
Improve Enhanced Fireworks Algorithm with Differential Mutation

Chao Yu, Junzhi Li, and Ying Tan

Abstract— Fireworks algorithm (FWA) is a newly proposed
swarm intelligence algorithm, which is used to solve optimiza-
tion problems. However, the interaction of fireworks in FWA is
not sufficient. In this paper, the differential mutation operator is
introduced to improve the interaction mechanism of enhanced
FWA (EFWA), which is the latest version of FWA. Extensive
experiments on 30 benchmark functions were conducted to
test the performance of the new algorithm named enhanced
fireworks algorithm with differential mutation (FWA-DM).
Experimental results have shown that differential mutation
operator is able to improve EFWA.

I. INTRODUCTION

In the past two decades, swarm intelligence had become
a research trend. Many scholars studied swarm intelligence
and proposed useful algorithms to solve real world problems.
Dorigo, et al. observed the way ants searched for food
and presented ant colony optimization (ACO) in 1991 [1].
Kennedy and Eberhart were inspired by flocking birds and
put forth a particle swarm optimization (PSO) algorithm in
1995 [2]. In the same year, Storn and Price presented a
simple and effective algorithm named differential evolution
(DE) to deal with optimization problems [3]. The recently
announced swarm intelligence algorithm, artificial bee colony
algorithm (ABC) was proposed in 2008 [4]. In 2010, Tan
and Zhu perpetuated the fireworks algorithm [5], which
simulates groupings of sparks formed by fireworks exploding
in the night sky, to find global optimum of functions. Each
firework can then affect other fireworks, similar to a group
of individuals acting and reacting to their surroundings
accordingly. The explosion phenomena can be treated as a
strategy for expanding across the adjacent area much like a
group of individuals who populate a new location. As more
fireworks explode, the algorithm will search the solution
space in a defined structure and the optimal solution will
gradually be formulated. Conventional fireworks algorithm
has been applied to many fields, such as non-positive matrix
factorization [6]–[8] and digital filters [9]. However, the
conventional fireworks algorithm is not perfect and can be
further improved. In 2013, Zheng, et al. put forward an
enhanced fireworks algorithm to deal with the shortcomings
of conventional fireworks algorithm [10]. Many scholars have
studied FWA and made improvements, as in [?], [11]–[15].
Of all the published papers which were concerned with
improvements of single objective fireworks algorithm, EFWA
performed the best.

All the authors are with the Key Laboratory of Machine Percep-
tion and Intelligence (Peking University), Ministry of Education, Depart-
ment of Machine Intelligence, School of Electronics Engineering and
Computer Science, Peking University, Beijing, China (e-mail:chaoyu, ljz,
ytan@pku.edu.cn). Ying Tan is the corresponding author.

This work was supported by the Natural Science Foundation of China
with grant no. 61375119, 61170057 and 60875080.

However, EFWA has its own disadvantage. The interaction
mechanism in EFWA is not sufficient whereas the interaction
is vital in swarm intelligence algorithms. As a result, the
performance of EFWA can be further improved by increas-
ing the individuals’ interaction within a population. Hence,
differential mutation (DM) operator is introduced to enhance
the interaction in EFWA and thus improve the performance
of EFWA.

Section II introduces the enhanced fireworks algorithm,
while Section III analyzes the interaction mechanism in
EFWA. Section IV demonstrates the details of the new
algorithm FWA-DM. Section V lists experimental design,
experimental results and discussion. Lastly, the conclusions
are presented in section VI.

II. ENHANCED FIREWORKS ALGORITHM

EFWA is a swarm intelligence algorithm and adopts four
parts to solve optimization problems. The first part is the ex-
plosion operator. Suppose the population of EFWA consists
of N D-dimensional vectors as individuals, each individual
‘explodes’ according to explosion operator and generates
sparks around it. The second part is the mutation operator.
Sparks are generated under the effect of this operator in order
to improve the diversity of the population. The third part,
namely as the mapping rule, is used to map the sparks that
are out of the feasible space into it. By applying this rule,
the sparks are pulled back to feasible space. The last part is
called as selection strategy. The individuals are selected from
the whole population and pass down to next generation.

The details of EFWA are described as follows.

