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Abstract— In this paper, we give a comprehensive and
detailed introduction of the multi-target search problem in
swarm robotics. Based on some assumptions, we built the
idealized models of the basic search problem and three kinds
of environmental restrictions. In our previous works, we have
raised two searching strategies (GES and IGES) inspired from
firework explosion and three restriction-handling strategies,
and in this paper, we describe and analyze these strategies
systematically. A series of experiments were carried out, and
the results show that the strategies proposed work well on the
idealized models. And it’s valuable to note that, compared to
GES and RPSO, IGES was more efficient and showed greater
stability in searching process, greater adaptiveness in both
small and large scale problems and greater compatibility with
restriction-handling strategies.

I. INTRODUCTION

Swarm robotics has achieved great progress because of
the development of artificial intelligence [1]. Swarm robotics
can find its position in many applications, and it’s especially
suitable for tasks requiring large amounts of individuals, and
for operations difficult or dangerous for human beings, e.g.
foraging [2], surveillance [3], monitoring [4] and search-
and-rescue [5]. These applications can be abstracted as a
multi-target searching problem. Multi-target search in swarm
robotics is a process in which a swarm of robots try to find
and collect large amounts of targets distributed in the vast
unknown environment.

In search stage, robots can perceive vague information
about targets, such as the approximate distance between
targets and current position. The vague information can be
regard as fitness values, which have corresponding meanings
in physical world, such as Euclidean distance [6], olfac-
tion measurements [7] or chemical clues [8] and potential
functions [9]. These fitness values are continuous and such
problems can be solved with gradient decent methods [10]
or other local searching schemes [11]. However, hardware
designs in swarm robotics should be as simple as possible
which may leads to low quality on-board sensors and fault
sensing results and errors [12]. To make the problem more
realistic and challenging, discrete fitness values and various
environmental restrictions are introduced into the problem.

Thanks to the similarity in problem, many swarm intelli-
gence algorithms and their variants are used as the coopera-
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tive strategy of swarm robots, such as PSO [13], ACO [14]
and firework algorithm [15]. In this paper, we choose
three underlaying searching algorithms to cope with various
restriction-handling strategies. One algorithm is RPSO [16],
the other two algorithms are GES [17] and IGES [18],
proposed in our previous work, and our paper [19] proposed
strategies for avoiding decoys in the problem.

The problem of multi-target search in swarm robotics is
stated in Section II. And Section III introduces the environ-
mental restrictions to be tackled. Then Section IV presents
two searching strategies we proposed. And the strategies for
handling restrictions are introduced in Section V. Experi-
mental results and discussions are presented in Section VI.
Finally, Section VII concludes our paper.

II. PROBLEM STATEMENT

To define precisely the problem of multi-target search in
swarm robotics, we made some assumptions, on which we
constructed an model.

A. Assumptions

• Environment: a number of targets, a swarm of robots.
• Targets: remain stationary, can be removed from the

environment, may obey some distribution, generate
positive fitness values around them (the farther, the
smaller).

• Scopes of influence: each target has its own scope of
influence; may obey some distribution, the fitness value
of overlapped area is not less than that generated by
each target at that area.

• Robots: can be added into or removed from the envi-
ronment; have no prior knowledge of the number, the
distribution and the influence scopes of targets.

• Abilities of each robot: local perception, local interac-
tion, simple mobility (with a maximum speed limit),
simple decision-making capacity, limited memory.

• Three kinds of perception: fitness value perception,
object perception, target perception.

• Interaction: limited to a certain range; obtain fitness
values of neighbor robots.

• Robots swarm: no leader, no central control, no uniform
number, starts from one region; all robots have the same
hardware and software, and each robot makes decisions
according to obtained information and executes them
independently; cooperation of multiple robots can ac-
celerate the target collection.

• Iteration: each robot executes a series of actions at one
iteration; in order to exploit meticulously and avoid
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missing the optimum position, the difference of fitness
values in two adjacent iterations should be small.

• Evaluation criteria: time cost, performance under envi-
ronmental restrictions.

