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a b s t r a c t

In recent years, dynamic time series analysis with the concept drift has become an impo r-
tant and challenging task for a wide ran ge of applications including stock price forecasting,
target sales, etc. In this paper, a recentness biased learning method is proposed for dynamic 
time series analysis by introducing a drift factor. First of all, the recentness biased learning 
method is derived by minimizing the forecasting risk based on a priori probabilistic model 
where the latest sample is weighted most. Secondly, the recentness biased learning 
method is impleme nted with an autoregressive process and the multi-layer feed-forward 
neural networks. The experimental results have been discussed and analyzed in detail 
for two typical databases. It is concluded that the proposed model has a high accuracy in
time series forecasting.

� 2010 Elsevier Inc. All rights reserved.

1. Introductio n

It is well-known that time series can be found everywhere in our daily life, such as stock price, exchange rate, sensor data,
and electrocardiogram [6,1], to name a few. Time series forecasting is of great importance in many applications , for example,
prediction of stock prices [3]. Generally speaking, for time series forecasting, we always pay more attention to recent data 
rather than the data captured long ago. As a result, the recent data should have a big weight in the analysis of the time series 
for predictio n and decision-ma king. For example, for a stockbro ker, the prices of a stock in this week are usually more impor- 
tant than its prices in the last week.

The concept drift for forecasting was introduced in the community of time series analysis for a period of time. Several 
approaches had been developed for dynamic time series analysis based on this concept. For example, one typical approach 
is to incremental ly maintain a classifier that tracks the patterns in the recent training data, which are usually within the most 
recent sliding window [4]. However, the number of samples, which reflects a compromi se between adequate coverage and 
effectivenes s, is difficult to determine in advance. If too many samples are used, some old samples might be included such 
that these out-of-date samples are useless for forecasti ng, in addition to introducing noise. On the contrary, if only a few 
samples are included, the training data might be insufficient. For these two cases, the learned model will probably carry a
large variance due to the over-fitting phenomeno n.

Since the 1980s, many researchers have used the concept of forgetting factor in their models to solve these problems 
[11,14]. The forgetting factor was used in the control theory for the first time. Thereafter, it is naturally introduced into 
the time series forecasting. Many experime nts have shown that, by means of the forgetting factor, the forecasting accuracy 
of time series could be greatly improved [8,20]. In recent years, some researche rs tried to exploit the concept drifting pat- 
terns to solve the over-fitting problem in the model [16,13]. Some of them took efforts on the recentness biased feature 
extraction. For example, Zhao and Zhang [24,25] designed a generalized dimensio n-reduction framewor k for recentness 
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biased approximation s, aiming at making use of traditional dimension reduction techniques for the recentne ss biased time 
series analysis. Others tried to find out some efficient learning models [5,18,7]. Wang et al. [17] proposed a general frame- 
work to mine the concept drifting in data streams using the weighted ensemble classifiers based on their expected classifi-
cation accuracy on the test data in a real-time environment. Wu et al. [19] proposed an online-opti mization incremen tal 
learning framework as an example learning system for tracking the concept drifting. Zhang et al. [23] provided a data-mining 
based solution to forecast ozone days for the Houston area as well as experience and guidelines to solve problems with sim- 
ilar properties.

Neural network is a universal function approximator [10]. Unlike traditional statistical models, the neural network is a
data-driven and non-parametric weak model which lets the data speak for themselves. It is therefore less susceptibl e to
the mis-speci fication problem than most parametric models. Furthermore, the neural network is more powerful in describ- 
ing the dynamics of financial time series than the traditional statistical models. Among most of neural networks , the multi- 
layer feed-forward neural network (FNN) is widely used for financial time series prediction due to its strong approximat ion 
of nonlinear mapping [21,22,9]. However, FNN currently has a problem in catching the concept drifting of the model. For the 
purpose of online prediction of the financial time series, Case et al. [2] proposed an online-learni ng algorithm for the FNN 
based on an adaptive forgetting factor and an optimized learning rate.