A. Explosion Operator

As the core operator in EFWA, explosion operator pro-
vides the basic way of fireworks explosion. Each of the
N individuals in the population explodes and a shower of
sparks surround them. Therefore, the number of sparks and
the amplitude for each individual need to determined.

Assume the number of sparks is stated as Si.

Si = Ŝ ∗ Ymax − f(xi) + ε
N∑
i=1

(Ymax − f(xi)) + ε

(1)

In the formula, Ŝ is set as a constant and Ymax means the
fitness value of the worst individual among the N individuals.
f(xi) represents the fitness for an individual xi, while the
last parameter ε is used to prevent the denominator from
becoming zero.
Ai denotes the amplitude of each individual.

2014 IEEE International Conference on Systems, Man, and Cybernetics
October 5-8, 2014, San Diego, CA, USA

978-1-4799-3840-7/14/$31.00 ©2014 IEEE 270

Ai = Â ∗ f(xi)− Ymin + ε
N∑
i=1

(f(xi)− Ymin) + ε

(2)

In the formula, Â is a constant relevant to amplitude, while
Ymin means the fitness value of the best individual among
the N individuals. The meaning of f(xi) and parameter ε
are the same as aforementioned.

In the explosion, the amplitude might be too small, which
leads to useless explosion since the new generated firework
sparks are close and similar. Therefore, a new parameter
Amin which prevents the amplitudes from being too small
is proposed. There are two ways to calculate the parameter
Amin, as linear and non-linear decrease, respectively. The
value of Amin decreasing while the generation increasing.

(Linear)Amin = Ainit− (Ainit−Afinal)∗Iter/MaxEval
(3)

(Non− linear)Amin = Ainit − (Ainit −Afinal)

∗
√
(2 ∗MaxEval − Iter) ∗ Iter/MaxEval

(4)

In both formulae, Ainit and Afinal are constants, rep-
resenting the initial and final amplitudes of the explosions.
Parameter Iter stands for the number of iterations so far and
parameter MaxEval is the maximum function evaluation
times. From the empirical experiments in EFWA, Amin with
the way of non-linear decreasing works better on most test
functions. As a result, the non-linear decreasing way is used
in this paper.

B. Mutation Operator

To keep the diversity of the populations, mutation oper-
ator is used in EFWA. Sparks explode around the selected
individual and obey the Gaussian distribution.

xi = xi + (xB − xi) ∗Gaussian(0, 1) (5)

Parameter xi stands for an individual and Gaussian(0, 1)
means a normalized distribution with mean value 0 and
standard deviation 1.

In both explosion and mutation operators, there is no
guarantee that the generated sparks lie in the feasible space.
To solve the problem, the mapping rule is introduced.

C. Mapping Rule

In conventional fireworks algorithm, the mapping rule
trends to draw a spark that is out of boundary back to original
point. Thus, a new mapping rule is proposed in EFWA. Once
a spark flies out of the boundary, the spark becomes illegal
and a random spark will generate to replace it. In this way,
the diversity of the population is improved. Moreover, the
running time of EFWA is reduced as no need to calculate
the position of the new spark by any formula.

D. Selection Strategy

The selection strategy in EFWA is called as elite random
selection. The best individual is always kept for next genera-
tion and the other (N−1) individuals are selected randomly.

There are both advantages and disadvantages for the selec-
tion strategy. By selecting the other individuals randomly, the
running time for the algorithm is greatly reduced compared
with conventional fireworks algorithm, as it is unnecessary
to calculate the distance between each individual or sort
the individuals by their fitness values. However, since the
sparks are distributed in several clusters and the selection
strategy is random selection, there is chance for the selected
individuals fall into a same cluster. In fact, in the elite random
selection, the sparks in the best cluster have more chance to
be selected, since at least one spark is selected from the best
cluster before the other sparks are selected randomly. If the
selected sparks fall into the same cluster, the diversity of the
population may loss.

EFWA provides a new way to solve complex optimization
problems and is easy to implement. As a matter of fact, it
is the best fireworks algorithm published so far. However,
EFWA can do better if it has sufficient interaction mecha-
nism.

III. THE INTERACTION MECHANISM IN EFWA
Interaction mechanism is important for EFWA. The in-

dividuals in a population of EFWA exchange information
and hence better finding the global optimum. In addition,
the diversity of a population is enhanced by exchanging
information among the individuals. However, the interaction
mechanism of EFWA is not sufficient in the following two
parts.

