changes in the software, as the nature swarms can finish

various tasks in the same swarm. The individuals in the swarm
show different abilities and cooperation strategy when they
deal with different tasks. The swarm robotics should provide
such flexibility, especially in similar tasks, such as foraging,
flocking or searching. The swarm can switch to different
strategies according to the environment. The robots can adapt
to the environment through machine learning from the past
moves and can change to a better strategy.

2.4. Application scopes of swarm robotics

The study of robotics application in target search has grown
substantially in the recent years. It is more preferable for the
dangerous or inaccessible working area. The problems
involved in swarm robotics research can be classified into two
classes. One class of the problems is mainly based on the
patterns, such as aggregation, cartography, migration, self-
organizing grids, deployment of distributed agents and area
coverage. Another class of problems focuses on the entities in
the environment, e.g. searching for the targets [28], detecting
the odor sources [29], locating the ore veins in wild field [30],
foraging, rescuing the victims in disaster areas [31] and etc.
Besides these problems, the swarm robotics can also be
involved into more sophisticated problems, mostly hybrid of
these two classes, including cooperative transportation,
demining [32], exploring a planet [33] and navigating in large
area.

Several potential application scopes [34] of swarm robotics
which are very suitable are described below.

2.4.1. Tasks cover large area

Swarm robotics system is distributed and specialized for
the tasks requiring a large area of space, e.g. large coverage.
The robots in the swarm are distributed in the environment and
can detect the dynamic change of the entire area, such as
chemical leaks or pollution. The swarm robotics can complete
such tasks in a better way than sensor network since each
robot can patrol in an area rather than stay still. This means
that the swarm can monitor the area with fewer agents. Be-
sides monitoring, the robots in the swarm can locate the
source, move towards the area and take quick actions. In an
urgent case, the robots can aggregate into a patch to block the
source as a temporary solution.

2.4.2. Tasks dangerous to robot

Thanks to the scalability and stability, the swarm provides
redundancy for dealing with dangerous tasks. The swarm can
suffer loss of robots to a great extent before the job has to be
terminated. The robots are very cheap and are preferred for the
areas which probably damage the workers. In some tasks, the
robots may be irretrievable after the task, and the use of
complex and expensive robots are thus economically unac-
ceptable while the swarm robotics with cheap individuals can
provide the reasonable solutions. For example, Murphy et al.
[35] summarized the usage of robotics in mine rescue and
recovery. They pointed out that although several applications
already in use, the robots are beyond the requirement to show
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a desired performance in the tough environment under the
ground. They proposed 33 requirements for the robots so as to
achieve an acceptable behavior.

2.4.3. Tasks require scaling population

Workload of some tasks may change over time, and the
swarm size should be scaled based upon the current workload
for high efficiency in both time and economics. For example,
in the task of clearing oil leakage after tank accidents, the
swarm should maintain a high population when the oil leaks
fast at the beginning of the task and gradually reduce the ro-
bots when the leak source is plugged and the leaking area is
almost cleared. The swarm also scales among different regions
if the progress of these regions becomes unbalanced.

Stormont [28] described the potential for using the swarms
of autonomous robots to react a disaster site in the first 24 h.
He summarized the swarm that can search for the victims with
the highest probability of finding survivors, and made some
suggestions for future research in this area.

2.4.4. Tasks require redundancy

Robustness in the swarm robotics systems mainly benefits
from the redundancy of the swarm, i.e. removing some robots
does not have a significant impact on the performance. Some
tasks focus on the result rather than the process, i.e. the system
should make sure that the task will be completed successfully,
mostly in the way of increasing redundancy.

2.4.5. Swarm robotics system in real life

In the recent years, the researchers have already utilized the
swarm robotics in several real-life applications including most
of the tasks mentioned above.

William et al. proposed a framework, called Physicomi-
metics, for the distributed control of swarms [36]. They
focused on the robotic behaviors that are similar to those
shown by solids, liquids, and gases. The different formations
are adopted for the different tasks, including distributed
sensing, obstacle avoidance, surveillance and sweeping.

Correll [37] proposed a swarm-intelligent inspection sys-
tem to inspect of blades in a jet turbine. The system is based
on a swarm of autonomous, miniature robots, using only on-
board, local sensors.

MIT’s Senseable City Lab developed a fleet of low-cost oil
absorbing robots called Seaswarm [38] for ocean-skimming
and oil removal. A nanomaterial robot can absorb oil up to
20 times of its weight. The system provides an autonomous
and low cost solution for ocean environment protection.

Roombots [39] is a novel self-reconfiguring modular ro-
botic system. The autonomous modular robots can alter its
shape to adapt to a given task and working environment, such
as self-assembly and reconfiguration of static objects like
furniture in the day-to-day environment.

Formica [40] is a scalable, biologically-inspired swarm
robotics platform. Its novel mechanical design permits pro-
duction on standard circuit board assembly lines. The system
takes the advantage of small cheap, long-life robots, supports
the peripherals, and can be scaled to a population with several

hundred individuals. Scientists believe such swarms are suit-
able solutions for the tasks like Mars reconnaissance, earth-
quake recovery, etc.

Swarm robotics can be useful for military application as
well. Pettinaro et al. [41] proposed a self-reconfigurable robot
system for foraging, searching and rescuing, which has the
ability to cope with occasional failure. Military experts believe
that the bionic aero vehicles inspired from swarm intelligence
technology will become applicable in a few years. It can be
foreseen that machine bees or cockroaches with reconnais-
sance equipment and bombs will possibly show up in future
war.

3. Modeling swarm robotics
3.1. General model of swarm robotics

Swarm robotics model is a key component of cooperative
algorithm that controls the behaviors and interactions of all
individuals. In the model, the robots in the swarm should have
some basic functions, such as sensing, communicating,
motioning, etc.

The model is divided into three modules based on the
functions which the module utilizes to accomplish certain
behaviors: information exchange, basic and advanced
behavior. The information exchange among three modules
plays the most important role in the model. The Robots in the
swarm exchange the information with each other and propa-
gate the information to the whole swarm through autonomous
behaviors resulting in the swarm-level cooperation.

General model of swarm robotics is shown in Fig. 2. The
robots communicate with each other. In some cases, the global
positioning or central commands are introduced, but the
swarm should still be able to complete the task if global
communication is blocked.

3.1.1. Information exchange module

Information exchange is inevitable when the robots coop-
erate with one another, and is the core part for controlling
swarm behaviors. The main functions of individuals involved
in this module are limited sensing and local communication.
Information exchange of a robot falls into two categories:
interaction with robot or environment. The strategies can be
either same or different for the swarm due to different
applications.

In the nature swarms, the individuals can have the direct
interaction, such as tentacle, gesture or voice. However, the
indirect interactions are far more subtle. The individuals sense
the information in the environment, react and leave the mes-
sages back to the environment. Environment act as the sticky
notes, and the pheromones are the most common pencils in
wild [42]. Such mechanism with positive feedback can opti-
mize the robot-level behaviors, and the swarm-level behaviors
can finally emerge [43].

There are three ways of information sharing in the swarm
[44]: direct communication, communication through environ-
ment and sensing. More than one type of interaction can be
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Fig. 2. General model of swarm robotics.

used in one swarm, for instance, each robot senses the envi-
ronment and communicates with their neighbor. Balch [45]
discussed the influences of three types of communications
on the swarm performance. He designed three tasks and
compared the performance in simulation. Some researchers
also discussed the possibility of swarm cooperating without
communications; however, communication and sensing can
indeed improve the efficiency of swarm for most applications.