Although many methods have been proposed to deal with concept drifting, they are often difficult to impleme nt or de- 
duce in an optimal way. As a result, a probabilistic model is at first proposed in this paper as a basis of our analysis. Then a
sample weighting strategy used in many traditional models is derived in an optimal way based on the established probabi- 
listic model [15]. After that, a recentness biased model is develope d as a practical approach under this general strategy. With 
this strategy, the recent samples in the training dataset will be more heavily weighted while the old samples will be
weighted less. Finally, the recentness biased method is impleme nted by using an autoregress ive process and the FNN.

The remainder of this paper is organized as follows: In Section 2, a probabilistic model is constructed, from which a
recentness biased method is constructed. In Section 3, the recentne ss biased model is impleme nted by an autoregres sive pro- 
cess. In Section 4, the recentness biased model is implemented with the FNN. In Section 5, several simulation experime nts 
are conducted to evaluate and test our proposed method. Finally, a conclusion is given in Section 6.

2. Recentness biased learning model 

In this section, a probabilistic model is constructed for time series forecasti ng, from which a sample weighted learning 
strategy is derived in an optimal way. Finally, a recentness biased learning model is developed and analyzed.

2.1. A general forecastin g model 

The models of time series in the real-world are complex, evolutionary , and dynamic. It is impossible to construct a general 
forecasting model for all kinds of time series. In real-world applications, a simple model with a few parameters is always 
more preferable to that with more paramete rs, especially when people are expectin g to deal with the time series efficiently.
However, the model should still be reasonable for the application but just over-simplification processin g. According to these 
principles and rules, single-step forecasting is needed, such as a forecast for the next time interval only. Let fSigT�1

i¼0 be train- 
ing samples, the sample ST at time T is to be forecasted .

In order to predict the expected value of yT at time T, we know there exists an underlying function 

yT ¼ FTðXT ;VTÞ; ð1Þ

where XT is a vector with the observable variables and VT is a vector with unobservab le latent variables. FT is an unknown 
underlying function.

Functions fFtgT�1
t¼0 for previous samples, with known input and output, are used to estimate the function FT, where 

yt ¼ FtðXt ;VtÞ: ð2Þ

The function FT is often not equal to any one of the functions fFtgT�1
t¼0 . Usually, the function changes over time. For each 

time point t, we assume 

yT ¼ FTðXT ;VTÞ ¼ FtðXT ;VTÞ þ nt ; ð3Þ

where nt � Nð0;r2
t Þ is a random variable which represents the differenc e of function Ft between time t and T.

On the other hand, the unobservable variables Vt should be discarded in the model; the exact formation of the functions 
fFtgT�1

t¼0 is also unknown and then approximat ed by an assumed function F⁄. The function F⁄ can be a linear or nonlinear func- 
tion, such as a polynomial, neural networks , etc. Both the variable reducing and the function approximat ing bring uncer- 
tainty (risks) into the model. In order to address the uncertainty, we assume 

FtðX;VÞ ¼ F�ðXÞ þ �t ; ð4Þ

where �t � N(0,r2) is an additive white Gaussian noise (AWGN).
Combining Eq. (4) with Eq. (3), we have 
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yT ¼ FtðXT ;VTÞ þ nt ¼ F�ðXTÞ þ nt þ �t : ð5Þ

From Eq. (5), the forecasti ng risks mainly come from two sources. One is from the change of the model over time. The 
other is from the uncertainty of the relation between input and output. Therefore, in order to minimize the forecasti ng risk,
a proper model should be found to first simulate the actual world, then an associated learning algorithm is developed to
catch the concept drifting efficiently.

2.2. Minimize the forecasting risk 

The probabilistic model of time series forecasti ng is derived in this subsection based on the assumptions in Section 2.1.
Traditionall y, each sample has the same weight in a training set. This simplification makes the learning model easier to com- 
pute, but it is not necessarily optimal. A more reasonable assumpti on is that recent samples are more relevant to the sample 
to be predicted. So our goal is to determine how to assign a proper weight to each sample in the training set. Usually, we
want to minimize the forecasting risk.

Let fptg
T�1
t¼0 be the prior probabilities of T training samples. Then the sum of the prior probabilitie s of the training samples 

is 1, i.e., pt satisfies

XT�1

t¼0

pt ¼ 1: ð6Þ

According to Eq. (5), the forecasting uncertainty from the sample at time t is nt + �t. Thus, the total forecasti ng uncertainty 
of the training model can be

u ¼
XT�1

t¼0

ptðnt þ �tÞ; ð7Þ

where nt and �t are defined in Eqs. (3) and (4), respectively . We have 

VarðntÞ ¼ r2
t ; ð8Þ

Varð�tÞ ¼ r2: ð9Þ

Hence, the variance of u (also called the risk of forecasting) is

VarðuÞ ¼ Var
XT�1

t¼0

ptðnt þ �tÞ
 !

