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Abstract— In this paper, we consider the target searching
problems with a new type of the object: decoys which can be
sensed exactly as targets but cannot be collected by the robots.
In real-life applications, decoys are very common especially for
swarm robots whose hardware should be designed as simple and
cheap as possible. This inevitably brings errors and mistakes
in the sensing results and the swarm may mistakenly sense
certain kinds of environment objects as the target they are
looking for. We proposed a simple cooperative strategy to solve
this problem, comparing with a non-cooperative strategy as the
baseline. The strategies work with other searching algorithms
and provide schemes for avoiding decoys. Simulation results
demonstrate that the cooperative strategy shares almost the
same computation overload yet has better performance in
iterations and especially visited times of decoys. The strategy
shows great adaptiveness to large scale problems and performs
better when more decoys or robots exist in the simulation.

I. INTRODUCTION

Swarm robotics has achieved significant progress ben-
efiting from the development of artificial intelligent [1].
Swarm robotics can be used in many applications, especially
those require large amount of robots and time as well as
difficult or dangerous for human beings, e.g. foraging [2],
surveillance [3], monitoring [4] and search-and-rescue [5].
These applications can be abstracted as a multiple target
searching problem with restrictions in the environment, such
as obstacles. Searching strategies for solving this abstracted
problem can be adapted to many applications and remains
an important task for swarm robotics researchers.

Inspired from the swarm intelligence, most of swarm
robotics searching problems use fitness values to guide the
robots in the swarm. In both simulation and entity researches,
these values can determine the distance of the targets from
the robot. Fitness values usually have corresponding mean-
ings in physical world, such as Euclidean distance [6], ol-
faction measurements [7] or chemical clues [8] and potential
functions [9]. Fitness values are continuous and as regular
as contours. Such problems can be solved with gradient
descent methods [10] or other local searching schemes [11].
However, hardware designs in swarm robotics should be as
simple as possible which may leads to low quality on-board
sensors and fault sensing results and errors [12].

Due to the reasons mentioned above, discrete fitness
values are used in this paper. Continuous sensing results are
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rounded into discrete values which reduces the sensing errors
significantly. The discrete fitness makes the problem a more
little difficult but local searching strategies can still solve the
problem. Considering hardware of the robots, they inevitable
missense some objects in the environment as the target. Thus,
we introduce another type of objects in the problem, decoys
which have exactly the same behavior as targets in the robots’
point of view except they are uncollectible by the swarm.
The decoys disturb the searching of targets in a great extent,
similar to local minimal in optimization problems. Two decoy
avoiding strategies are proposed in this paper, one utilizes
cooperation among robots and the other not. Both strategies
are simple yet simulation results show that even simple
cooperation among robots can improve the performance by at
least 5%. Both two strategies are designed to avoid decoys
not searching for targets and need to work together with
algorithms proposed for target searching problem.

Thanks to the similarity in problem, many swarm intelli-
gence algorithms inspired from nature are adopted directly
into swarm robotics. Such nature scheme includes biological
ones such as PSO [13], ACO [14] and others such as
firework explosions [15]. However, these algorithms may
not be completely suitable for swarm robotics, as robots
should have as limited abilities as possible including, but
not limited to, motion, storage, sensing, communication,
energy consumption and computation. Swarm intelligence
algorithms cannot meet the requirement of swarm robotics,
such as limited sensing and communication ranges, dynamic
adding or removing the robots and continuous movement.
Therefore several variants of these algorithms are proposed
for swarm robotics. We choose two underlaying algorithms
in this paper to cope with the proposed decoy avoiding
strategy. The two algorithms are in different type, one is
RPSO [16] inspired from the biological scheme of PSO
and the other is GES, proposed in our previous work [17]
inspired from explosion phenomenon. These two algorithms
are from different types and outperform each other in certain
environment setups. Both strategies can take effect on both
algorithms, showing the adaptiveness of the strategies.