3.1.1.1. Direct communication. Direct communication is
similar to wireless network and also consists of two types:
peer-to-peer and broadcast. Thanks to the development in
mobile devices, several existing technologies can be adopted
immediately. Hawick et al. [46] proposed a physical archi-
tecture for a swarm of tri-wheel robots using both
IEEE802.11b wireless Ethernet and Bluetooth. However, the
wireless sensors cost almost half of a total robot. Another
disadvantage of such scheme is that the bandwidth required
will go into an exponential explosion as the population grows.
In this way, the direct communication in the swarm should be
limited.

Although several existing wireless technologies are avail-
able, the protocols and topologies that are specialized for
swarm robotics remain undiscovered. The existing computer
networks are designed for data processing and information
sharing between the nodes. Communications in swarm ro-
botics should take the full advantage of local sensing and
motioning abilities while pay special attention to boost the
cooperative behaviors of individuals and dynamic topologies
of the swarm [47].

3.1.1.2. Communication through environment. Environment
can act as an intermediary for robots’ interaction. The robots
leave their traces in the environment after one action to
stimulate other robots which can sense the trace, without direct

communication among individuals. In this way, the subsequent
actions tend to reinforce and build on each other, leading to the
spontaneous emergence of swarm-level activities. The swarm
is imitated as ants or bees and interacts with the help of virtual
pheromones. Such interactive scheme is exempted from the
exponential explosion of the population but has some limita-
tion on the environment to support the pheromones.

Ranjbar-Sahraei et al. [48] implemented a coverage
approach using the markers in the environment without direct
communication. Payton et al. [49] proposed a swarm robotics
using the biologically inspired notion of ‘virtual pheromone’
for distributed computing mesh embedded in the environment.
The virtual pheromones are propagated in the swarm other
than the environment. Grushin and Reggia [50] solved a
problem of self-assembly of pre-specified 3D structures from
the blocks of different sizes with a swarm of robotics using
stigmergy.

3.1.1.3. Sensing. The individuals can sense the robots and
environment nearby using on-board sensors if they can
distinguish the robots and other objects from the environment.
The robots sense the objects or targets in the environment and
accomplish the tasks like obstacle avoidance, target search,
flocking, etc. The main issue of this scheme is how to integrate
all the sensors in the swarm efficiently for cooperation. Cortes
et al. [51] explored how to control and coordinate a group of
autonomous vehicles, regarded as the agents with sensors, in
an adaptive, distributed and asynchronous way.

The main difference between communication and sensing
is whether the individuals send out the messages actively or
receive the messages passively. Although more precise and
abundant communication requires more complex hardware
and synchronization, the cost of bandwidth, energy and time
will grow extremely fast as population grows. The cooperative
model of swarm robotics should try to simplify the
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communication and use as much sensing as possible. Colors,
luminance and relative positions can be used for sensing and
can provide rich information without communication. In some
tasks, the swarm can exchange all the information only with
the sensors.

3.1.2. Basic behavior module

Basic behaviors of individuals include functions such as
motioning and local planning which is one of most significant
differences of swarm robotics than the multi-agent and sensor
network systems. The robots and their behavior controls are
homogeneous and form the fundaments of group behaviors.
Based on the input from communication or sensing, the robots
compute their desired movements. With an excellent control
module, the swarm can rely less on the communication with
the help of prediction and more direct interactions, rather than
broadcast. The swarm can improve the performance with less
information exchange and high scalability.

3.1.3. Advanced behavior module

Robots in complex swarm robotic systems may have the
extra functions including but not limited to task decomposi-
tion, task allocation, adaptive learning, and etc [52]. The ro-
bots with these functions in hardware can simplify the design
of the algorithm yet lead to a more complex physical design of
real robot. The robots can also achieve the similar functions
with carefully designed cooperative algorithms. The imple-
ment of such functions in hardware or software depends on the
physical designs of the robots, controllers and sensors so as to
make better use of the components [53]. Details of how robots
cooperating with each other are presented in Section 3.3.

Task allocation and learning are emphasized here as they
are normally quite important to a swarm of robots. Task
decomposition and allocation can greatly improve efficiency
for especially complex tasks. Kalra and Martinoli [54]
compared the costs and benefits of different types of task
allocation approaches in noisy world. Learning is also useful
since the parameters of the control mechanism are hard to be
tuned. With the help of self-adaptive learning and optimizing
methods, the swarm shows better adaptability in the different
environments. Pugh and Martinoli [55] discussed the problem
of using different learning methods in the swarm robotics and
compared their performance in simulation. Zhang et al. [56]
applied an evolutionary neural network to evolve the swarm
robotics controllers and used their method in the structure
inspection problem.

3.2. Modeling methods for swarm robotics

Modeling is a method used in many research fields to better
understand the internals of the system that is investigated.
Modeling helps to the swarm robotics since a swarm robotic
algorithm is supposed to be scalable to hundreds of thousands
of robots in population. The time and money are limited for
such scale of experiments, the experiments can be done in an
easier way.

Considering the characteristics of swarm robotics, the
modeling methods are divided into four types according to
Ref. [57]: sensor-based, microscopic, macroscopic and swarm
intelligence-based. The four methods are described in detail in
this section.

3.2.1. Sensor-based modeling

In the sensor-based modeling method, the sensors and ac-
tuators of the robots are modeled as the main components of
the system along with the objects in the environment. Then the
interactions of the robots are modeled as realistically and
simply as possible. This modeling method is mostly used, and
the oldest method is used for robotic experiment.

The earlier research using sensor-based modeling methods
[58,59] did not consider the real physical limitations, now the
researchers introduce the physical principle into the model
[60,61].

3.2.2. Microscopic modeling

In the microscopic modeling, the robots and interactions
are modeled as a finite state machine. The behaviors of each
robot are defined as several states, and the transfer conditions
are based on the input from communication and sensing. Since
the model is based on the behaviors of each robot, the simu-
lation should be run for several times to obtain the averaged
behaviors of the swarm.

In the most swarm robotics research, the probabilistic
microscopic model is used, since noise can be modeled as
probability in the model. In a probabilistic microscopic model
[62], the probabilities are valued from the experiments of real
robots, and the model is iterated with these probabilities for state
transfer in the simulation to predict the behavior of the swarm.

3.2.3. Macroscopic modeling

Macroscopic modeling is a modeling method opposite to
the microscopic modeling. In the macroscopic modeling, the
system behavior is defined as difference equation, and a sys-
tem state represents the average number of robots in this state
at the time step.

The main difference between microscopic and macroscopic
models is the granularity of the models. The microscopic
model for the behavior at individual level is used to simulate
the group behaviors while the macroscopic model simulates
the behaviors at the swarm level. The microscopic model it-
erates the swarm behavior, and the macroscopic model can
give out the final state of the swarm. In this way, the macro-
scopic model can have a global glance at the swarm while the
microscopic model can show the details of the swarm be-
haviors [63].

Probabilistic macroscopic models are also widely used by
the researchers. Martinoli et al. [64] applied the macroscopic
modeling to stick the pulling problem from a basic model
which contains only two states up to the model with all states.
They also compared the microscopic, macroscopic and sensor-
based models and described the shortages of macroscopic
model.
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3.2.4. Modeling from swarm intelligence algorithms

Cooperative schemes from swarm intelligence algorithms
have been introduced into the swarm robotics in many re-
searches. Since the robots use the same or similar schemes
with these algorithms, the models and other methods used to
analyze these algorithms, which are quite mature than that in
swarm robotics, can be used directly for robot research.