B. An Idealized Model

An idealized model of the multi-target search problem is
shown in Figure 1, which is described as following:

• Environment: abstracted to be a square (side length is
1000 units), holds m targets and n robots.

• Each robot: abstracted to be a square (side length is
1 unit), can memorize information of 10 iterations
(positions and fitness values); the resolution of fitness
value sensors is 1 unit; the ranges of object perception
and target perception are rounds.

• Each target: abstracted to be a round with radius of rt (5
units); robots in the round area will perceive the target;
the positions and fitness values are generated randomly
and fitness values range from Fmax − 2 to Fmax (20
units); Fmax is the range of fitness value sensors or the
maximum fitness value of targets.

• Scopes of influence: abstracted to be a series of annuli;
the fitness value and width of the innermost annulus is
the same as those of the corresponding target; the width
of the other annuli is 2rt, and the fitness values decrease
by 1 unit till 0 from the inside out; the fitness value
of overlapped area is the maximum value generated by
targets.

• Range of perception: the sensing range of fitness value
perception is limited to the current position of the robot;
the radius of object perception range is 4rt and the
radius of target perception range is rt.

• Interaction: the range of local interaction is a round and
the radius is 4rt.

• Maximum speed limit: set to be 2rt to ensure the
variance of fitness values in two iterations is less than
2 units.

• Linear acceleration of collection: it takes one robot 10
iterations to collect a target while 10 robots can collect
the target in one iteration.

• One problem that has not been considered here is avoid-
ing collisions of robots resulting from route intersection.

III. ENVIRONMENTAL RESTRICTIONS

In this section, three kinds of environmental restrictions
are introduced, which are obstacles, interferences and decoys.

A. Assumptions

• Obstacles: can be perceived, can’t be removed from the
environment, may obey some distribution, will damage
robots involved in collisions; the range of obstacle
perception is less than that of object perception.

• Interference sources: can’t be perceived, can’t be re-
moved from the environment, functionally can be re-
garded as targets with negative fitness value; the influ-
ence of overlapped areas is not less than that generated
by each interference source at that area; the fitness value

Fig. 1: A screenshot of the problem at the beginning of a
simulation. Red rounds stand for the targets. The background
color illustrates the fitness of that position. Robots are not
illustrated in this figure.

is 0 in areas where interference influence is not less than
fitness values.

• Decoys: can be perceived, can’t be removed, attract
robots and consuming their time or energy.

B. An Idealized Model

An idealized model of three environmental restrictions is
shown in Figure 2, which is described as following:

• Each obstacle: abstracted to be a square (side length
is 1 unit); positions are random; the range of obstacle
perception of robots is a round, and the radius is 2rt.

• Each interference source: abstracted to be a round with
radius of 2rt; the positions and interference values are
generated randomly, and interference values range from
−Fl to −2Fl; Fl (5 units) is the maximum influence
value of targets; scopes of interference are abstracted to
be a series of annuli, and the width of each annulus is
2rt; the influence of interference sources is obvious.

• Each decoy: abstracted to be a round with radius of
rt, can be regarded as a target which can’t be collect,
will not damage robots; the positions and fitness values
are generated randomly, and fitness values range from
Fmax − 3 to Fmax − 1.

IV. STRATEGIES FOR SEARCHING

In this section, the group explosion strategy (GES) and
improved group explosion strategy (IGES) designed for
searching multiple targets are explained in detail.

A. Group Explosion Strategy

1) Overview of Group Explosion Strategy: A flow chart
of GES is shown in Figure 3. In order to make full use
of the intra-group cooperation and inter-group parallelism, a
pre-defined threshold βG is applied to control the group size.

2) Group Search: When the size of group is within the
threshold βG, the strategy is used to move the group center
to the best position within the group.



(a) Problem with Obstacles (b) Problem with Interference sources (c) Problem with Decoys

Fig. 2: A screenshot of the searching problem at the beginning of a simulation. Red rounds stand for the targets, orange
rounds stand for interference sources and purple rounds strand for decoys. Black squares are obstacles. The background
color illustrates the fitness of that position. Robots are not illustrated.