¼
XT�1

t¼0

p2
t r2

t þ r2� �
: ð10Þ

In order to minimize the risk of forecasting, the optimal pt is determined by solving the following constrained optimization 
problem:

minimize :
XT�1

t¼0

p2
t r2

t þ r2� �
;

subject to
XT�1

t¼0

pt ¼ 1:

ð11Þ

By using Lagrange multiplier s, the solution of Eq. (11) is

pt ¼
1

r2
t þ r2

� XT�1

s¼0

1
r2

s þ r2

 !
: ð12Þ

In order to simplify Eq. (12), let r2
t ¼ ktr2, then Eq. (12) can be rewritten as:

pt ¼
1

kt þ 1

� XT�1

s¼0

1
ks þ 1

 !
: ð13Þ

From Eq. (12), we see that the sample in the training set that is more similar to the sample to be forecasted is assigned a
greater weight. That is to say, if a sample is more similar to the sample to be forecasted, then it is more valuable and there- 
fore should be assigned a greater weight.

2.3. Recentness biased learning model 

In this subsection, the recentness biased learning model is constructed based on the probabilistic model develope d in Sec- 
tion 2.2. This model is specified to be a recentness biased learning model. The number of parameters is reduced to make the 
model easy to compute and implement.
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A number of models can be used to accomplis h this task. Here, we just consider a simple model in which the function 
changes equally with each time unit, i.e.,

Ftþ1ðXT ;VTÞ � FtðXT ;VTÞ ¼ n; 8t ¼ 0;1; . . . ; T � 1; ð14Þ

where n � N(0,kr2), and r is defined in Eq. (4).
The paramete r k P 0, called drift factor , indicates the change of the function in each time interval. A greater value of k

means the function changes faster.
Given Eq. (14), one can obtain 

FtþsðXT ;VTÞ � FtðXT ;VTÞ ¼ ns; t ¼ 0;1; . . . ; T � 1; ð15Þ

where ns � N(0,skr2).
Hence, nt in Eq. (3) satisfies nt � N(0, (T � t)kr2), i.e., r2

t ¼ ðT � tÞkr2. So Eq. (13) can be specified as:

pt ¼
1

ðT � tÞkþ 1

� XT�1

s¼0

1
ðT � sÞkþ 1

 !
; ð16Þ

where
PT�1

s¼0
1

ðT�sÞkþ1

� �
is independen t of the time variable t.

From Eq. (16), one can easily verify that: if t1 > t2, then pt1 P pt2. Under this circumstanc e, pt1 = pt2 if and only if k = 0. This 
means that, in the recentness biased learning model, the latest sample can get a greatest prior probability in the training 
dataset.

For the convenience of computation and without loss of generality, the scalar 
PT�1

s¼0
1

ðT�sÞkþ1

� �
can be ignored 1,2 from Eq.

(16). Thus, pt can be directly simplified to

pt ¼
1

ðT � tÞkþ 1
: ð17Þ

Fig. 1 shows the curves of the prior probability (pt) versus time (t) for different drift factors (k). It can be seen from the figure
that the later sample has a greater prior probability in the model. It is natural that the more recent samples contain more 
information for forecasti ng. We can also observe that a great k is associate d with a steep curve. In limited cases, if k = 0, then 
pt = 1/T and the curve becomes flat. In this case, all of the samples take same prior probability, and the associated model 
degenerates to the traditional one in which each sample in the training set is assigned the same weight.