A. Interaction in Explosion Operator

To obtain the number of sparks, the fitness value of the
worst firework is used at first. Then the fitness values of each
firework are used to calculate the differences between the
fitness values of the worst firework and the current firework.
The sum of the differences is also needed to calculate the
number of sparks. As a result, the number of sparks is
determined by each firework in the population.

The fitness value of the best firework is take into con-
sideration to determine the amplitude of each spark. The
differences of the fitness values between the best firework
and the current firework are obtained and the sum of the dif-
ferences is used. Therefore, the amplitude for each firework
is calculated and affected by each firework.

However, the interaction of fireworks is not sufficient when
obtaining the number and amplitude of the fireworks. For any
sparks, the information provided by the fireworks has little
effect. As it can be seen from equations (1) and (2), the
number and amplitude of a spark can easily be polarized. In
other words, the best firework will generate overwhelming
number of sparks, while the other fireworks can hardly
produce any sparks.

Fig. 1 (a) represents the number of the sparks and Fig.
1 (b) shows the amplitude of the explosions when EFWA

271

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

(a) The number of sparks

Fr
eq

ue
nc

y

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

4000

4500

(b) The amplitude of explosions

Fr
eq

ue
nc

y

Fig. 1. The statistical of sparks on Sphere function within 100,000
evaluations.

evaluating function (titled: ‘Sphere’) is run for 100,000
times. Since each calculation of the numbers and amplitudes
are followed by several function evaluations, the sum of
the frequency for both numbers and amplitudes cycles are
less than 100,000. Both the number of the sparks and the
amplitude of the explosions are polarized.

To overcome the shortcomings of explosion operator, the
number of sparks and the amplitude of explosion are not
used in this way. The improvements will be given in section
IV, part D.

B. Interaction in Mutation Operator

Gaussian mutation (GM) operator is used in EFWA. The
information of the fireworks is used to generate new sparks
that follow the Gaussian distribution. However, GM works
poor in EFWA. In one hand, GM only effects the fireworks,
ignoring the sparks that are generated by the explosion
operator and thus narrowing the interaction between the
sparks. On the other hand, the sparks that are generated
by GM can hardly be passed down to next generation. In
addition, when a spark is generated by GM, it can close to
the selected firework, or close to the best firework, or distance
to both of them but on the line between the selected firework

and the best firework. If the spark is close to any fireworks, it
is similar to that firework. If not, the spark can be treated as
generated by an explosion with a large amplitude, which is
always a bad spark. Hence, the mutation operator is unable
to provide much interaction between the fireworks.

IV. EFWA WITH DIFFERENTIAL MUTATION

The interaction mechanism in EFWA is not sufficient, but
the DM operator can compensate this disadvantage. The main
idea of DM operator is to find the solution of a problem
by utilizing the difference between individuals. In this way,
the individuals in a population communicate with each other
and help to find the solution, improving the interaction in an
algorithm. Therefore, the idea of differential mutation can
be introduced into the EFWA to help with increasing the
information exchange of the individuals as well.

A. Differential Mutation Operator

Operator: DM/best/1/exp. In this operator, DM means the
differential mutation operator and the word best indicates that
the best one is kept for the mutation. Number one means the
number of difference vectors used and the abbreviation ’exp’
stands for an exponent recombination. The formula for this
operator is as follow.

Xk
i1 = Xk

B + F ∗ (Xk
i2 −Xk

i3) (6)

In the formula, Xk
i1 means the k dimension of the target

individual and F is the scale factor generally between 0
and 2 (Storn and Price, 1995). Xk

B is the k dimension
of the current best individual, while Xk

i2 and Xk
i2 are two

distinguish random individuals on their k dimensions.

B. The interaction mechanism in DM

First, the DM operator uses the information from the best
individual. Therefore, the best information is spread among
future individuals. Second, the other two distinguished in-
dividuals are chosen and the information of the difference
between the two individuals are also used. Third, the two
individuals are selected randomly, letting all individuals in
a population get the chance to be selected and an equal
opportunity for its information to be used. Due to DM, the
information of any population is fully utilized.