Fig. 3: Flow chart of GES

3) Split Groups: When the group size exceeds the thresh-
old βG, the strategy is splitting the group into two smaller
ones. Robots with the best two fitness values, denoted as L1
and L2, repel each other away while each of the other robots
selects a leader to follow independently and randomly.

B. Improved Group Explosion Strategy

The GES shows some drawbacks in certain cases. Thus
IGES is proposed, with simpler strategy, fewer parameters
and better performance.

1) Shortcomings of Group Explosion Strategy: The basic
idea of intra-group cooperation in GES is that the group
moves the center towards the best individual of the group,
and if multiple robots shares the same fitness value, a random
one is picked, which may let robots get stuck or fall back to
places with worse fitness value in certain cases, such as the
three situations shown in Figure 4.

In Figure 4a, when only one robot is in the group, the robot
may bounce along the black line, since all the best positions
in history are in this line. In Figure 4b, when several robots
share the same fitness value, the group center may be a better
position, but the strategy will move the center towards a
robot. If the best robot selected is the bottom one, the whole
group moves away from the target. In Figure 4c, an infinite

(a) One robot (b) Robots with same fitness

(c) Infinite Loop between two states

Robot

Group Center

Fig. 4: Three situation which GES does not perform well.

loop may occur when the group consists of two robots with
different fitness values.

2) Improved Group Explosion Strategy: To solve the
problems mentioned above, we proposed four simple but
effective strategies which reflect the core ideas of the IGES.

• Strategy 1: This strategy is used for splitting groups
when the group size exceeds βG or members of the
group share the same fitness value. The robots in the
group are supposed to leave the group center.

• Strategy 2: This strategy is used for robots with different
fitness values. The strategy moves the group center
towards the center of best positions in the group.

• Strategy 3: This strategy is used when only one robot in
the group and the current position is the best in history.
And the strategy component equals current velocity.

• Strategy 4: This strategy is applied when there are better
fitness values in history. The robot will move towards



the center of best positions in history.
The velocity update equation for robot i is shown below:

Vi(t) = Si(t) +RC ∗Rp (1)

where Si(t) is the velocity update vector from the strategy
adopted, RC is a scaling factor shown in Table I and Rp is
a unit random vector.

A brief summery of the IGES is shown in Table I

TABLE I: Brief Summary of the IGES

Group Size Fitness Condition Strategy RC

≥ βG Different Fitness No. 1+2 1/10
∈ [2, βG) Different Fitness No. 2 1/10
≥ 2 Same Fitness No. 1 1/10

= 1
Best in history No. 3 0

Worse than last time No. 4 1
Better history in the earlier No. 4 1/10

It’s necessary to note that ”No.1+2” means the velocity
update vector is the sum of components of strategy 1 and
strategy 2. When the group size is 1, the last two situations
have the same strategy but different RC so as to avoid the
shortcoming shown in Figure 4c.

V. STRATEGIES FOR RESTRICTION-HANDLING

Three environmental restrictions are described precisely
in section III, and this section focuses on tackling two
restrictions: obstacles and decoys.

A. A Strategy for Obstacle-avoidance

In this paper, a simple avoiding scheme is applied for
GES, IGES and RPSO. The robot will check if it will run
into obstacles with the updated velocity Vt(i). If so, a small
repulsive force perpendicular to Vt(i) from the obstacle will
be added to avoid the collision.

B. Two Strategies for Decoy-Handling

In this section, two strategies are proposed, and the flow
charts are shown in Figure 5.

1) Cooperative Strategy: In this strategy, robots may stay
in one of the four states: search, beacon, cross and leave.
Generally, robots start running the searching algorithms in
the search state. Once a robot finds a decoy, it will go into
the beacon state. The beacon robot will stay still and give
out signals so that its neighbors can perceive the decoy. The
beacon robot will go into the leave state if all its neighbors
have got the signal or one of its neighbors has already been
a beacon.