The most commonly used algorithm from swarm intelli-
gence is the particle swarm optimization (PSO) which mimics
the flocking process of the birds. The particles fly in the field
and search for the best. It can be found obviously that many
commons remain between PSO and swarm robotics. A map-
ping between particle and robot can be presented easily [65].

Besides PSO, the researchers also introduce other swarm
intelligence algorithms into swarm robotics. Many successful
swarm models were inspired from the ant colonies. These
inspired approaches provide an effective heuristics for
searching in dynamic environment [66] and routing [67].
Many other algorithms are summarized in Sections 5.3 and
54.

However, there are still many problems when a cooperative
scheme from swarm intelligence is introduced. The schemes in
these algorithms consider the most global interactions and
introduce large amount of random moves for high diversity.
Some schemes also contain the operations to reset the posi-
tions of searching agents. However, these operations are un-
available for swarm robotics. How can the schemes in swarm
robotics avoid such operations while taking full advantage of
the scalability and flexibility is a future research direction.

3.3. Cooperation schemes between robots

Cooperation belongs to the advanced behavior in the swarm
robotics model. In swarm robotics, cooperation occurs at two
levels: individual level and swarm level. The former is must
for robot’s activities and coordinates the inputs from envi-
ronment with the response, learning and adapting behaviors.
The latter is an aggregation of former cooperation, resulting in
the typical collective tasks such as gather, disperse or forma-
tion. Several sub-problems have been proposed for coopera-
tion between robots which are described in detail in this
section.

The schemes introduced in this section are focused on the
physical layer of the robot. The cooperation schemes at al-
gorithm level are summarized in Section 5 which introduces
the swarm robotic algorithms.

3.3.1. Architecture of swarm

The architecture of the swarm is a framework for robotic
activities and interactions and determines the topology for
information exchange among robots. The swarm performance
in cooperation depends largely on the architecture. The ar-
chitecture of the swarm should be selected carefully according
to the scale, relations and cooperation of the robots [52].

3.3.2. Locating

Global coordinating systems do not exist in the swarm.
Therefore, each robot in the swarm has to maintain a local
coordinating system and should be able to distinguish, identify
and locate the nearby robots. Thus, a method for rapidly
locating other robots using on-board sensors is very important
for swarm robotics [68].

The absolute positioning technologies from single robots
have been applied in some researches [69], and the combi-
nation of sensors with special filters has been adopted [70,71].
The sensors can sense different waves, including ultrasonic,
visible light, infrared ray or sound [72].

However, the relative positioning of swarm robotics are
more realistic since the abilities of the robots are limited and
no global controls exist. Therefore a light weighted relative
positioning algorithm need to be found. Pugh and Martinoli
[73] characterized and improved an existing infrared relative
localization module used to find the range and bearing be-
tween the robots in small scale swarm robotics system. Kelly
and Martinoli [74] developed an on-board localization system
using infrared sensors for indoor applications. A three
dimensional relative positioning sensor for indoor flying ro-
bots was proposed by Roberts et al. [75], designed to enable
the spatial coordination and goal-directed flight of inter-robot.

3.3.3. Physical connections

Physical connections are used in the situations that single
robot can overcome, such as overpassing large gaps or coop-
erative transportation. In these tasks, the robots should
communicate and dock before they continue to execute their
tasks. Mondada et al. [76] introduced several types of physical
connections, sensors and actuators for overcoming the gaps
and stairs. Wang and Liu [77] developed a localizing and
docking method using infrared ray. Zhang et al. [78] proposed
a reconfigurable robot with limited structures and fixed num-
ber of modules for urban search and rescue. Nouyan and
Dorigo [79] solved the exploration and navigation tasks in an
unknown environment using chained robots. The dynamics
and qualities of the chain formation process are evaluated in
simulation.

3.3.4. Self-organization and self-assembly

Self-organization is a dynamic scheme for building a global
structure through only local interactions of the basic units. The
basic units or robots do not share a global control or have an
external commander. The swarm level structure emerges from
the individual level. A robot interacts with the others through
the structures already built, i.e. behaviors of robots are guided
by process of the building. Such schemes can be easily found
in the nature, as ant or bee colonies building the nests. Self-
organization can be conducted by the biological study on
these animal behaviors.

During the process of nest building, the ants can interact
with the environment in two ways: discrete or continuous. The
discrete interaction reacts to the type of stimulation while the
continuous interaction reacts to the amount of stimulation. A
model utilizing the discrete interaction has been proposed: the
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position a unit to be arranged is decided by the structure
nearby. Simulation shows the model can result in a structure
very similar to bee cave [80].

Self-assembly system can be inspired from the bee cave
construction model. The behaviors in the swarm are conducted
by the existing structures and prior knowledge. Payton et al.
[81] used the pheromones to enhance such schemes. The
swarm starts with random behaviors and converges to a
pattern. As an example, the swarm-bots Project [47] intro-
duced in Section 4.1.3 is a self-organization and self-assembly
system. Each robot has multiple connector port, so that the
swarm can aggregate into a large structure.

4. Entity projects and simulations
4.1. Swarm robotics entity projects

In recent years, the swarm robotics has become a research
topic in which the Chinese researchers have an interest, yet
most of these are quite simple and only are simulated in the
computer [82]. The Project SI [83] is a relatively complete
project of real robots.

In the early 1980s, the researchers from Europe and USA
have begun to research on developing a group of mobile ro-
bots. Some earlier projects include CEBOT [84], SWARMS
[85], ACTRESS [86], etc. However, these projects are quite
preliminary. As the research on swarm robotics has gone
deeper in computer simulation, the entity projects have also
been boosted. Nowadays, there are several projects that pro-
vide the designs of a swarm of robots which will be briefly
summarized in this Section.

4.1.1. Project SI

Project SI [87] was developed by the Embedded Lab of
Shanghai Jiaotong University. The project consists of a swarm
of mobile robots, named eMouse, controlled by the swarm
inspired algorithms. The robots are designed to be reconfig-
urable in sensors and communication protocols, cheap in cost
and strong in motion control. The eMouse does not contain the
sensors when the interfaces are designed but left for con-
necting the different sensors for various applications.

The project team has completed the design of the fifth
generation of robot and implemented several cooperative al-
gorithms on the system. They implemented several primitives
[88], including clump, disperse, generalized disperse, attract,
swarm, scan and message transmission. Based on a set of
testing tools, for instance, monitoring through trace extraction
and live update over wireless network, they solved the real life
applications inspired from swarm intelligence.

4.1.2. Sambots

Sambots is a project for a swarm of self-assembly robots
[89]. Multiple Sambots can form new structures through self-
assembly and self-reconfiguration. The team realized the ro-
bots by the innovative design of docking mechanism and the
reasonable distribution of the perception system [90]. The
docking mechanism is installed on an active docking interface,

which can rotate around the main body of the robot. With such
scheme, the robots can connect with others robots freely to
form a chained structure. Sambots can compose several
structures through different configurations, including snake,
caterpillar, ring, triangle, six-limbed insects, etc.

4.1.3. Swarm-bots project

Swarm-bots [47], sponsored by the Future and Emerging
Technologies program of the European Commission, is a
project for exploring the design, implementation and simula-
tion of self-organizing and self-assembling artifacts. The
project, lasting 42 months, was successfully completed on
March 31, 2005.

The main scientific objective of the Swarm-bots project is
to explore a new approach to the design and implementation of
self-organizing and self-assembling artifacts. The aim of the
team is to construct a large swarm-bot using a number
of simpler, insect-like, robots(s-bots) with relatively cheap
components and capable of self-assembling and self-
organizing to adapt to its environment. The project devel-
oped both simulation and entity robots and presented their
results on the two platforms.