In this paper, searching problem with decoys and discrete
fitness is first introduced in Section II. Then section III
describes the two decoy avoiding strategies in detail. Exper-
imental results and discussions are presented in IV. Finally,
Section V concludes work in this paper.

II. PROBLEM STATEMENT

In our previous work, we introduced the problem for
searching multiple targets. In the problem, a swarm of robots
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(a) Original Searching Problem (b) Problem with Decoys (c) Problem with one Target and Decoys

Fig. 1: A screenshot of the searching problem at the beginning of the simulation. Red circles stand for the targets and orange
circles stand for interferences. Black squares are obstacles. The background color illustrates fitness of that position. Position
of targets, interferences and obstacles are generated randomly. Robots are not illustrated.

searches for multiple targets in obstructive environment as
shown in Figure 1a. All the targets are detectable and
collectable for the robots. The simulation stops after the
swarm collects all the targets or the iteration limit exceeds.
However, in real-life applications, we cannot guarantee that
the only targets can be sensed by the sensors. Some objects
may share the same characteristics with targets in the view of
the limited sensors on-board. In military applications, false
targets may also exist to interfere the searching process of
the swarm. The swarm cannot deal with these objects, yet
the robots can still sense these objects which may interfere
the search for real targets. Therefore, we introduce a new
type of object “decoy” into the searching problem.

A. Outline of Problem

The multiple target searching problem in this paper is quite
similar with other searching problems in [16], [18], except
the fitness values in the environment are discrete. The reason
for discrete fitness values is that robots in the swarm robotic
researches should be as simple as possible. The on-board
sensors should be simple and cheap, and are thus inevitably
inadequate for sensing the targets. The direct result from the
sensors may be continuous. However, considering the errors,
we divide the whole sensing range into several intervals and
approximate the result to the nearest interval. The results
become discrete yet more reliable than the raw ones.

The swarm searches in an environment with targets and
decoys. Both targets and decoys can be sensed with the help
of fitness. Fitness is relevant to the distance to the targets
and decoys and larger fitness indicates a closer distance. The
fitness value of targets and decoys are the same so that robots
cannot distinguish the fitness of a target of decoy until it
reaches the position of the target or decoy. If the robot finds
a target, it can collect the target and continue to search for
other targets. The aim of the swarm is to collect all the targets
in the environment as quickly as possible.

The swarm has no prior information about the environ-
ment. The problem is simulated in our self-built computer
simulation program. Though time is divided into discrete
iterations in simulation, all robots in the swarm are not re-
stricted to share the same iteration cycle in real applications.
Every iteration, sensing information of each robot is first
updated from the environment and their neighbours, then
the algorithm calculates robots’ movements according to the
sensing results. In the simulation, maximum speed of the
robots is restricted so that their movements are guaranteed
to complete within one iteration.

The main objective and challenge for this problem is to
try to avoid the decoy while some targets may be very
close to the decoys as shown in Figure 1. These two tasks
are conflicting and the strategy should make a balance
between them as the most important criteria is the total
iterations used for collecting all the targets. Although in real-
life applications, positions of targets and decoys may have
different distributions which makes the problem easier, we
consider the more general and difficult situation in this paper.
If the swarm find all other targets very quickly and avoids
the decoys well, but got stuck for the last target which is
close to a decoy, we can hardly say the algorithm is suitable
for solving this problem.

B. Robots

The n robots in this problem are autonomous and mobile,
designed to be as simple and cheap as possible. They are
modeled as squares or cubes with the ability to move freely
in environment. The swarm has no leader nor unique IDs
without any common coordinate systems or global position
systems. Each robot can sense the fitness at its current
position and detect the relative positions of their neighbour
robots within limited sensing range. They have a limited
memory of past states of themselves. Each robot commu-
nicates explicitly with other robots only for sharing their
current fitness to neighbours. Each individual executes the
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same algorithm but acts independently and asynchronously
from all others. Although the robots are very simple, through
carefully designed strategies they can emerge great intelligent
behaviors through cooperation.