• Leave States and Cross States: When a robot is in the
leave state, the fitness values perceived are decreasing.
Robots can go into the leave state from beacon states or
cross states. If robots come from the beacon state, they
will go into the leave state just by leaving the nearby
decoys in a random direction selected uniformly from
angle 0 to 2π. When a robot in the search state senses
the beacon signal, it will go into the cross state with
a possibility P . And in the cross state, the robot will

(a) Flow chart of the Cooperative Strategy

(b) Flow chart of the Non-Cooperative Strategy

Fig. 5: Flow charts of the two strategies. Green texts indicate
the behaviors of robots in current states, blue italic texts and
arrows indicate the conditions for state transitions.

try to cross the area around the decoy with the hope of
finding targets nearby.

• Direction Selection in Cross States: In the cross state,
the maximum distance between the robot and the decoy
is the radius of the interaction range, and the angle
from the selected direction to the line between the
robot and the decoy should be within the range of
[π/6, π/3]

⋃
[−π/3,−π/6]. The reason for choosing

π/3 and π/6 as the borders is that directions with angles
inside the range have the best efficiency for searching
the target in this area.

2) Non-Cooperative Strategy: In this strategy, if a robot
finds a decoy, it will go into the leave state and select a
random direction to move until the fitness value increases.
This strategy is used as the baseline for decoy avoiding.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, three kinds of experiments were carried
out, which are used for analyzing parameters, evaluating the
performances of searching strategies and testing the effects
of restriction-handling strategies respectively. In each test,
20 random maps are generated and each method is repeated
for 20 times. And the results in this section are the average
results of these 400 runs.

A. Underlying Algorithms

Three underlying algorithms are used in this paper: GES,
IGES and RPSO (Robotic Particle Swarm Optimization).
GES and IGES are described in section IV. In RPSO, each
robot acts as a particle of the PSO and the topology of
robots for calculating gbest is spacial-based, and in case of
robots’ vibrating in an area, a small random unit vector Rp

is introduced if both pbest and gbest are the current position.



B. Parameter Analysis

There are two parameters needed to be analyzed: one is
the threshold βG for controlling the group size in GES and
IGES, and the other one is in the cooperation strategy of
decoy avoidance, the possibility P with which robots in
search states go into cross states when they sense the beacon
signals.

1) The Threshold βG of Group Size in GES and IGES:
In GES, there are three parameters to be optimized: βG, βS
and βR, and they are 6, 0.27, 0.88 respectively when the
algorithm is the most efficient in our experiments. In IGES,
the threshold βG is the only parameter needed to be tuned,
which plays the same role as that in GES. The number of
robots and targets are all 30, and the βG is within the range
of [4, 30]. The evaluation criterion is the iterations when the
swarm find and collect all the targets, as is shown in Figure 6.
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Fig. 6: Parameter analysis result of βG in IGES.

As is shown, the optimal range of βG in IGES is similar
to that in GES (around 6).

2) The Possibility P of Turning into Cross States: A larger
P makes the robot turn into cross states more easily and
the robot will spend more time searching for targets nearby
the decoy. However, a robot in cross states may miss the
targets which are close enough to the decoy, and this situation
will be eased if a smaller P is adopted. The parameter is
tuned in a fixed environment with 50 robots and 20 targets
mixed with 80 decoys. The value of P is selected from
the range [0, 1] with a step size of 0.1. According to our
experiments, the iterations are not sensitive to P and the
optimal value is around 0.8 while the times of decoy visits
are influenced greatly by P . A larger P is surely effective
on decoy avoidance.

C. Experiments on Searching Strategies

One criterion for measuring the efficiency of searching
algorithms, is the iterations needed to collect a certain
proportion of targets. Another criterion is the total moving
distance of all robots in simulation, which represents part of
energy consumption. The last criterion is the average CPU
time for updating velocities of all robots per iteration, which
is also an important cause of energy consumption.

In our experiments, the numbers of targets and robots are
both 10, 30 and 50 respectively, and the proportions of targets
adopted are 50% and 100%. According to our experimental
results, the IGES dominates in all three criteria. As to the
iterations, the GES performs better than the RPSO, which

indicates the effectiveness of explosion scheme. And the total
distance of RPSO is a little shorter than that of GES. The
IGES has the shortest CPU time among three algorithms,
10 − 30% and 25 − 50% quicker than RPSO and GES
respectively.