3. Autoregressi ve process and its extension 

3.1. AR model 

An autoregress ive (AR) model is a commonly and widely-used linear model for time series forecasting [1]. Most of time 
series consist of elements that are serially dependent in the sense that one can estimate a set of coefficients that describe 
consecutive elements of the time series from specific, time-lagged (previous) elements. This can be summarized as follows:

yt ¼
Xs¼k

s¼1

ws � yt�s þw0 þ � ¼ XT
t �W þ �; ð18Þ

where Xt = (1,yt�1,yt�2, . . . ,yt�k) are inputs of the training set and W = (w0,w1, . . . ,wk) are the autoregres sive coefficients. Let 

Y ¼ ðy0; y1; . . . ; yT�1Þ
T
; ð19Þ

X ¼ ðX0;X1; . . . ;XT�1ÞT : ð20Þ

Then the sum of squared errors (SSE) is the cost function given by:

E ¼
XT�1

t¼0

yt � XT
t �W

� �2
¼ kY � XT Wk2

: ð21Þ

Usually, the famous Least Square (LS) method can be used to solve the following optimization problem:

minimize : kY � XT Wk2
: ð22Þ

The coefficient vector W in Eq. (22) can be found by:

W ¼ ðXT XÞ�1XT Y ¼ ðXT XÞ�1XT Y : ð23Þ

1 We have W = (XTsPX)�1XTsPY = (XTPX)�1XTPY for Eq. (26) in RB-AR model, where s ¼
PT�1

s¼0
1

ðT�sÞkþ1.
2 In FNN model, we can combi ne s with the learning rate g, i.e., let g1 = gs.
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Therefore, the output y�T can be written as:

y�T ¼ XT �W: ð24Þ

3.2. Recentness biased autoregressive process (RB-AR)

In this subsectio n, a recentness biased model is implemented by using the AR process described above. The recent- 
ness biased learning model reflects the importance of the recent samples in the training set. As each training sample in
the training set will take a different prior probability, the more recent samples in the training set will be assigned the 
greater weights than the older samples. So, we aim to find an optimal W to minimize the following revised cost 
function:

E ¼
XT�1

t¼0

pt yt � XT
t �W

� �2
¼
XT�1

t¼0

ffiffiffiffiffi
pt
p

yt �
ffiffiffiffiffi
pt
p

XT
t �W

� �2
¼ kDY � DXT Wk2

; ð25Þ

where D is a diagonal matrix, i.e., D ¼ diag
ffiffiffiffiffi
p0
p

;
ffiffiffiffiffi
p1
p

; . . . ;
ffiffiffiffiffiffiffiffiffiffi
pT�1
p� 	

. The coefficient vector W is obtained by:

W ¼ XT D2X
� ��1

XT D2Y ¼ ðXT PXÞ�1XT PY ; ð26Þ

where P is also a diagonal matrix, i.e.,

P ¼ D2 ¼ diagfp0;p1; . . . ; pT�1g ¼ diag
1

Tkþ 1
;

1
ðT � 1Þkþ 1

; . . . ;
1

1kþ 1


 �
: ð27Þ

If k = 0, then P = diag{1,1, . . . ,1}. In this case, P degenerates to an identity matrix, and the RB-AR model is reduced to a
traditional AR model. Therefore, the traditional AR model is just a special case of our proposed RB-AR model.

In addition, a sliding window strategy can be also regarded as a special recentne ss biased learning model as the most re- 
cent samples in the training set have equal weights while other samples have zero weight.

4. Feed-forwar d neural network and its extension 

The most commonly-us ed neural network for forecasting is a multi-layer feed-forward neural network (FNN) which can 
be easily trained by a famous back-propagat ion algorithm. Consider a three-layer FNN that has k nodes in the input layer, l
nodes in the hidden layer and 1 node in the output layer. Mathematically , the basic structure of the FNN can be described by:

yt ¼
Xl

j¼1

v jf
Xk

i¼1

wijyt�i þ hj

 !
þ h0; ð28Þ

where fyt�ig
k
i¼1 are the inputs, yt is the output, and wij, vj, hj are the weights of the FNN. The function f is an activation function 

of the FNN.
The back-propagat ion (BP) algorithm is adopted to train the FNN because it is simple and efficient to impleme nt. Essen- 

tially, the BP algorithm is to minimize the following cost function:
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Fig. 1. Prior probability (pt) versus time t for different drift factors (k).
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E ¼ 1
T

XT�1

t¼0

e2
t ¼

1
T

XT�1

t¼0

yt � y�t
� �2

; ð29Þ

where yt is the actual output of the FNN and y�t is the target of the FNN.
The recentne ss biased learning model is easily implemented with the FNN trained by the BP algorithm. Similar to the RB- 

