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Abstract— In this paper, an improved group explosion strat-
egy (IGES) is proposed for searching multiple targets using a
swarm of simple robots. The strategy is based on our previous
work which has several shortcoming especially when number
of targets and robots are large. IGES is simple and fast with
great adaptability and only one parameter. The simulation
results demonstrate that IGES has great efficiency in all aspects
including searching time, energy consumption and computation
overload. IGES also shows great stability and adaptiveness in
both small and large scale problems.

I. INTRODUCTION

Swarm robotics has achieved significant progress benefit-
ing from the development of artificial intelligent [1]. Swarm
robotics can be used in many applications, especially those
require large amount of robots and time as well as difficult [2]
or dangerous [3] for human beings, e.g. foraging, surveil-
lance, monitoring and search-and-rescue. These applications
can be abstracted as a multiple target searching problem with
restrictions in the environment, such as obstacles. Searching
strategies for solving this abstracted problem can be adopted
to many applications and remains an important task for
swarm robotics researchers.

Inspired from the swarm intelligence, most of swarm
robotics searching problems use fitness values to guide the
robots in the swarm. In both simulation and entity researches,
these values can determine the distance of the targets from
the robot. Fitness values usually have some corresponding
meanings in physical world, such as Euclidean distance [4],
chemical clues [5] or some type of potential functions [6].
Fitness generated in these ways are continuous and as regular
as contours. Such problems can be solved with gradient de-
scent methods. However, hardware designs in swarm robotics
should be as simple as possible leading to low quality on-
board sensors and fault sensing results and errors.

To make the problem more realistic and challenging,
discrete fitness values are introduced into the problem. After
rounding continuous sensing result into discrete values, the
sensing errors can reduce significantly to compensate for the
cheap hardware. The discrete fitness makes the problem a
little more difficult yet local searching strategies can still
solve the problem without much effort.

Robots in the swarm are very small, cheap and simple.
Robots should have as limited abilities as possible including,
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but not limited to, motion, storage, sensing, communication,
energy consumption and computation. In this way, software
of the swarm plays a very important role in emerging coop-
erating behaviors from the swarm. Thanks to the similarity
in problem, many swarm intelligence algorithms and their
variants are used for cooperative strategy of swarm robots,
including PSO [7], ACO [8] and etc. However, these algo-
rithms may not fit for many restrictions in swarm robotics,
such as limited sensing and communication ranges, dynamic
adding or removing the robots and continuous movement.

In our previous work [9], a swarm robotics searching
strategy inspired from the explosion phenomenon in nature
was proposed. In this group explosion strategy (GES), the
entire swarm is dynamically divided into several groups
which search for the targets in parallel. Although GES shows
good performance in the searching problem with regular
fitness, the strategy still remains several shortcomings which
may lead to inconvenience of a group during the searching
problem. Based on the same explosion inspiration, which
proved to be useful in GES, an improved GES (IGES) is
proposed in this paper. IGES is more simpler yet shows
much better performance than GES in our simulation. The
searching problem is first introduced in Section II. Then
section III analyses shortcomings of GES and describes IGES
in detail. Experimental results and discussions are presented
in IV. Finally, Section V concludes work in this paper.

II. PROBLEM STATEMENT

In our previous work, the problem for searching multiple
targets is introduced. The multiple target searching problem
proposed in our previous work shares the basic idea from
other searching problems, e.g. [10], [11], except the fitness
values in the environment are discrete. The reason for
discrete fitness values is that robots in the swarm robotic
researches should be as simple as possible. The on-board
sensors should be simple and cheap, and are thus inevitably
inadequate for sensing the targets. The direct result from the
sensors may be continuous. However, considering the errors,
we divide the whole sensing range into several intervals and
approximate the result to the nearest interval. The results thus
become discrete yet more reliable than the raw values.