The sensing range of neighbour robots is set as 4Sizet
so that robots can possibly detect nearby neighbour with
different fitness values so as to accelerate the search. All the
detected positions are relative which can be done through
infrared sensors and angle transducers. Therefore, direct
communications are not required nor the need to synchronize
the position system in the swarm. If FMax is quite small, the
robots can detect neighbors’ fitness values through colored
lights equipped on the robot. Otherwise, just like the situation
in this paper, robots share their fitness values to all their
neighbors through direct communications or other strategies
which is not focused in this paper.

The robots have a maximum speed of 2Sizet per iteration.
They can past a fitness level in one iteration at the maximum
speed and react quickly to the fitness when searching in
the right directions. The individuals also have the ability to
maintain last 10 history states including past position and
the corresponding fitness values. Positions in the history are
relative positions in the local coordinating system which is
updated according to its movement. Past states cannot be
shared among the swarm since complex communications and
localizations are required. This conflicts with the principle of
the swarm robotics: simple and elegant [19].

C. Targets and Decoys

An illustration of the problem is shown in Figure 1b.
There exists m targets and d decoys in the environment and
the swarm searches for the targets with the aid of fitness
values. The fitness are generated by the targets and decoys
exactly in the same way and it’s impossible for the robots to
distinguish them through fitness. Fitness values are discrete
and inversely proportional to the distance from the target, as
shown in Figure 1a. The swarm should search and collect the
targets as quickly as possible. A target cannot be collected
immediately and requires 10 iteration*robot to do it, i.e. it
takes one robot 10 iterations and 10 robots one iteration to
collect the target. This means the cooperation of multiple
individuals collecting the same target in the same time can
accelerate this progress. A target disappears after it has been
collected and its fitness can be sensed no more.

A target or a decoy is found only if a robot runs into the
target. The robot can start collect the target at its position
or just leave the decoy which cannot be collected. Fitness
value of each target and decoy is generated randomly and the
fitness of the decoy is lower by 2 tan the target on average.
Fitness values of the targets range from FMax − 2 to FMax

and fitness values of decoys range from FMax−4 to FMax−
2. We can notice here that it’s possible a target and a decoy
shares the same fitness. FMax is a predefined constant set as
20 in this paper. Therefore, the fitness values that robots can
sense range from FMax to 0. A 0 fitness indicates no targets
or decoys nearby.

Targets and decoys shape as circles or spheres with the
radius of Sizet. Sizet is a predefined constants set as 10. The
fitness values nearby the target or decoy shapes as several
rings placed one by one outside the target with decreasing
fitness values. The first ring outside has the same radius
(Sizet) and fitness value as the target or decoy. Although
share the same fitness, the robots cannot find the target or
decoy when they are in this ring. Other rings are placed
outside its previous ring with twice the radius (2Sizet) and
fitness values descending by 1 until 0. When fitness of several
targets and decoys overlap, the largest value is adopted.

Decoys and targets are almost the same except decoys
cannot be collected by robots. This makes the problem much
more difficult than original problem without decoys as shown
in Figure 1. A target may be very close to another decoy or
surrounded by several decoys. This makes these targets hard
to find for the swarm. In an extreme situation, there are only
one target and many decoys in the environment (Figure 1c).
It’s quite challenging for the swarm to search for the only
target especially in our situation that positions of targets and
decoys share the same distribution.

Although robots can have limited storage of its own history
(positions and fitness values), they do not maintain a list of
visited decoys, i.e. decoy history. Considering distribution
of targets and decoys positions in the environment as well
as the strategies proposed in this paper, decoy history may
not always accelerate the searching progress. This will be
explained in detail in Section III-C.

III. DECOYS AVOIDING STRATEGIES

In this section, we propose two strategies to solve the
multiple target searching problem with decoys. Flow charts
of the two strategies are shown in Figure 2. The main
difference of the two strategies is that one strategy makes
use of cooperation among robots and the other one does
not. Robots share their information of decoys they found
to nearby neighbours in the cooperative strategy which can
be done without direct communication. By comparing the
performance of these two strategies, we can show that the
cooperative strategy can faster the searching progress and
reduce the total visits of decoys with very simple cooperating
and interacting behaviors.