AR model, the recentne ss biased back-prop agation (RB-BP) algorithm is also able to assign the more recent samples in the 
training set with the greater weights. The cost function (29) can be rewritten as

E ¼ 1
2

XT�1

t¼0

pt yt � y�t
� �2 ¼ 1

2

XT�1

t¼0

1
ðT � tÞkþ 1

yt � y�t
� �2

: ð30Þ

According to the BP algorithm, let et ¼ yt � y�t , so the weight wij can be modified by:

Dwij ¼ �
1
2
g
@E
@wij

¼ �g
XT�1

t¼0

ptet
@yt

@wij
; ð31Þ

where g is the learning rate and 

@yt

@wij
¼
Xl

j¼1

v j
@f
@wij

: ð32Þ

In this paper, a logistic function is selected as the activation function, thus one has 

f ðzÞ ¼ 1
1þ expð�azÞ ; ð33Þ

where a is a parameter of the logistic function.
Since f0(z) = af(z)[1 � f(z)], one has 

Dwij ¼ �g
XT�1

t¼0

ptet

Xl

j¼1

v jaf ð1� f Þyt�i

" #
¼ �g

XT�1

t¼0

et

ðT � tÞkþ 1

Xl

j¼1

v jaf ð1� f Þyt�i

" #
: ð34Þ

According to Eq. (17), if k = 0, pt = 1, then the RB-BP algorithm degenerates to the traditional BP algorithm, thus, Eq. (34)
becomes

Dwij ¼ �g
XT�1

t¼0

et

Xl

j¼1

v jaf ð1� f Þyt�i

" #
: ð35Þ

Similarly, the update formula for other weights can also be deduced like wij in Eq. (34). Due to a limited space, we do not 
give them here.

5. Experim ents and discussion 

Several experiments are conducte d to evaluate the proposed recentness biased learning strategy based on two databases:
(1) Monash database contains 4 time series data [12], which can be found at http://www- personal.buseco.monash.edu .au/ 
hyndman/for ecasting/gotod ata.htm . Two examples of the databases are shown in Fig. 2. (2) Stock database contains 93 time 
series data, each has 3000 stock prices of sequential time points, which can be found at http://ww w.pmel.noaa.gov/ tao/da- 
ta_deliv/.

5.1. Experimental setup 

For the AR model, we simply set k = 15 as in Eq. (18), which means each value is assumed to be a weighted sum of the 
latest 15 values. To test the FNN, the algorithm is kept as simple as possible by avoiding using momentum, weight decay,
structure-dep endent learning rate, extra padding around the inputs, and averaging instead of sub-sampling. We set k = 15
for the input layer, l = 7 for the hidden layer, g = 0.1 for the learning rate and a = 0.2 in Eq. (33). We use these values of
parameters for all experiments so that we can mainly focus on the drift factor k in the recentness biased strategy.

For the traditional model and the proposed recentness biased learning model, T = 1000 most recent samples are used for 
training. If there are less than 1000 previous samples, we use all the previous samples for training. If a sample has less than 
50 previous samples, then the sample will not be predicted.

Mean square error (MSE) is used as a performanc e criterion defined by:

MSE ¼ 1
N

XN

i¼1

yi � y0i
� �2

; ð36Þ
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where N is the number of test samples, yi is the value of the target and y0i is the actual output of the AR model or the FNN.

5.2. Selection of drift factor (k)

The proposed recentness biased learning model has a parameter k, but the value of k is not given in our model yet.
Thus, we designed an experiment to evaluate how k affects the accuracy of forecasting. Fig. 3 shows the relationship 
between mean square error (MSE) and drift factor (k) on the four data sets on the Monash data set. It turns out that 
the accuracy of forecasti ng on each of the four databases is improved by using a proper drift factor. On the other hand,
if the drift factor k is too large, the old samples are not sufficiently weighted, and the model suffers from an over-fitting
problem.