4.1.4. Swarmanoid project

Since October 1, 2006, the Swarmanoid project has
extended the work done in the Swarm-bots project to three
dimensional environment. The team introduced three types of
small insect robots: eye-bot, hand-bot, and foot-bot, which
differ from s-bots in previous project. Swarmanoid consists of
a total number of 60 robots from the three types. The team has
won the AAAI 2011 video competition.

The eye-bots capable to fly or attach to the ceiling are
designed to sense and analyze the environment from a high
position to provide an overview. The foot-bots, previously
named as s-bots, are able to move on rough terrain and
transport either objects or other robots. The hand-bots climb
the vertical surfaces of walls or objects and work in a space
zone between those covered by the foot-bots (the ground) and
eye-bots (the ceiling). With the combination of three types of
robots, the swarm can handle those tasks that require opera-
tions in all dimensions. The team also developed the distrib-
uted control algorithms and communications as well as a
simulation platform [91] for the project.

4.1.5. Pheromone robotics project

The Pheromone Robotics Project [92], started in 2000, is
coordinated by Professor David. The project aims to provide a
robust, scalable approach for achieving the swarm level be-
haviors using a large number of small-scale robots in sur-
veillance, reconnaissance, hazard detection, path finding,
payload conveyance and small-scale actuation [81]. The team
exploited the notion of a virtual pheromone, and implemented
the simple beacons and directional sensors mounted on each
robot. The virtual pheromones only facilitate simple commu-
nication and coordination with little on-board processing.
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4.1.6. I-swarm project

The I-swarm project [93], hosted by Professor Heinz from
2004, combines micro-robotics, distributed and adaptive sys-
tems as well as self-organizing biological swarm systems. The
project facilitates the mass-production of micro-robots, which
can then be used as a real swarm consisting of more than 100
micro-robot clients. These clients are all equipped with limited
sensors and intelligence, each with a size of less than
3 X 3 x 2 mm and velocity of 1.5 mm/s. With such tiny size,
the swarm can work cooperatively in a small world (such as
inside creatures) at very cheap cost.

4.1.7. iRobot swarm project

iRobot Swarm Project [94] is projected by MIT for coop-
erating over 100 robots. The goal of the project is to develop
the distributed algorithms for robotic swarms composed of
hundreds of individual robots robust to complex real-world
environment and tolerant to the addition or failure of any
number of individuals. The project team has developed a
global monitoring device and an automatic charging station.
The most of work of the project was done by Mclurkin and his
colleagues [95].

4.1.8. E-puck education robot

The main goal of this project is to develop a miniature
mobile robot for education use. The robots have several fea-
tures specialized for such purpose. The robots have a clean
mechanical structure simple to understand, operate and
maintain. The robots are cheap and flexible, and can cover a
large spectrum of educational activities thanks to a large po-
tential in sensors, processing power and extensions [96].

Researches based on e-puck project have already exceeded
60 by the end of 2010. The potential educational fields include
mobile robotics, real-time programming, embedded system,
signal processing, image or sound feature extraction, human-
—machine interaction or collective system.

4.1.9. Kobot project

Kobot [97], conducted by Middle East Technical Univer-
sity, is a new mobile robot platform which is a specially
designed a swarm robotics. The robots are equipped with an
infrared-based short range sensing system for measuring the
distance from obstacles to a novel sensing the relative head-
ings of neighboring robots.

4.1.10. Kilobot project

Kilobot project [98] aims to design a robot system for
testing the collective algorithms with a population of hundreds
or thousands of robots. Each robot is made of low-cost parts
and takes 5 min to be fully assembled. The system also pro-
vides several overall operations for a large swarm, such as
updating programs, powering on, charging all robots and
returning home.

4.2. Simulation platforms

The research on swarm robotic system requires a plenty of
physical robots, making it hard to afford for many research
institutions [99]. The computer simulation is developed to
visually test the structures and algorithms on computer.
Although the final aim of the research is real robots, it is often
very useful to perform simulation prior to the investigation of
real robots. Simulations are easier to setup, less expensive,
normally faster and more convenient to use than physical
swarms [100]. In this section, several widely used simulation
platforms are summarized.

4.2.1. Player/stage

The widely-used Player Project [101] is one of the most
famous simulators and aims to produce free software for robot
and sensor research. Player project is a robot server that pro-
vides full access and control of robotic platform, sensors and
actuators for researchers. Stage [102] is a scalable simulator
that is interfaced to Player and can simulate a population of
1000 mobile robots in a 2D bitmapped environment in paral-
lel. Physics is simulated in a purely kinematic fashion, and
noise is ignored in Stage.

4.2.2. Gazebo

Gazebo [103] is a simulator that extends Stage for 3D
outdoor environments. It generates the realistic sensor feed-
back and applies the ODE physic engine instead of the naive
one in Stage. Gazebo presents a standard Player interface in
addition to its own native interface. In this way, the controllers
written for Stage can be used in Gazebo and vice-versa.

4.2.3. UberSim

The UberSim [104] is a simulator developed at Carnegie
Mellon for a rapid validation before uploading the program to
real robot soccer scenarios. UberSim uses ODE physics engine
for realistic motions and interactions. Although originally
designed for Soccer robots, the custom robots and sensors can
be written in C in the simulator and the program can be
uploaded to the robots using TCP/IP.

4.2.4. USARSim

USARSim [105], shorted for Urban Search and Rescue
Simulation, is a high fidelity multi-robot simulator originally
developed for search and rescue (SAR) research activities of
the Robocup contest. It has now become one of the most
complete general purpose tools for robotics research and ed-
ucation. It is built upon a widely used commercial game en-
gine, Unreal Engine 2.0. The simulator takes full advantage of
high accuracy physics, noise simulation and numerous geo-
metrics and models from the engine. Evaluations have shown
that USARSim can simulate the real time robots well enough
for researchers due to the high fidelity physics engine.

4.2.5. Enki
Enki [106] is an open source, fast 2D physics based robot
simulator written in C++-. It is able to simulate the cinematics,
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collision, sensors and cameras of robots working on a flat
surface. Enki is able to simulate the robot swarms hundred
times faster on the desktop computer than real-time robots.
Enki is built to support several existing real robot systems,
including swarm-bots and E-puck, while user can customize
their own robots into the platform.

4.2.6. Webots

Webots [100] is a development environment used to model,
program and simulate the mobile robots available for more
than 10 years. With Webots, the user can design the complex
robotic setups, with one or several, similar or different robots
with a large choice of pre-defined sensors and actuators. The
objects in the environment can be customized by the user.
Webots also provides a remote controller for testing the real
robots. Until now, Webots robot simulator has been used in
more than 1018 universities and research centers in the
worldwide.

4.2.7. Breve

Breve [107] is a simulation package designed for simu-
lating large distributed artificial life systems in a continuous
3D world. Behaviors and interactions of agents are defined
using Python. Breve uses ODE physics engine and OpenGL
library that allows the observers to view the simulation in the
3D world from any position and direction. Users can interact
at run time with the simulation using a web interface. Multiple
simulations can interact and exchange individuals over the
network.

4.2.8. V-REP

V-REP [108] is an open resource 3D robot simulator that
allows creating entire robotic systems, simulating and inter-
acting with dedicated hardware. V-REP is based on a
distributed control architecture: control programs (or scripts)
can be directly attached to the objects in the scene and run
simultaneously in both threaded and non-threaded fashions.
This makes it very versatile and ideal for multi-robot appli-
cation, and allows the users to model the robotic systems in a
similar fashion as in reality where control is most of the time
also distributed. V-REP possesses several calculation mod-
ules, such as sensor simulation (proximity or camera), inverse
and forward kinematics, two physics engines (Bullet and
ODE), path planning, minimum distance calculation, graph-
1ng, etc.