Detail of the problem is defined as follows. There exists
m targets in the environment and n robots search for the
targets with the aid of fitness values by the targets. Fitness
values are inversely proportional to the distance from the
target, as shown in Figure 1. The swarm should search and
collect the targets as quickly as possible. A target requires
10 iteration*robot to be collected.Cooperation of multiple
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Fig. 1: Screenshots of the searching problem at the beginning
of the simulation. Red circles stand for the targets. The
background color illustrates fitness of that position. Position
of targets are generated randomly. Robots are not illustrated
in this figure.

individuals can shorten the time of collecting one target. A
collected target disappears as well as its fitness.

Targets shape as circles or spheres with a radius of Sizet.
A target is found only if a robot run into it and the robot can
start collecting at its position. Fitness value of the target itself
is generated randomly, ranges from FMax−2 to FMax. Sizet
and FMax are set to 10 and 20 respectively in this paper.

The n robots in this problem are autonomous and mobile,
designed to be as simple as possible. They are modeled
as squares or cubes with the ability to move freely in
environment. The swarm has no leader nor unique IDs and
shares no common coordinate systems nor global position
systems. Each robot can sense the fitness at its current
position and detect the relative positions of the neighbour
robots within limited sensing range. Each robot communi-
cates explicitly with others only for sharing current fitness
to neighbours. Each individual executes the same algorithm
but acts independently and asynchronously from all others.

The sensing range of neighbour robots is set as 4Sizet
so that robots can detect nearby neighbours with different
fitness for better cooperation. All the detected positions
are relative which can be done through infrared sensors
and angle transducers. Therefore, direct communications or
shared position system is not necessary. If FMax is quite
small, robots can detect neighbors’ fitness through colored
on-board lights. Otherwise, just like the situation in this
paper, robots share their fitness values to all their neighbors
through direct communications or other strategies which is
not focused in this paper.

Robots have a speed limit of 2Sizet per iteration so that
they can past at most one fitness level in one iteration and
react quickly to the fitness. Individuals can also maintain 10
of their past states including position and the corresponding
fitness. Positions in history are relative to the local coordi-

nating system and updated according to robots’ movements.
Past states cannot be shared among the swarm since complex
communications and localizations are required. This conflicts
with the principle of the swarm robotics: simple and ele-
gant [12].

III. IMPROVED GROUP EXPLOSION STRATEGY

In previous work, a Group Explosion Strategy (GES) is
proposed to solve the original searching problem. GES out-
performs the comparison algorithm, yet still cannot perform
well in certain circumstances. In this paper, an Improved
GES (IGES) is proposed based on the same idea of inter
and intra group cooperation, yet with simpler strategy, fewer
parameters and better performances. In this section, we first
analyze the shortcoming of the GES briefly, then describe
the strategies in IGES and finally briefly prove that IGES
can converge.

A. Shortcoming of the Group Explosion Strategy

GES shows quite good performance than the baseline
algorithm especially when the fitness is not very adequate in
the environment. The swarm shows quite good cooperation
when population is not very large. However, as shown in the
results in Section IV-D, when the population grows to more
than certain extent, i.e. the swarm size may be crowded for
the problem, performance of GES may become worse than
the comparison algorithm. This means the cooperation of
GES does not take full advantage of such a large population
and therefore improvements are proposed in this paper.

The brief idea of intra-group cooperation in GES is that
the group moves the center towards the best individual in
the group. If multiple individual shares the same fitness, a
random one is picked. However, robots may get stuck or fall
back to places with worse fitness in certain cases, such as
the three situations shown in Figure 2.

(a) One robot (b) Robots with same fitness

(c) Infinite Loop between two states

Robot

Group Center

Fig. 2: Three situation which GES does not perform well.

In Figure 2a when only one robot is in the group, the robot
may bounce along the bold black line, since all of the best
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positions of the robot in history are on this line and the robot
can hardly get out of the line. The robots may stuck in this
situation for tens or hundreds of iterations before another
robot run into its sensing range to save it.