Therefore, our task is to select a proper paramete r k? It is impossible to give a fixed optimal value of k for all situations or
cases. However, we can give some suggestio ns here. In our experime nts, all the optimal k⁄ 2 [0.001,0.1]. Furthermore, the 
optimal k⁄ can be found by using cross-validati on strategy. While forecasting yT, we can select an optimal k⁄ to forecast 
the previous data yT�s (s = 1,2, . . .) which are already known. Furthermore, the optimal k⁄ for the previous data can also 
be found by searching in the interval [0.001,0.1] by a gradient descent method.

5.3. Comparisons on Monash database 

The wheat data include wheat prices, by pound, from year 1264 to 1996. The S&P data include Quarterly S&P 500 index 
from year 1900 to 1996. The Wage data include real daily wages in pounds in England from year 1260 to 1994. The milk data 
include monthly milk production per cow over 14 years.

We select an optimal k for each datum in our experiments . The comparison between the proposed recentne ss biased 
learning models and the traditional models are shown in Table 1. The RB-AR model is equivalent to traditional AR model 
and the RB-BP algorithm is also equivalent to traditional BP algorithm. When k > 0, the recentness biased learning models 
perform better than the traditional models on all the four data sets. On S& P data set, the RB-AR models obtain smaller 
MSE than the RB-BP models while the RB-BP models are better on the other three data sets.

It turns out from Eqs. (23) and (26) that the computational complexity of the recentness biased learning model is a little 
higher than the traditional model, but the difference is insignificant.

5.4. Comparisons on stock database 

The stock database is much larger than the Monash database. In the stock database, the first 20 time series data are used 
in our experiments. Each time series data has 3000 stock prices of sequential time points. The proposed recentness biased 
learning models are compare d with the traditional models and a sliding window model. Here we combine the sliding win- 
dow strategy with the AR model together as a SL-AR model in which 200 previous samples are used to predict the current 
sample. For the recentness biased learning models, an optimal k for each data set is selected. Other parameters in the AR and 
FNN models are also given in Section 5.1.

The experimental results are given in Table 2 from which the following conclusio ns can be drawn:
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Fig. 2. Samples of two data sets in Monash database.
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– The proposed recentness biased learning methods improve the accuracy of forecasting significantly.
– In some cases, the MSE of the RB-AR method is only 15% of the MSE of the correspondi ng AR method.
– In some cases, the SL-AR model has smaller MSE than the AR model but in other cases the AR model may have smaller 

MSE.
– The SL-AR model obtains better performance than the RB-AR model on three data sets, however , the RB-AR model is supe- 

rior on the remaining 17 data sets.
– In our experiments, the AR models obtain better performances than the FNN models in most cases.

5.5. Discussion 

Why does the recentne ss biased leaning method significantly improve the accuracy of forecasting? By assigning the older 
samples with smaller weights, the noise or interfere nce introduced by these old samples can be reduced. Furthermore,

Table 1
Comparisons of the mean square errors (MSE) on Monash database. The left column of ‘‘Ratio’’ is the ratio of the MSE of the RB-AR method to that of the AR
method.

Databases AR (k = 0) RB-AR (k > 0) Ratio BP (k = 0) RB-BP (k > 0) Ratio 

wheat 4592 4311 0.94 4318 4121 0.95 
S&P 2.98 ⁄10�3 2.67⁄10�3 0.90 0.034 0.030 0.88 
wages 155.3 148.3 0.95 31.9 28.2 0.88 
milk 303.4 296.7 0.98 915 736 0.80 

0 0.025 0.1
4250

4300

4350

4400

4450

4500

4550

4600

Drift Factor(λ)

M
ea

n 
Sq

ua
re

 E
rro

r(M
SE

)

0 0.061 0.1
2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05
x 10−3

Drift Factor(λ)

M
ea

n 
Sq

ua
re

 E
rro

r(M
SE

)

0 0.006 0.02
146

147

148

149

150

151

152

153

154

155

156

Drift Factor(λ)

M
ea

n 
Sq

ua
re

 E
rro

r(M
SE

)

0 0.008 0.02
296

297

298

299

300

301

302

303

Drift Factor(λ)

M
ea

n 
Sq

ua
re

 E
rro

r(M
SE

)

Fig. 3. Mean square error (MSE) versus different drift factors (k).
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including more samples in the training set will reduce the over-fitting risk. From Eq. (11), one can see that the sample 
weighting method is deduced from the ‘‘minimizing the risk’’ problem. In fact, it can be seen from Tables 1 and 2 that
the recentness biased learning model indeed improved the accuracy of forecasting. In some situations, the improvement 
is very significant.