4.2.9. ARGoS

ARGoS [109] is a new pluggable, multi-physics engine for
simulating the massive heterogeneous swarm robotics in real
time. Contrary to other simulators, every entity in ARGoS is
described as a plug-in one and easy to implement and use. In
this way, the multiple physics engines can be used in one
experiment, and the robots can migrate from one to another in
a transparent way. Results have shown that ARGoS can
simulate about 10,000 wheeled robots with full dynamics in
real-time. ARGoS is also able to be implemented in parallel in
the simulation.

4.2.10. TeamBots

TeamBots [110] is a collection of Java simulation for mo-
bile robotics research. Some execution on mobile robots
sometimes requires low-level libraries in C. TeamBots sup-
ports the prototyping, simulation and execution of multirobot
control systems and is compatible with the Nomad 150 robot
by Nomadic Technologies and Cye robot by Personal
Robotics.

5. Cooperative algorithms

Research on swarm robotics so far is still quite simple.
Most of the algorithms are designed for every encountering
application, but an algorithm with high usability has been
undiscovered. A main reason for such situation is that there is
still not a common and standard definition for swarm robotics
system and application problems. The problems abstracted in
swarm robotics research are in a wide variety with different
problem definition and setups, and it’s hard to provide a uni-
form description for all the problems. No benchmark test has
yet been proposed. Therefore, different researching works can
provide little experience to each other and these different al-
gorithms cannot compare to each other easily. Thus the whole
progress of swarm robotics research is still quite slow.

5.1. Earlier progress of swarm robotics algorithms

In the earlier years of swarm intelligence research, the
scientists simulated the cooperative mechanisms in the nature
and explored the possibility of reproducing these swam be-
haviors in the artificial agents.

Self-organizing clustering observed in bacteria was one of
the first swarm behaviors reproduced by the scientists [111].
The individuals in the swarm are controlled by a simple rule:
the possibility of joining or leaving a colony is conducted by
the density nearby. In the experiment, 1500 individuals in the
swarm gradually clustered into three colonies without any
prior information or external control.

A similar approach simulating ants’ behavior of clearing up
the graves was also proposed [112]. The task of the swarm is to
collect all the items in the area together. There are no predefined
storage spots available. Individual in the swarm follows a simple
and local rule to transport an item from a spot of low density to
high density only. Experiment shows that the swarm completes
the task for collecting 80 items without communication. They
also explored the how these rules can impact on the result.

Another famous attempt for simulating the cooperating
abilities in the early years is the stick pulling experiment [62]. In
this experiment, the stick is too long for one robot to pull it out,
i.e. two robots have to pull out the stick together. The aim of this
test is to verify the swarm can emerge simple intelligence with
simple rules even if no communication is available. The swarm
can finish the task by the rule of that a robot waits for other
robots for a random time before leaving for another stick.

Dispersing uniformly in an indoor environment is one of
the early algorithms that focus on the distributed structure of
swarm robotics. McLurkin and Smith [96] proposed an
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algorithm for a swarm of iRobot. The algorithm is divided into
two steps executed alternately: one disperses the robots and
the other detects the border. In this way, the swarm can
gradually expand in the environment.

5.2. Features of swarm robotics algorithm

A swarm robotics algorithm must fit and make full use of
the features of swarm robotics. The algorithm should explore
the cooperation between robots and share some features with
swarm robotics system. For example, Stirling et al. [113]
studied a swarm of flying robots searching in an indoor
environment containing rooms and corridors. They introduced
a strategy that saves energy significantly, i.e. the robots move
one by one while all other robots pin to the roof to save energy.
However, the swarm is required to transit the whole environ-
ment with very poor time efficiency. Since only one robot is
moving at a time, the cooperative advantage of the swarm can
hardly bring into play. It is hard to be classified as swarm
robots algorithm in this case.

Five features of swarm robotics algorithm are specially
emphasized in this section: simple, scalable, decentralized,
local and parallel.

5.2.1. Simple

Since the capability of each robot is limited, the algorithm
should therefore be as easy as possible. A simple algorithm
can help to reduce the cost of a single robot. Even complex
and efficient swarm behaviors can emerge form a well-
designed simple cooperative algorithm. In most cases, the
robots are considered to be a finite state machine with only a
few states.

5.2.2. Scalable

The algorithm designed for swarm robotics must be scal-
able for any population size so that the system is a scalable
one. In an algorithm, the designer should consider allowing the
robots to join and especially quit the swarm dynamically. All
the operations of the robots that interact with the whole swarm
should be designed carefully so as not to affect the perfor-
mance when a population is very large.

5.2.3. Decentralization

The robots in a swarm are autonomous and so would the
algorithm be. An algorithm should always avoid any external
and centralized controls. Although an individual may be
affected by others, it should make the decision on its own. A
decentralized algorithm is quite possible to be scalable.

5.2.4. Local

Local communication and local interaction are the special
features of swarm robotics. The algorithm should also follow
this rule as it is the key for scalability. Since the robots can
simulate global communication and interaction system using
local systems with specially designed scheme and some delay
for the information to propagate in the swarm, direct use of
global operations should be avoided.

5.2.5. Parallel

The swarm usually consists of many robots. Therefore, the
algorithms should be as parallel as possible so that the robots
can deal with multiple targets in the same time, which is one
of the advantages of the swarm robotics.

According to these features, the scientists have proposed
many swarm robotics algorithms. However, the research of
swarm robotics is still at the start, and the main interests of the
researchers are some basic tasks, such as formation control,
obstacle avoidance and etc. A unified framework has yet not
been proposed. As the research progress in future, several
benchmark applications should be proposed and the algo-
rithms will unleash various characteristics of the swarm ro-
botics, such as scalable, robustness and flexibility. By that
time, the researchers can focus more on the complicated
problems consisting in these benchmark applications, resulting
in more applicable algorithms for real life problems.

5.3. Fundamental tasks of swarm robotics

In the past decades, the swarm robotics has been deployed
in various scopes of applications [95], including odor locali-
zation, mobile sensor networking, medical operations, sur-
veillance and search-and-rescue. The tasks of these
applications are very sophisticated and hard to propose a direct
solution. To solve these tasks, several basic tasks have been
proposed by the swarm robotics researchers, such as flocking,
navigating, obstacle avoidance, etc. Among these tasks,
flocking is the most important and fundamental one. Appar-
ently, coordinating a large number of robots at the swarm level
with individual rules is not an easy task. Therefore, the
emerging group behavior from interactions of robots with
environment and other robots has been the main interest of the
research since the area has been introduced.

Flocking is widely observed in many nature swarms or even
human beings. The creatures in the social groups show a great
diversity in their population due to the differences in age,
morphology, nutritional state, personality and leadership status
of the individuals, thus it is surprised that they can achieve
flocking with limited rules and interactions in such a blended
group. The inspiring schemes from these groups can aid in
developing the basic tasks of flocking, directed navigating,
searching and obstacle avoidance.

5.3.1. Flocking strategy and formation

The “Boids” model, proposed by Reynolds [114] in 1987,
is a typical individual model for flocking behavior using
distance metrics. The model has been widely adopted in
various applications including spacecraft, UAV, robot, and
etc. In these applications, the group behaviors cannot be
explicitly defined at group level and the individual rules are
adopted [115].