C. The comparison between GM and DM

In EFWA, the GM operator is adopted to generate sparks.
The sparks are calculated according with Xk

i = Xk
i +

(Xk
B − Xk

i) ∗ e, where Xi is the current firework, XB

is the current best firework, k stands for dimension and
e = Gaussian(0, 1). The left part of Fig.2 shows how the
sparks are generated by the GM operator. The sparks are
distributed in a line across the best firework and the selected
firework, utilizing the information of the best firework to
improve the current firework.

The right part of Fig.2 represents the way of generating
sparks by the DM operator. The sparks are calculated as
Xk

i1 = Xk
B + F ∗ (Xk

i2 − Xk
i3), where Xi1, Xi2 and Xi3

are distinguish fireworks and XB is the best firework. F is

272

a scale factor and k stands for dimension. The best firework
searches the space by adding a distance that is the difference
between the selected fireworks NO.1 and NO.2. Since the
fireworks are selected randomly, each firework has an equal
chance to donate its information. In this way, the information
of all the fireworks is used to help the best firework finding
the optimum. Hence, DM operator is better than GM operator
when utilizing the information and keeping the diversity of
the population.

Fig. 2. The difference between GM and DM.

D. Apply DM to EFWA

After introduced EFWA in section II and DM in section IV,
it is important to apply DM to EFWA and thus compensate
the shortcomings of EFWA.

N denotes the number of individuals in a population
for EFWA, which does not change during the optimization
process. At first, N individuals are selected randomly and
should lie in the feasible space. The N individuals form a
population and the population is marked as POP1. Next, for
each individual, a spark is produced around it within a certain
amplitude.

A = Amin ∗ rand(0, 1) (7)

In the formula, A means the amplitude of each firework,
while Amin decreases with the way of non-linear. rand(0, 1)
generates random number from 0 to 1.

Then, each new generated spark is compared with its
corresponding individual. The one with a better fitness value
is kept and used to form a new population with N individuals
marked as POP2. Finally, the DM operator is applied to
POP2 and a new population is generated as POP3.

To select the individuals for next generation and continue
the evolutionary process, the individuals in population POP3
are compared with individuals at the correspondence places
in population POP2. The better ones are selected and passed
down to the next generation, forming a new population
POP1. The iteration of FWA-DM continues till the terminate
condition is met.

The process of applying DM to EFWA is drawn in Fig.3.
The first row represents population POP1 with N individuals.
The second row shows the generated explosion sparks after
applying EFWA to POP1. After comparing the sparks in the
first row with explosion sparks in the second row, better
sparks are chosen and displayed in the third row. Then DM

Fig. 3. The process of applying DM to EFWA.

operator is used and population POP3 is produced. The better
individuals between population POP2 and POP3 are selected
for next iteration as a new population POP1. It is obvious that
since DM is introduced, the communication of individuals
is enhanced. As a result, the diversity of the population
is guaranteed. In summary, the Algorithm for FWA-DM is
given below.

Algorithm 1 The process of FWA-DM
1: randomly generate N individuals as POP1
2: while FuncEval ≤ MaxEval do
3: generate N sparks from POP1 as explosion sparks
4: choose better individuals as POP2
5: apply DM operator and generate POP3
6: choose better individuals between POP2 and POP3 as

a new POP1
7: end while

In Algorithm 1, MaxEval stands for the maximum func-
tion evaluation times. Parameter FuncEval represents the
current function evaluation times. It can be seen from Algo-
rithm 1 that FWA-DM is simple. Hence, the new algorithm
is easy to implement.

V. EXPERIMENTS AND DISCUSSION

To test the performance of the new algorithm, experimental
environment is given, extensive experiments are conducted
and the experimental results are discussed.

A. Design of Experiments

To make the experimental results more convincing, 30
standard benchmark functions are chosen from the competi-
tion of CEC 2014 [16] to verify the effectiveness of FWA-
DM. Also, the latest version of SPSO is used as a baseline
[17].

EFWA and FWA-DM were wrote in C language, while
SPSO2011 was wrote in Matlab language. The experimental
platform are Visual Studio 2012 and Matlab R2013b. All the
programs are running on 64-bit Window 8 operating system
with an Intel Core E8400 with 3.00GHz and 6GB RAM.
Each experiment runs 51 times and during each run, the
fitness functions are evaluated 300,000 times for SPSO2011
and FWA-DM and just over 300,000 times for EFWA,
according to the rules in [16]. The function evaluation times

273

for EFWA cannot be equal to 300,000 because the number
of sparks is not fixed in each generation. Therefore, once the
number of function evaluations exceeds 300,000 at the end
of a generation, there will be no more generations.