In Figure 2b when several robots shares the same fitness,
the group center may have a better fitness, but when the group
follows the strategy moves its center towards a robot (say the
bottom one), the whole group moves in the opposite of the
target. Although the swarm can get back in a few iterations
and hopefully select another robot to move the center to, the
efficiency can be improved with better strategy.

Finally, in Figure 2c, an infinite loop may occur for the
situation of two robots with different fitness. The center
moves back and force between the two positions in the
better fitness area and repeats the two states shown in the
figure. Solutions for these three cases will be illustrated in
the proposed IGES.

B. Improved Group Explosion Strategy

The motivation of GES is to utilize both inter and intra
group cooperations during the search. From observation in
our simulation program, cooperations within the group occur
much more than that among groups, since the environment is
very large compared to the size of the robots and their sensing
areas. In this way, we focus on intra-group cooperations
in IGES. Robots adopts different strategies based on their
current states. Strategies in IGES are simpler compared
with GES, yet show better performance. This indicates the
improvements in IGES are critical.

Similar in GES, a robot and all its neighbours are denoted
as a group. The strategy of a robot in IGES is selected first
based on the size of the group: multiple robots or single
robot; then based on the fitness values in the group (multiple
robots condition) or the history states of the robot (single
robot condition). There are four strategies in IGES as shown
in Table I. Different conditions may share the same strategy.

The final velocity and position update functions for robot
i are shown below:

Vi(t) = Si(t) +RC ·Rp (1)

Pi(t) = Pi(t− 1) +
Vi(t)

‖Vi(t)‖
× 2Sizet (2)

where Si(t) is the velocity update vector from the strategy
it adopted, RC is the factor shown in Table I and Rp is
a unit random vector. The introduction of RC is to avoid
the shortcoming mentioned above and it’s discussed in the
following section. 2Sizet is the maximum speed limit men-
tioned in the problem statement. Velocities are normalized
to the maximum speed.

Since the diameter of the sensing area is the same as
radius of the fitness annulus, the maximum difference of
fitness value within a group is 1. Therefore, in multiple robot
condition, there are only two possibilities: all robots in the
group have same fitness or not. Therefore, two strategies (No.
1 and 2) are used for different situations. In GES, we split the
group when the group size exceeds certain limit βG and this

TABLE I: Brief Summary of the IGES

Group Size Fitness Condition Strategy RC

≥ βG Different Fitness No. 1+2
1/10∈ [2, βG) Different Fitness No. 2

≥ 2 Same Fitness No. 1

= 1
Best in history No. 3 0

Worse than last time No. 4 1
Better history in the earlier No. 4 1/10

strategy is kept yet simplified in IGES: a vector leaving the
group center is added to the velocity. Since the split strategy
is same with the strategy with same fitness (No. 1), therefore
splitting is only considered when fitness values are different
(1+2 in in Table I).

In single robot condition, the history states are used to
select strategy for the robot. History states here include all
the past states stored (at most 10) and the current state of
the robot. Considering the current fitness and fitness values
in history, three situations may happen: 1) the current fitness
is the best fitness values in history, although maybe some
other history states share the same fitness; 2) the fitness is
worse than last iteration; 3) there are better fitness in a few
iterations ago. The last two situation shares the same strategy,
but with different RC so as to avoid shortcoming shown in
Figure 2a.

1) Strategy 1: This strategy is used for both splitting
groups and multiple robots with same fitness. The robots
in the group leave the group center as shown in (3).

Si(t) = Pi(t)−
∑

j∈Ni(t)
Pj(t)

‖Ni(t)‖
(3)

where Pj(t) is the position of robot j at time t and Ni(t) is
the collection consists of all robots in the group of robot i.

2) Strategy 2: This strategy is used for multiple robots
with different fitness. The strategy moves the center of the
group towards the center of maximum fitness positions in the
group.

Si(t) =

∑
j∈N̂i(t)

Pj(t)∥∥∥N̂i(t)
∥∥∥ −

∑
j∈Ni(t)

Pj(t)

‖Ni(t)‖
(4)

where N̂i(t) is the sub collection of Ni(t) containing all the
robots with the maximum fitness value.