The most common use of the “Boids” model in swarm
robotics flocking is in the form of virtual forces. Hettiarachchi
and Spears [116] introduced a “Physicomimetics” framework
which controls the robots’ behavior using physical forces
virtually generated by the interactions. They employed two
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types of forces from the physic laws: Newtonian Force Law
and Lennard-Jones Force Law, and the swarms showed quite
similar results with the real material following these laws in
their simulation.

Moeslinger et al. [117] proposed a flocking behavior for
robots which interprets all the interactions as attraction and
repulsion forces only. The forces are decided by whether the
distance falls in attraction and repulsion zones. With different
setup of two zones, they achieved flocking for a small group in
a constrained environment.

Hashimoto et al. [118] proposed a control algorithm for a
swarm of robots based on the gravity center of the local
swarms which are overlapped partially to increase the stability
of the whole swarm. Local forces such as attraction and
repulsion are also applied to each robot to increase the stability
of the local swarm and thus the entire swarm.

Lawton et al. [119] presented a behavior-based approach to
formation maneuvers. They decomposed complex formation
maneuvers into a sequence of maneuvers between formation
patterns. They presented three formation control strategies to
deal with different topologies and purposes.

Although most models in swarm robotics assume that the
individuals interact with all their neighbors within certain
distance, some biological researches provide a new idea. By
reconstructing the three dimensional positions of a few thou-
sands of birds during flocking, Ballerini et al. [120] showed
that the interaction does not depend on the metric distance, but
rather on the topological distance with six to seven neighbors
on average. Various computer simulations in computer also
show that a topological interaction grants significantly higher
cohesion of the aggregation compared with a standard metric
one.

Based on such observation, some researchers also proposed
selecting strategies before interacting with nearby robots so
that only a fixed number of neighbors are used. Lee and Chong
[121] proposed a flocking control inspired from the fish
schools. They selected two neighbors for team maintenance
and local interactions. Ercan et al. [122] introduced a regular
tetrahedron formation strategy for selecting three neighbors
that forms the best tetrahedron to ensure formation.

Miyagawa [123] has shown that the swarms can flock
without distance information. He utilized a strategy inspired
from tau-margin, assuming the animals especially birds
perceive time to contact rather than distance. The robots in the
swarm are equipped with light bulbs of 10W so as to perceive
tau-margin by utilizing optical inverse square law.

Barnes et al. [115] presented a method for organizing a
swarm of unmanned vehicles into a user-defined formation by
utilizing artificial potential fields generated from normal and
sigmoid functions. The potential functions along with
nonlinear limiting functions are used to control the shape of
swarm to user desired geometry.

5.3.2. Directed flocking

Besides the flocking strategy, the direction control in
flocking is the most concern in flocking research and has been
widely adopted in navigation, migration and searching

applications. Until now, a large number of researches have
been made on directing the swarm with target positions and
propagating information in the swarm.

5.3.2.1. Informed individual. A common and naive strategy of
direct flocking is the “informed individual”. It was first
observed in nature swarms by Couzin and his colleagues
[124], who conducted a study on effective leadership and
decision-making in animal groups and published their work in
Nature. In their experiment, only a few of the individuals in
the group are aware of the target direction. The results
demonstrate that these informed individual can lead the whole
group towards the destination. Later, Correll, et al. [125] uti-
lized such scheme in cow herd to guild the swarm.

From then on, the similar schemes have been also intro-
duced to swarm robotics. McLurkin [126] developed a strategy
in his mater thesis for the task of following the leader with a
linear formation. The robots line up in the topology, follow the
predecessors and guide the successors. The leader is guided by
other controls for the final destination of the group. The group
forms the line without any external orders and can handle the
obstacles in the environment and the communication failures
that may encounter.

Nasseri and Asadpour [127] investigated the controlling
effects of a swarm with only a small fraction of robots having
the knowledge of final goal. The informed robots cannot
transmit information directly, yet the swarm can flock towards
the desired target in simulation. They also investigated how
the parameters can influence on the performance.

A self-organized flocking behavior for a swarm of robots
was presented by Turgut et al. [128] without using the
emulated sensors or the priori knowledge of the destination.
The simulation shows that, with only local interactions, the
robots can share a common flocking direction in a self-
organized process until the sensing noise exceeds to a
certain extent. In their follow-up work [129], they studied how
the swarm can be steered toward a desired direction by
guiding some of individuals externally. The results are quali-
tative in accordance with the ones that were predicted using
modal in Ref. [124] model. The two works were evaluated in
both physical systems and simulations in an environment with
obstacles.

Stranieri [130] studied the self-organized flocking behav-
iors of two types of robots: aligning and non-aligning. An
aligning robot has the ability to agree on a common heading
direction with its neighbors. A heterogeneous swarm of these
two kinds of robots can achieve good flocking performance in
simulation if the motion control strategy and interact mecha-
nisms are carefully designed.

5.3.2.2. Potential field functions. Another commonly used
swarm formation control strategy is the potential field func-
tion. Ge and Fua [131] presented a scalable and flexible
approach to effectively control the formation of a group of
robots. They introduced the artificial potential trenches and
represented the formation structures in terms of queues and
vertices, rather than with nodes. The robots are attracted to and
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move along the bottom of the potential trench and distribute
with respect to the density nearby automatically. In their
follow up work, Fua et al. [132] investigated the operation of
the queue-formation structure with limited communication.
Information interaction is classified as two scales: the fast-
time and slow-time scale. The former scale involves only
local real time communication, and in the latter scale, infor-
mation is less demanding and can be collected over a longer
time from the swarm. In this way, the swarm is incrementally
guided into the specific formation in a more efficient manner.

The aggregation, foraging, and formation control of robots
were investigated by Gazi et al. [133], which are controlled by
using artificial potential and sliding mode. They considered a
significantly more realistic and more difficult setting with non-
holonomic unicycle agent dynamics models compared with
other studies.

Blach and Hybinette [134] presented a new class of po-
tential functions for navigating the swarm towards a goal
location in obstacle environment. The approach is inspired by
the same way that molecules “snap” into place as they form
crystals and the swarm can arrange themselves in a geometric
formation.

5.3.3. Positioning and navigation

In flocking and migration, the positioning of goal, nearby
robots and various obstacles in the fields is also an important
task. In the application taking place in the large outdoor
environment, the global positioning is expensive and requires
more hardware, which is unaffordable for swarm robotics.
Thus, the local positioning in flocking should be specially
focused.

5.3.3.1. Navigation. Rothermich et al. [135] developed a
distributed localizing and mapping method based on a swarm
of iRobots. Since the swarm does not share a global coordi-
nating system, the swarm should gather and move together to
maintain a virtual system. In the swarm, some robots serve as
the beacons if they run into a newly searched area, and they
turn back to the role of mapping and searching if there are
already enough beacons nearby. With such scheme, the swarm
can maintain the coordinating system to draw the map with
high accuracy in a distributed way.

Correll and Martinoli [136] developed an intelligent in-
spection system with on-board local sensors. In their proposed
strategy, part of the robots in the swarm act as the beacons, and
the strategy is compared to other beaconless approaches. They
also analyzed the system with probabilistic microscopic and
macroscopic models.

Spears et al. [137] developed a relative localization module
for determining the positions of nearby robots based on tri-
lateration for searching problems. The robots identify the
nearby robots with three marking points equipped physically
on robots to match the distance and direction of their neigh-
bors. This strategy is fully distributed, scalable, inexpensive
and robust. The system provides a framework for both local-
ization and information exchange.