The parameters for FWA-DM are setting as follows. Pa-
rameters Ainit and Afinal are set as 20 and 0.001, while the
population size is set as 5 times of the dimension and the
parameters F and CR are set as 0.5 and 0.9, respectively,
as in [3]. The dimension in the experiments is set as 30 for
all functions. The parameters for EFWA and SPSO2011 are
all set as their default settings.

The way to calculate algorithm complexity is according
with [16] and describes as follows.

a) Run the test program below:

for i = 1:1000000
x = 0.55 + (double)i;
x = x + x; x = x / 2; x = x * x; x = sqrt(x);
x = log(x); x = exp(x); x = x / (x + 2);

end

The computing time is set as T0;
b) Evaluate function 18 without an algorithm for 200,000

times and mark the time as T1;
c) Use an algorithm to evaluate function 18 for 200,000

times and mark the time as T2;
d) Run step c) for five times and T̂2 denotes the average

time.
The complexity of an algorithm is indicated by (T̂2 - T1)

/ T0;

B. Experimental Results

The mean and standard deviation for the algorithms on
30 functions are given in Table I. The best result for each
function is shown in bold. The last row means the experiment
results of three algorithms. Sign + stands for the number of
functions which an algorithm performs the best, while sign -
means the number of functions that the algorithm is not the
best.

Table II gives the t-test results for FWA-DM versus EFWA.
T-test is used to discriminate whether the two sets are
significantly different from each other when the two sets
follow a normal distribution. The null hypothesis is that the
two sets are the same from each other when follow a normal
distribution. Then a p-value is calculated and shown in Table
II. The null hypothesis is rejected if the p-value is lower than
a threshold. The threshold chosen for statistical significance
is 0.05. As a result, the bold numbers in Table II mean that
the experimental results of new algorithms are significantly
better than EFWA.

The computational complexity of the algorithms is given
in Table III.

C. Discussion

The selected benchmark functions contain unimodal, mul-
timodal, hybrid and composition functions. Therefore, the
experimental results are objective and do not skew to any
kind of benchmark functions.

TABLE II
T-TEST RESULTS FOR FWA-DM VERSUS EFWA ON 30 BENCHMARK

FUNCTIONS

NO. FWA-DM NO. FWA-DM
1 0.0000000929 16 0
2 0 17 0
3 0 18 0.0000000002
4 0 19 0.0006685466
5 0 20 0
6 0 21 0
7 0.0151942843 22 0
8 0 23 0
9 0 24 0.0000000064
10 0 25 0
11 0 26 0.0076079049
12 0.0000000018 27 0
13 0 28 0
14 0.0424872565 29 0.0000023067
15 0 30 0

TABLE III
TIME COMPLEXITY OF THE THREE ALGORITHMS

EFWA FWA-DM
T0 0.097 0.097
T1 1.591 1.591
T̂2 2.1778 3.7782

(T̂2-T1)/T0 6.049485 22.54845

It can be seen from the mean values that FWA-DM
performs the best. For the 30 functions, FWA-DM performs
best on 23 functions. After applying DM operator to EFWA,
the performance of the new algorithm FWA-DM improved.
When comparing FWA-DM with EFWA and SPSO2011
separately, FWA-DM defeats EFWA on 27 functions and
outperforms SPSO2011 on 25 functions. The t-test results
show that the better results of FWA-DM are significantly
different from the results of EFWA.

However, the running times for the three algorithms cannot
be compared, as the algorithms are not running with the
same language. But the computational complexity can be
compared. It can be seen that the computational complexity
of FWA-DM is similar with FWA.

From the convergence curves, it can be seen that EFWA
convergences quicker than the other algorithms on only 2
functions and FWA-DM defeats the other algorithms on 17
functions. Therefore, FWA-DM convergences very quickly
and is able to find better solutions in feasible space. By
applying the DM operator to EFWA, the new algorithm
achieves much better on benchmark functions with compu-
tational complexity similar to EFWA.