3) Strategy 3: This strategy happens when the robot is
currently the best in history. Therefore, the robot just contin-
ues with its previous search direction, even other positions
with same fitness exist in history.

Si(t) = Vi(t− 1) (5)

4) Strategy 4: This strategy is for situation when there are
better fitness in history. The robot moves towards the center
of the positions with best fitness.

Si(t) =

∑
p∈Ĥi(t)

p∥∥∥Ĥi(t)
∥∥∥ − Pi(t) (6)

where Ĥi(t) is the collection of positions with the best fitness
value in robot i’s history.
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IV. SIMULATION RESULTS AND DISCUSSIONS

To illustrate the performance of the IGES strategy pro-
posed in this paper, we compare it with the previous GES
and another searching algorithm inspired form PSO. Several
experiments and discussions are conducted in this section.
The algorithms are simulated in our self-built simulation
platform [13] and tested under various environment setups to
see its adaptability. In the first validation experiment, IGES
is tested in the original problem with default setup to see if
it’s capable for solving the problem. Parameter analysis of
the IGES is shown in the second experiment. In the third
scalability experiment, algorithms are tested in environments
with various numbers of robots and targets in larger scale.

In most of the experiments, the simulations stop when all
the targets are collected and the essential criteria for judging
the performance is the iteration used. Iteration determines
how fast the swarm can collect the targets and shorter
iteration indicates the better performance.

All the experiments in this section use the same basic
setups. The map size is 1000*1000 while the size of a robot
is 1 and its sensing range is 20. It is very difficult a robot to
search by itself, therefore cooperation is very important in
the problem. In each test, 20 randomly generated maps are
used for each setup and each method is repeated 20 times.
Average results of these 400 runs are presented.

In this paper, parameters of the two comparison algorithms
remains the same as tuned in previous work. The IGES has
only one parameter βG and shares the same value in GES.
So no parameter needs to be tuned. In Section IV-C, we will
show the trend of this parameter is quite the same as in GES.

A. Comparison Algorithms

Besides GES, another comparison algorithm used in this
paper is RPSO [10]. In RPSO, each robot acts as a particle
in PSO and the swarm adopts spacial-based topology for
calculating gbests. RPSO may also suffer from vibration
in the experiments, since the sensing range is quite small
compared to the environment. In such case, a small random
unit vector RP is introduced if both pbest and gbest are the
current position.

For better comparison, all three algorithms in the exper-
iment share same strategy of obstacle avoiding and history
state updating. Therefore, the difference of the strategy can
be shown in the results directly.

B. Validation Experiment

Validation results are shown in Table II. Results of three
algorithms are presented only when the number of targets and
robots are 10, 30 and 50. The full results of different setups
are shown in scalability experiment. Results after collecting
50% and 100% targets are shown in the table. In the table,
m indicates number of targets and n is population.

The column “Collect” indicates the current collected tar-
gets after collecting 50% targets. In certain cases, two targets
may be collected at the same time, so the value is slightly
more than half of m. “Distance” determines the total distance

of all robots for searching all the targets. In real robots,
moving is one of the most energy consuming behavior and
the energy consumed is related to the total distance. The final
column shows the cpu time used for all the robots in each
iteration which is the time of the algorithm itself excluding
environment updates and result outputs. Calculation is an-
other energy consuming activity in real robots, therefore a
shorter CPU time saves the swarm for a smaller battery.