Stirling et al. [138] presented a new autonomous flight
methodology for autonomous navigation and goal directed
flight in unknown indoor environments using a swarm of
flying robots. The approach is entirely decentralized and relies
only on local sensing without global positioning, communi-
cation, or prior information about the environment.

Marjovi et al. [139] proposed a navigation method by
guiding the swarm using wireless connections when the odor
sources are searched. At least three individuals in the swarm
act as the beacons which broadcast the coordinates to the
whole swarm to maintain a global coordinate system while the
others search for the odor. The shortcoming of this research is
that the beacons are broadcasting the coordination in a large
area while other robots should detect the distance with the
beacons from a long distance, which requires expensive
hardware.

5.3.3.2. Simulating ant colonies. Ant colonies in the nature
are famous for the navigation and migration behaviors with the
help of pheromones. The researchers of the swarm robotics
society employed such scheme into swarm robotics by simu-
lating the pheromones using part of the robots in the swarm
which serve as the beacons.

An interesting study was proposed by Sperati et al. [140].
In their experiment, a robotic swarm manages to collectively
explore the environment, forming a path to navigate between
two target areas, which are too distant to be perceived by an
agent at the same time. The robots continuously move back
and forth between the two locations while they interact with
their neighbors. The behaviors of the robots are controlled by a
neural network and the swarm evolves to optimize the path.
They observed that the swarm finally converges to the shortest
path. In their follow-up work, one of the schemes simulating
ant colonies was proposed [141]. They searched for an effi-
cient exploration and navigation strategy for the same prob-
lem. They evaluated one run of a robot through the time and
distance spent to find the path and optimize the searching
using the evolutionary methods. The final results show that the
swarm has great flexibility and robustness.

Ducatelle et al. [142] investigated how the simple local
interactions between the robots of the different swarms can
cooperate to solve the complex tasks by using eye-bots and
foot-bots from the swarmanoid project. The foot-bots move
back and forth between source and target and avoid the ob-
stacles without any interaction with other foot-bots; the eye-
bots simulate the pheromones in the environment and guide
passing by foot-bot with local direction. The eye-bots update
the weights of the directions and move towards the optimized
path to accelerate the searching process. Simulation results
show that the system is capable of finding a shortest path and
spreading in an automatic traffic.

5.3.4. Obstacle avoidance

Obstacle avoidance is also considered an important basic
task in the swarm robotics society. In most researches, some
sort of potential functions has been applied to the robots. The
swarm steers around the encountered obstacles according to
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the potential fields. Khatib [143] first introduced this concept
in real-time obstacle avoidance in 1986. He used a time-
varying artificial potential field for moving obstacles. This
solution successfully converted the traditionally high level
planning problem into distributed real-time operations even in
complex environment.

Some recent examples also used such scheme. Das et al.
[144] proposed an approach that switches between several
controllers, depending on the state of the robot for obstacle
avoidance. Shao et al. [145] proposed a similar kinematic
controller and modified the desired bearing to steer the robots
around the obstacles. Do [146] used a potential function for
avoiding collisions within the swarm. The function alters the
robots’ trajectory if they are not at their heading direction. In
Ref. [122], the obstacles generate a virtual repulsive force
similar to the mechanism in atomic nucleus, and the robots
play the roles of electrons to fly around the nucleus.

Kurabayashi and Osagawa [147] proposed formation tran-
sition and obstacle avoidance adapting to the geometrical
features appearing in Delaunay diagram. The robots select
their neighbors in the diagram by the proposed strategy and
form a topology connecting all the individuals lead by a
certain robot. The algorithm shows some flexibility but is
vulnerable in robustness.

Min et al. [148] proposed a new method for avoiding the
obstacles in dynamic environment based on the second order
motion model for robotics. A mathematical model based on
the destination of robot, velocity and direction of obstacles
was proposed and optimized using PSO. Simulation experi-
ment shows that the method is better than the tradition artifi-
cial potential field methods, though it requires a large amount
of computation since each robot maintains a PSO model
separately.

5.4. Swarm robotics searching algorithms

Currently, swarm robotic searching algorithm is one of the
most concerns of the researchers besides those basic tasks
mentioned in previous section. In this section, the searching
strategies are classified in two types: one inspired from the
swarm intelligence algorithms and the other inspired form
other methods. These two types of algorithms are different in
many aspects, such as searching scheme, target detection
method and information exchange inside the swarm.

5.4.1. Inspired from swarm intelligence algorithms

From the general point of view, swarm optimization algo-
rithms share several similarities with swarm robotics search-
ing, e.g. searching for the best points using a swarm of
individuals. Particle swarm optimization (PSO) is the swarm
intelligence approach that is adopted mostly in the swarm
robotics due to the great similarity with flocking and searching
schemes. Besides PSO, other methods have also inspired many
successful approaches, such as ant colony optimization (ACO)
and glowworm swarm optimization (GSO). The scope of these
approaches includes path finding, navigation, odor localiza-
tion, etc.

The swarm intelligence shows great ability in scalable,
flexibility and robustness and is suitable for real life applica-
tions with the aid of various existing strategies. However, the
shortcomings of these algorithms are also introduced in the
same time, e.g. large quantity of random moves, global in-
teractions and especially tending to get trapped in the local
minimal. Couceiro et al. [149] proposed a RDPSO for solving
the last issue. They divide the swarms into sub-swarms with
dynamic topology updated in several iterations based on a
reward and punishment mechanism. However, the sub-swarms
are divided ignoring the distance metrics and escape the local
minimum at the cost of global communication and coordi-
nating system.

There exist three types of methods in using the swarm in-
telligence algorithms so far:

5.4.1.1. Optimizing the parameters. The first type of searching
algorithms inspires the strategies from other methods with
several parameters which are hard to be optimized, such as
neural network or heuristic schemes. The swarm intelligence
algorithms are employed to optimize these parameters.

Meng [150] proposed a collective construction task for
searching the randomly distributed building blocks and
transporting these blocks to the predefined locations. The
method employs the virtual pheromone trail for information
exchange and the task allocation for cooperative trans-
portation. A modified PSO was proposed to balance the
exploration and exploitation in their work.

Pugh [151] explored the use of PSO for the noisy problems
of unsupervised robotic learning. He adapted a technique of
overcoming noise from genetic algorithm (GA) and evaluated
it on unsupervised learning of obstacle avoidance using a
swarm of robots. In his follow-up work with Martinoli [152],
they presented an adaptive strategy for localization of multiple
targets. The search algorithm is inspired from chemotaxis
behavior in bacteria, and the algorithmic parameters are
updated using PSO.

To overcome the weakness and difficulty of the logical
design of behavioral rules, Oh and Suk [153] proposed an
artificial neural network controller that is applied to the
mission of searching the obstructive areas using a swarm of
UAVs. Genetic algorithm is applied to evolve the weights in
the neural network which shows superior results to other
controllers.

Yang and Li [154] proposed a path planning algorithm
based on improved PSO. The center of the path is described as
cubic splines, and the path planning is equivalent to parameter
optimization of these cubic splines. Results show that the
obstacle avoiding paths can be optimized using such scheme.

5.4.1.2. Modeling the individual behaviors. In this type of
algorithms, each robot is regarded as a particle or agent
correspondingly in the swarm intelligence algorithm. The
searching environment is normally interpreted as fitness
values. The swarm uses the fitness to search for the targets.
Pugh and Martinoli [155] explored the possibility of
adopting PSO strategies in swarm robotics searching directly.