VI. CONCLUSIONS

DM operator was introduced to improve the performance
of EFWA, which was the best fireworks algorithm published
so far. The new algorithm named FWA-DM outperformed
EFWA on most functions. FWA-DM provided a brand new
way to solve function optimization problems. Experimental
results on 30 benchmark functions of CEC 2014 proved that
FWA-DM could solve many function optimization problems

274

TABLE I
MEANS AND STANDARD DEVIATION OF THREE ALGORITHMS

Function NO. EFWA FWA-DM SPSO2011
1 6.590564117e+005(2.624037120e+005) 3.793203067e+005(2.202342113e+005) 2.737560700e+005(1.125073475e+005)
2 1.868574831e+004(9.784967004e+003) 7.526010749e-017(1.541127529e-016) 9.579735978e+003(6.065698971e+003)
3 1.945009593e-001(1.095034039e-001) 3.927807415e-016(5.474012943e-016) 4.019159568e+003(1.357287539e+003)
4 5.796178581e+001(3.038229108e+001) 1.977635781e+001(1.400829774e+001) 2.608423676e+001(3.901368080e+001)
5 2.000002158e+001(8.155149242e-006) 2.055422287e+001(4.578315564e-002) 2.068163978e+001(1.066970080e-001)
6 3.700792250e+001(3.373283698e+000) 1.309931690e+001(5.083891761e+000) 1.236312207e+001(2.676969612e+000)
7 1.678555789e-002(2.192370498e-002) 8.450100065e-003(8.854007130e-003) 9.261812314e-003(1.235762978e-002)
8 2.247331504e+002(4.326519626e+001) 1.365667057e-001(3.950259268e-001) 5.086607469e+001(1.743150326e+001)
9 4.160323778e+002(8.035818516e+001) 4.207809461e+001(6.467525810e+000) 4.993291136e+001(1.168056952e+001)

10 1.308465212e+003(4.385391599e+002) 1.710415369e+001(4.497146171e+000) 2.953981277e+003(6.156040662e+002)
11 4.345088333e+003(5.199235800e+002) 2.484430278e+003(3.145416563e+002) 3.477008186e+003(5.797380597e+002)
12 3.774070492e-001(1.897832294e-001) 5.901572072e-001(1.164365705e-001) 1.413664305e+000(3.171655824e-001)
13 5.325835951e-001(1.047093864e-001) 3.403325614e-001(5.149146350e-002) 2.069957129e-001(3.954360096e-002)
14 2.459293029e-001(4.892486060e-002) 2.645424312e-001(4.129537169e-002) 2.117601654e-001(3.684560643e-002)
15 2.672492717e+001(7.168595705e+000) 8.388664834e+000(8.986544742e-001) 8.699160153e+000(3.406189454e+000)
16 1.321105867e+001(3.186589268e-001) 1.101664329e+001(3.091815462e-001) 1.098119576e+001(7.522169675e-001)
17 4.831268324e+004(2.785520740e+004) 1.044383444e+004(1.590957303e+004) 2.203756781e+004(1.542807708e+004)
18 8.218886367e+003(7.219891022e+003) 7.323271041e+001(3.427624162e+001) 1.771030243e+003(1.968208038e+003)
19 2.214596081e+001(2.344459161e+001) 1.007507018e+001(2.211424352e+000) 1.437701769e+001(2.164483115e+000)
20 3.515671014e+002(8.670052970e+001) 3.940122574e+001(2.125750166e+001) 8.448833903e+002(4.330910035e+002)
21 2.779738728e+004(1.513081973e+004) 1.626857725e+003(4.964980830e+003) 1.724438179e+004(9.939286743e+003)
22 6.156864411e+002(2.336785114e+002) 1.229373020e+002(6.707902254e+001) 2.438925571e+002(9.378050917e+001)
23 3.152441980e+002(7.781090161e-005) 3.140128864e+002(8.791743683e-014) 3.152489463e+002(8.522262075e-004)
24 2.544955227e+002(2.712396424e+001) 2.275619815e+002(5.544356207e+000) 2.333281159e+002(6.886763518e+000)
25 2.260048229e+002(1.070018094e+001) 2.005711369e+002(1.619895866e-001) 2.125671817e+002(2.283292420e+000)
26 1.258075881e+002(6.474927775e+001) 1.003362428e+002(5.048526362e-002) 1.158373307e+002(3.667114340e+001)
27 1.065977291e+003(4.997850261e+002) 3.991034349e+002(1.191595361e+001) 6.072160053e+002(1.006545625e+002)
28 3.508693257e+003(4.359844290e+002) 3.948886456e+002(1.331627806e+001) 1.011782719e+003(1.274191389e+002)
29 2.075360359e+007(2.750139861e+007) 2.085394766e+002(3.396449789e+000) 9.533548601e+005(3.831579048e+006)
30 4.052305573e+003(1.506881516e+003) 4.288160423e+002(2.179562019e+002) 5.367027370e+003(1.576129601e+003)