The sliding window strategy can perform better in some cases by throwing out the old data. However, it performs worse 
in other cases probably due to the over-fitting problem.

In some cases, the BP models perform better than the AR models. But in most cases, the AR models do better than BP mod- 
els. This suggests that a special model is needed for a specific task. Also, it is better to choose a simple and reasonable model 
for a given task in a real-world application.

Fan [5] pointed out that using the additional old data does not always help produce a more accurate hypothesis than 
using the most recent data only. It will increase the accuracy only in some random situations. However , the experiments 
given in this paper show that the old data would help produce more accurate hypotheses, but the improvement is sometimes 
insignificant. Also, the recentness biased learning model improved the accuracy of forecasti ng statistical ly by using the pro- 
posed probabilistic model in Section 2. Therefore, even though the recentne ss biased learning model is not applicable in a
few cases, it is useful for most real-worl d problems of time series forecasting.

6. Conclusion 

In this paper, the probabilistic model of time series forecasti ng is constructed, from which a recentness biased learning 
model is deduced in an optimal way. The recentness biased learning model can be implemented by an autoregress ive process 
and the FNN. By utilizing more samples in the training set, the over-fitting risk is reduced greatly. By assigning the old sam- 
ples with smaller weights, noise probably introduced by the old samples is reduced. Therefore, the accuracy for time series 
forecasting is greatly increased.

One problem in the recentne ss biased learning model is how to select an appropriate drift factor in practice. Some sug- 
gestions are provided in this paper. The cross-validati on method might be a good approach to determine the k. Although a
reasonable and efficient recentness biased learning strategy is given in Section 2.3, it does not guarantee that the strategy is
optimal. Therefore, under different assumptions and conditions, different recentness biased models could be develope d
accordingly in practice.

In Section 2.2, we give the probabili stic model of time series forecasting that not only helps to overcome the problem of
concept drift but also helps to solve other problems in time series forecasting. For example, this model can help to solve sea- 
sonal time series forecasti ng. Our model provides a simple and important concept that a sample in the training set will take a
greater weight so long as it is more similar to the sample to be predicted.
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Table 2
Comparisons of the mean square errors (MSE) on the Stock databases. The left ‘‘Ratio’’ is the ratio of the MSE of the RB-AR method to the AR method.

Data MSE of AR (k = 0) MSE of SL-AR MSE of RB-AR Ratio MSE of BP MSE of RB-BP Ratio 

1 3.3597 4.0298 0.5258 0.16 5.6 5.1 0.91 
2 0.2826 0.4738 0.0743 0.26 0.22 0.19 0.86 
3 0.3282 1.1577 0.1999 0.61 0.4 0.36 0.9 
4 1.4454 3.9292 0.6065 0.42 1.37 1.26 0.92 
5 0.0521 0.0640 0.0252 0.48 0.04 0.034 0.85 
6 0.115 0.1659 0.0647 0.56 0.45 0.4 0.89 
7 0.0105 0.0131 0.006 0.57 0.069 0.062 0.90 
8 0.448 0.172 0.282 0.63 0.46 0.36 0.78 
9 0.8103 1.046 0.448 0.55 0.60 0.35 0.58 

10 8.0247 10.27 1.2127 0.15 6.72 6.16 0.92 
11 7.8592 5.0555 3.2254 0.41 12.2 10.4 0.85 
12 3.6413 2.3308 2.5313 0.70 7.15 5.76 0.81 
13 1.8625 1.1412 1.6121 0.87 9.44 8.76 0.93 
14 0.1858 0.1268 0.12 0.64 0.318 0.281 0.88 
15 0.1672 0.1034 0.0728 0.44 0.318 0.219 0.69 
16 1.1566 0.7835 0.4495 0.39 2.23 1.89 0.85 
17 0.4766 0.304 0.0921 0.19 0.316 0.281 0.89 
18 0.5169 0.5073 0.4662 0.90 0.865 0.626 0.72 
19 1.8775 1.1334 0.8993 0.48 1.43 1.31 0.92 
20 0.0281 0.0276 0.0162 0.58 0.0282 0.028 0.99 
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