34 Y. TAN, Z.Y. ZHENG / Defence Technology 9 (2013) 18—39

Each robot is regarded as a particle and various neighborhood
topologies, and PSO update strategies are verified. In their
follow-up work [156], they designed an effective algorithm
that allows a swarm of robots to work together to find the
targets. They proposed the techniques inspired from PSO
modified to mimic the swarm robotics search process. Anal-
ysis of parameters and setups in the model are also presented
at an abstracted level.

Marques et al. [29] presented a PSO inspired algorithm
for searching the odor sources in a large search space. The
robots try to repulse each other when no chemical cue exists
nearby to improve the swarm performance. Hereford [157]
applied PSO on a swarm of robots searching for the light
spots in a room containing the obstacles. Each robot is
regarded as a particle and broadcasts its information to the
whole swarm. The shortcoming of the experiment is that
it only considers three robots with a large amount of
global communication to maintain the global best of the
swarm.

Derr and Manic [158] considered problem of exploring an
unknown environment to find the targets at the unknown lo-
cations. They used PSO with a novel adaptive RSS weighting
factor to locate targets. Zhu et al. [159] presented a PSO-
inspired search algorithm that coordinates the robots to find
the targets without precise global information. They also
introduced a Cartesian geometry based method for unifying
the relative coordinate systems to improve robustness and
efficiency.

Zhang et al. [160] proposed a strategy based on modified
glowworm swarm optimization for multiple odor source
localization. This strategy includes global random search and
local GSO based search. A discovered source is marked as
forbidden area to ensure that the swarm does not locate this
source again.

An interesting resource exploration task on Mars was
imagined by Kisdi and Tatnall [161]. They suppose the situ-
ation that a lander leads a swarm of workers who cannot
interact with each other. The lander is unable to move and
serves as a shared memory as well as the coordinator of the
swarm. The workers search in the environment in the area
ordered by the lander and return their results back to the
lander. The scheme of the lander is similar with that of
maintaining the archives in multi-objective search in swarm
intelligence. Human interaction is also available at the lander
to mark the interesting areas.

5.4.1.3. Mixing two methods above. Some algorithms try to
use the swarm intelligence model and optimize the parameters
using swarm intelligence in the same time. Doctor [162]
proposed a method utilizing two layers of PSO for control-
ling the unmanned mobile robots in target tracing application.
The robots are controlled by the schemes in inner layer of the
PSO and the parameters of inner layer are optimized by the
outer layer. Signal intensity from targets is defined as the
fitness to search for the swarm.

The solutions for real-time uniform coverage tasks in
military applications under the harsh and bandwidth limited

conditions were proposed by Conner et al. [163]. They
encode each robot as a genome and exchange speed and di-
rection with neighbors. A force-based genetic algorithm is
used at the swarm level to determine the behavior of each
robot under the threats of hostile attack, obstacles and
intermittent stoppage of communication. The swarm always
tries to rearrange the positions to compensate for the missing
robots.

5.4.2. Inspired from other methods

Olfaction is a common ability that the animals use in their
everyday activities, such as hunting, mating, interacting and
evading the predators. Such schemes inspired from the animals
have been widely used in the swarm robotics applications,
such as localization of odor sources, which have attracted a
growing interest in the areas such as anti-terrorist, location of
toxic or harmful gas leakage, checking for contraband,
exploration of mineral resources in dangerous areas and
search-and-rescue in collapsed building [164].

A common olfaction based algorithms can be decomposed
into three or four sub procedures first proposed by Hayes [165]
and Li [166]. The swarm first searches for a plume and follows
the plume to the odor source once a plume is located. The sub-
procedures are different from other approaches such as
gradient descent method [167], zigzagging method [168], and
upwind method [169].

Cui et al. [170] proposed a biasing expansion swarm
approach to collaboratively search and locate various number
of emission sources in an unknown area using a swarm of
simple robots. Jatmiko et al. [171] provided a model of odor-
gated rheotaxis combined with chemotaxic and anemotaxic
(upstream) methods to solve the odor source localization
problems. The combined model can achieve high accuracy in
real life scenarios containing dynamic sources, random winds
and obstacles.

Russell et al. [172] summarized and compared the imple-
mentation and evaluation of four chemotaxis algorithms which
provide fast, simple and cost-effective solutions for olfaction
based searching applications in obstructive environments.
They listed the details of the algorithms together with typical
results of these algorithms obtained in both simulated and
practical experiments.

Besides olfaction, other searching applications and strate-
gies have been also proposed. Varela et al. [173] developed an
algorithm for coordinating a group of UAVs to monitor the
environment. The UAV swarm can locate the undesired phe-
nomenon. The UAVs compare the average fitness of last five
iterations with their neighbors and select the direction of the
best neighbor to search in the next iteration. They validated the
algorithm in real UAVs monitoring and industrial area.

Wu and Zhang [174] developed a switching strategy for
locating a local minimum in an unknown noisy scalar field.
Robots will switch to cooperative exploration only when they
are not able to converge to a local minimum at a satisfying rate
according to a cooperative filter. The switching strategy can
result in faster convergence and is robust to unknown noise
and communication delay.
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A robust-satisficing approach based on info-gap theory was
suggested as a solution for a spatial search-planning problem by
Sisso et al. [175]. The swarm is given uncertain prior information
data with severe errors. The proposed method shows great su-
perior in robustness to the expected-utility maximizing strategy.

Lee and Ahn [176] proposed a foraging algorithm specially
focused on energy efficiency. Through adding several tempo-
ral storage stations in the environment the swarm can improve
the searching efficiency since the robot will move a shorter
distance to the storage before next forage. The swarm is
divided into two parts, one part searches for the food and sends
the food to the nearest station, while others transfer the food
from the station to the nest. In this way, both time and energy
efficiency are improved although several prior knowledge
about the environment is required.

Besides these common methods, other strategies were also
proposed by the researchers. Nouyan and Dorigo [177] pro-
posed a chain based path formation algorithm to generate a
chain of robots from nest to a destination unknown to the
swarm. In their method, each robot is regarded as a finite state
machine with only three states: explore, search and chain. The
robot explores in the field for any existing chains, searches for
the end and joins. With limited sensing and communication,
the swarm can chain up with great robustness and scalability.
In their follow-up study [178], they extend the task by trans-
porting the target back to the nest. The robots have to work
together and pull the target along the chain back to the nest
while the chaining robots will join the transportation after the
target passes them. Their work is one of the most complicated
tasks that have ever been considered in self-organizing robot
swarms in the real life projects.

6. Conclusions

Swarm robotics is a relatively new researching area inspired
from swarm intelligence and robotics. Although a number of
researches have been proposed, it’s still quite far for practical
application. The authors hereby proposed several fundamental
problems to solve in future before the system can really be
adopted in everyday life. How can the cooperative schemes
inspired from the nature swarms integrate with the limited
sensing and computing abilities for a desired swarm level
behavior? How to describe the swarm robotics system in a
mathematical model which can predict the system behaviors at
both individual and swarm level? How to propose a new and
general strategy that can take full advantage of the swarm robotics
system? And finally, how to design a swarm of robots with low
cost and limited abilities which has the potential to show great
swarm level intelligence through carefully designed cooperation?

Besides the cooperative algorithms to provide control for
the swarm, the manufacturing is a fundamental need for
developing the swarm robotics systems. With the help of
advance in Micro Electro Mechanical technology in the as-
pects of mechanical transmission, sensors, actuators and
electronic components, the size and cost of robots have been
significantly reduced. The authors believe that the progresses

of hardware technology and cooperative schemes in both
biology and swarm intelligence in future will boost the
development of swarm robotics systems.
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