To study the performance of three algorithms in more
detail, we carried out a series of scalability experiments. The
IGES shows great advantage in iterations, and it only need
50−60% and 45−70% of iterations needed by the RPSO and
GES. The GES performs better than RPSO in most cases.

D. Experiments on Problem with Environmental Restrictions

In order to study the effect of restriction-handling s-
trategies and the anti-jamming performance of searching
algorithms, we did a series of experiments.

1) Obstacle Avoidance: The range of obstacle perception
of robots is a round, and the radius is 2rt, and robots involved
in collisions will be removed from the environment. The
number of targets and the population are both 30, and the
number of obstacles varies from 0 to 500 with step size
of 50. The results of three searching algorithms with the
strategy for avoiding obstacles are shown in Figure 7. The
iterations can be used to analyze the influence of obstacles on
algorithms. And another criterion, the number of remaining
robots, is introduced to measure the performance of obstacle
avoidance, which is better when larger.
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Fig. 7: Results in obstructive environment.

The IGES are better than the other two algorithms on both
measures. In the sub-figure of iterations, the waves of the
RPSO curve are much bigger than that of GES curve or IGES
curve, which means the GES and IGES are more suitable for
environment with obstacles. As to the number of remaining
robots, the performance of GES and IGES is also better than
RPSO.

2) Anti-jamming Performance: The robots can’t perceive
the interference sources, so it’s hard to propose strategies
for tackling them. According to our experiments, the IGES
shows greater adaptability to interference than comparison
algorithms. With the increase in the number of robots and
targets, the advantage of IGES is getting more obvious,
which indicates the cooperation strategy of IGES performs
well in different scales of problems. The interference brings
little influence on the performance of IGES (less than 10%).



However, the interference gives a 30% boost in iterations of
GES while the change in RPSO is over 50%. The interference
sources introduced make the environment more complicated,
and the results visually present the adaptability of algorithms
to interference, i.e. the GES and IGES are better than RPSO
obviously.

3) Decoy Avoidance: In the model stated above, the decoy
will not harm the robots, but it may increase the time
cost. The experiments on two strategies combined with three
algorithms were carried out in the same environment as basic
setup except that various numbers of decoys are selected
from 0 to 200.

According to our experimental results, the iterations of
cooperative strategy is about 5% − 10% better than that of
non-cooperative strategy in three algorithms. Meanwhile, the
cooperative strategy shows great performance on the criterion
of decoy visit, and the advantage can reach 15 − 25% for
GES and 20−30% for RPSO. The cooperative strategy shows
better performance yet share almost the same CPU time with
the non-cooperative strategy.

In order to study the adaptiveness of the strategies, a series
of scalability experiments were carried out. And the overall
advantages of cooperative strategy in iteration and decoy
visit are quite similar to that in previous experiments. The
advantage in decoy visit is much more obvious than that
of iteration. When there is more targets or less decoys, the
advantage is not obvious, as the definition of cooperative
strategy shows that it requires lots of decoys to take effect.

VII. CONCLUSIONS

In this paper, we try to give a comprehensive and detained
introduction of the multi-target search problem in swarm
robotics. In order to promote the study of this problem,
we built some idealized models to describe the problem
and environmental restrictions more precisely, and brought
forward some criteria to evaluate the performance.

In accordance with the basic multi-target search problem,
we compared three different searching strategies (GES, IGES
and RPSO) in different scales and analyzed their perfor-
mance. The results show that the IGES is more effective
and adaptive than GES and RPSO, which also show the
advantage of the explosion scheme.

As to the environmental restrictions, through various scales
of experiments with different restrictions, we investigated the
performance of three restriction-handling strategies, the anti-
jamming performance and extensibility (compatibility with
other strategies) of three searching algorithms. And on all
measures, the IGES performs better than GES and RPSO,
because it makes full use of the intra-group cooperation and
the independence of individuals.

As for future work, we plan to improve the searching
strategy with more complex yet effective schemes. We also
plan to introduce more types of objects that make the model
more realistic, such as decoys harmful for robots. And it’s
also a great challenge to build a mathematical model for
the multi-target search problem, which may lead to more
rigorous and beautiful theories.
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