TABLE II: Validation results.

m n Algo 50% 100% CPU Time
Collect Iteration Distance Iteration /Iteration

10

10
GES 5.01 190.35 35414.48 377.10 7.43
IGES 5.03 121.03 25268.52 265.47 4.24
RPSO 5.01 177.29 32453.19 420.29 6.81

30
GES 5.03 161.14 73738.18 266.80 19.45
IGES 5.02 91.41 50632.52 173.80 9.76
RPSO 5.02 113.97 60579.84 240.12 14.50

50
GES 5.04 157.79 114149.20 250.37 37.98
IGES 5.02 83.15 73786.94 150.85 13.16
RPSO 5.04 99.20 86979.09 200.69 20.61

30

10
GES 15.01 312.39 62465.30 678.63 36.82
IGES 15.03 205.21 42229.20 458.57 24.46
RPSO 15.01 340.95 58900.61 799.04 40.05

30
GES 15.05 232.41 112428.00 411.64 40.72
IGES 15.05 134.84 81650.54 286.52 23.58
RPSO 15.03 219.66 113554.00 460.07 43.19

50
GES 15.06 230.35 167586.90 370.74 56.09
IGES 15.07 112.42 112432.30 234.27 23.27
RPSO 15.06 190.39 161752.90 380.59 48.91

50

10
GES 25.05 403.89 81050.37 893.69 39.46
IGES 25.04 257.70 53126.18 590.53 23.66
RPSO 25.01 460.27 76870.97 1068.99 44.37

30
GES 25.07 271.16 138399.10 511.28 41.97
IGES 25.10 157.91 99513.25 355.39 24.00
RPSO 25.03 275.19 142912.20 589.33 47.09

50
GES 25.10 270.03 201971.60 449.70 60.96
IGES 25.10 128.35 136241.00 288.10 24.88
RPSO 25.05 236.76 206335.30 491.28 58.79

In the table, IGES dominates in almost all the columns
except “Collect”. The strategy in IGES is effective and the
improvements proposed in this paper are significant.

GES uses the most iterations for collecting 50% of the
targets yet RPSO has the worst iteration performance for
all targets. This shows the same trend in our previous work
which shows shortcomings of the cooperation in GES. The
iteration results of IGES beat both the comparison algorithms
for at least 30%. IGES solves the shortcomings in GES and
as a sequence boosts in the performance to a great extent.
IGES also shows very stable performance in collecting both
50% and 100% targets, as it uses about 220% iterations
when collecting all targets than that of half targets. This is
very reasonable as the collecting becomes difficult as the
remain targets reduces. The cooperation strategy in IGES
shows great performance and adaptability in different target
distributions and densities.

The distance results in the table are the total moving
distance of all robots in all iterations. Therefore, IGES have
shorter distance thanks partly to the low iteration. If we
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divide the distance by the iteration used, GES and IGES
shares almost the same moving distance, as robots moves at
the maximum speed in most of times in both strategies. In
RPSO, length of each step may differ for different situations
and the average distance is 10% shorter than GES and IGES
which is one of the reasons that it takes more iterations than
GES for collecting 100% targets.

The CPU time can be used to justify the simpleness of
the swarm robotics algorithm. The main idea of the swarm
robotics is simple yet massive. Hardware design of the swarm
can benefit from a simple strategy which saves cost and
resources. IGES has the most quick CPU time among three
algorithms, 10-30% and 25-50% quicker than RPSO and
GES. The improvement of IGES simplifies the strategy while
shows better performance. This shows that a simple strategy
with the help of cooperation can have promising performance
which is exactly the fundamental ida of swarm robotics.

C. Parameter Analysis

The only parameter in IGES is the group size limit βG
inherited from the GES. The meaning of the parameter
remains unchanged in the IGES and thus we suggest the
original parameter in GES should work and at least close to
the best value. Therefore we use the original value in IGES
instead of tuning the value in advance in the experiment. We
now verify this hypothesis in experiment. From the results in
this section, this very value shows great performance among
the entire value fields.

The testing environment is chosen with middle size of
number of targets and population size, i.e 30 for both of
them. Since the population is 30, the maximum values for
the parameter is 30 and the minimum is 4. The experiment
results are shown in Figure 3. Only iteration results are shown
in the figure as it’s the most important criteria and should be
used for parameter tuning.