Results (2+,28-) (23+,7-) (5+,25-)

effectively. No matter for theoretical or practical researches,
FWA-DM is worth researching and can bring benefits on
both scientific and economic fields.

REFERENCES

[1] A. Colorni, M. Dorigo, V. Maniezzo, et al., “Distributed optimization
by ant colonies,” in Proceedings of the first European conference on
artificial life, vol. 142, pp. 134–142, Paris, France, 1991.

[2] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Micro Machine and Human Science, 1995. MHS’95.,
Proceedings of the Sixth International Symposium on, pp. 39–43,
IEEE, 1995.

[3] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[4] D. Karaboga and B. Basturk, “On the performance of artificial bee
colony (abc) algorithm,” Applied soft computing, vol. 8, no. 1, pp. 687–
697, 2008.

[5] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in Ad-
vances in Swarm Intelligence, pp. 355–364, Springer, 2010.

[6] A. Janecek and Y. Tan, “Swarm intelligence for non-negative matrix
factorization,” International Journal of Swarm Intelligence Research
(IJSIR), vol. 2, no. 4, pp. 12–34, 2011.

[7] A. Janecek and Y. Tan, “Using population based algorithms for
initializing nonnegative matrix factorization,” in Advances in Swarm
Intelligence, pp. 307–316, Springer, 2011.

[8] A. Janecek and Y. Tan, “Iterative improvement of the multiplicative
update nmf algorithm using nature-inspired optimization,” in Natural
Computation (ICNC), 2011 Seventh International Conference on,
vol. 3, pp. 1668–1672, IEEE, 2011.

[9] H. Gao and M. Diao, “Cultural firework algorithm and its application
for digital filters design,” International Journal of Modelling, Identifi-
cation and Control, vol. 14, no. 4, pp. 324–331, 2011.

[10] S. Zheng, A. Janecek, and Y. Tan, “Enhanced fireworks algorithm,”
IEEE Congress on Evolutionary Computation, pp. 2069–2077, 2013.

[11] Y. Zheng, X. Xu, H. Ling, and S. Chen, “A hybrid fireworks optimiza-
tion method with differential evolution operators,” Neurocomputing,
2012.

[12] Y. Pei, S. Zheng, Y. Tan, and H. Takagi, “An empirical study on influ-
ence of approximation approaches on enhancing fireworks algorithm,”
in Systems, Man, and Cybernetics (SMC), 2012 IEEE International
Conference on, pp. 1322–1327, IEEE, 2012.

[13] J. Liu, S. Zheng, and Y. Tan, “The improvement on controlling
exploration and exploitation of firework algorithm,” in Advances in
Swarm Intelligence, pp. 11–23, Springer, 2013.

[14] Y. Zheng, Q. Song, and S. Chen, “Multiobjective fireworks optimiza-
tion for variable-rate fertilization in oil crop production,” Applied Soft
Computing, vol. 13, no. 11, pp. 4253–4263, 2013.

[15] K. Ding, S. Zheng, and Y. Tan, “A gpu-based parallel fireworks
algorithm for optimization,” in Proceeding of the fifteenth annual con-
ference on Genetic and evolutionary computation conference, pp. 9–
16, ACM, 2013.

[16] J. Liang, B. Qu, and P. Suganthan, “Problem definitions and evaluation
criteria for the cec 2014 special session and competition on single
objective real-parameter numerical optimization,” tech. rep., Technical
Report 201311, Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Technical Report, Nanyang Tech-
nological University, Singapore, 2013.

[17] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas, “Standard particle
swarm optimisation 2011 at cec-2013: A baseline for future pso
improvements,” in Evolutionary Computation (CEC), 2013 IEEE
Congress on, pp. 2337–2344, IEEE, 2013.

275