0 5 10 15 20 25 30
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Fig. 3: Parameter analysis result of βG.

The trend of the parameter is quite similar with that of
GES. This indicates that the basic idea of the two strategies
remains unchanged and the parameter is playing the same
role in the two strategies. The original value of βG in GES
is 5 which is still the best position in the figure. This proves
the hypothesis above is correct.

The influence of the parameter is obvious and shows a
significant effect on iteration performance. The best value is
15% quicker than the worst value. The best value is reached
when βG is 5 or 6 and the performance becomes worse as

βG increases. Excluding the vibration from randomness in
the strategy, the iteration is almost linear to the βG value
when it exceeds 6. This is easy to understand that the
cooperation strategy works best when group size is 5 or 6.
When group size is smaller, the group may converge slower.
If the group size is large, the additional robots in the group
will not accelerate the intra group cooperation but reduces
the parallelism of the entire swarm. Therefore, the strategy
shows bad performance with large βG.

D. Scalability Experiment

Results in the validation experiment considers limited
setups about number of targets (m) and swarm size (n). In
scalability experiment, we present the grid result of a series
of m and n. The number of target varies from 10 to 100 and
population from 10 to 50. Step size of both variables is 2.

Results are shown in Figure 4 in a four by two table. The
first three columns shows the iteration results after collecting
50%, 75% and 100% targets and the last column is the total
distance after collecting all the targets. The first row shows
the result of IGES divided by that of GES and the second
shows the division by RPSO. X and Y axis of each sub-figure
stands for the population and number of targets and the color
at every position represents value. The color map is shown
on the right of the entire figure. Colder color indicates lower
value and more advantage of IGES.

From the color map, the values in the figure ranges from
about 35% to 90% which indicates that IGES is always better
than other two algorithms. In fact, larger values only appears
in the second row when the population is lower than 20.
The cooperation of IGES and RPSO may have the similar
effect in performance when population is not very large and
target is very crowded in the environment. However, when
the population grows, the difference is very obvious.

From the table, all three algorithms shows quite the same
trend as the population and number of targets increase, as
the sub-figures on left three columns shares the same shape
except the colors changes. On the first row, color becomes
warm and the advantage of IGES shrinks a little. On the
second row, the trend of the color is the opposite. This is easy
to understand, as strategy of RPSO shows better performance
at the beginning of the simulation and GES searches quicker
near the end, if only comparing the two algorithms.

Overall, IGES shows great advantage in iteration. It only
takes 50-60% and 45-70% of iterations than RPSO and GES.
Advantage of GES varies in a large range, since performance
of GES is quite poor when either many targets remain in
the environment or population exceeds certain limit. IGES
proposes strategy focusing on such issues and the results
shows the improvement is effective.

The trend of distance is quite stable when population
and number of targets change. The three algorithm shares
the same trend as distance is almost linearly related to the
iteration from the results in previous experiment.
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Fig. 4: Iteration and distance ratio results in scalability experiments.

V. CONCLUSION

An improved group explosion strategy (IGES) for search-
ing multiple targets is proposed in this paper. We ana-
lyzed several shortcomings of the GES, proposed in our
previous work, and improve the strategy focusing on these
shortcomings. IGES is simulated in our self-built computer
platform and compared with other two algorithms. Several
experiments are conducted to test the algorithm in various
aspects. The simulation results demonstrate that IGES shows
great efficiency and stability in searching multiple targets
regardless the number of targets or robots. IGES has only
one parameter and very little computation in each iteration.
IGES can adapt to different scales of targets and robots. The
results indicate the cooperation in IGES can take advantage
of small or large populations.

As for future work, we plan to focus on two aspects. The
first aspect is to improve the strategy by introducing inter-
group cooperation which is not very focused in both GES
and IGES. Cooperation among groups can accelerate the
searching progress. On the other hand, we will also try to
apply IGES on more complicated searching problems with
more restrictions, such as dynamic environment or various
kinds of targets with different values.
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