It should be noted that the strategy we propose here are
not algorithms used for searching targets, but strategies for
avoiding decoys the robots encounter during the search.
Therefore, the strategy should be used together with other
searching algorithms so as to complete the task. The decoy
avoiding strategy acts like a layer on top of the searching
algorithm. Every iteration, robots would first see if they have
found a decoy or a decoy is nearby (in cooperative strategy)
then it triggers the decoy avoiding strategy this iteration and
will not call the searching algorithm underneath. Otherwise,
the robots search normally following the algorithm as if there
is no decoy avoiding strategies.

In our simulation in Section IV, we test our two strate-
gies on two algorithms: GES [17] and RPSO [16]. In our
previous work, GES is proposed and RPSO is used as the
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comparison algorithm. The algorithms are of different types:
GES is a heuristic algorithm inspired from explosion schemes
in nature, and RPSO utilizes cooperation strategy in PSO
into swarm robotics. The two algorithms performs better in
different environment setups and tests on both algorithms
can show our strategies proposed in this paper can adapt to
different algorithms to a certain extent.

(a) Flow chart of the Cooperative Strategy

(b) Flow chart of the Non-Cooperative Strategy

Fig. 2: Flow charts of the two strategies. Green texts indicate
the behaviors of robots in current states, blue italic texts and
arrows indicate the conditions for state transitions.

A. Cooperative Strategy

Flow chart of the cooperative strategy is shown in Fig-
ure 2a. Robots may stay in four states in this strategy: search,
beacon, cross and leave. The cross state is a pre-state for
leave state, which will be explained later. Robots who found
a decoy would stay at the position and act as beacons. Beacon
robots will give out signals so that other robots nearby can
sense it and start to leave the decoy. This can be done without
any direct communication with the help of colored lights on
board, which makes both the software and hardware parts of
the robots simple and cheap.

Robots start in the search state running the searching
algorithms to find targets or decoys. Once a robot finds a
decoy, it goes into beacon state. The beacon robot stays so
that every robot nearby can sense its signal. Searching robots
go into cross state (and then leave state) when a signal is
sensed from a beacon. The distance for a robot to detect
the beacon is the same as the robot’s sensing range, just
as a robot detects its neighbours. Beacon robots will go into
leave state when every robot around gets the signal (i.e. every
robot around is in the cross or leave state) or another beacon
is very close to it. Multiple beacons in the same place is a
waste, so only one beacon will remain.

1) Leave and Cross State: The idea of the leave state is to
leave the decoy. Each robot in the two states selects a random
direction to leave and go straight at the maximum speed

allowed until the fitness value increases. When leaving the
decoy, the fitness normally drops since the robots are getting
further to the decoy. When the fitness value increases, this
means the robot encounters the fitness area of another target
or decoy. Therefore, the robot should leave the leave state
and go into search state.

The robots can go into the leave state in two ways, and this
makes a little different for selecting the random direction for
the robot. If robots come from the beacon state, we assume
they are at the same position with the decoy. They just leave
in a random direction selected uniformly from angle 0 to
2π. However, if the robots are from the cross state, things
becomes different. Targets and decoys may stay very close
as shown in Figure 1b and 1c. If robots leave in the direction
away from the decoy immediately, the area around the decoy
can hardly be searched and this makes it very hard to find
those targets very close to the decoy.

When robots in the search state receives a signal from the
beacon, they go into the cross state first and then the leave
state. In cross state, they will try to cross the area around the
decoy in the hope of finding targets in this area, i.e. select a
direction neither too close nor too far from the decoy. The
robots will first encounter the increase of the fitness as they
are getting closer to the decoy. After certain position, the
fitness starts to drop as they are leaving the decoy. The robots
then goes into the leave state and go straight in this direction
until fitness improves again and go back to search state.

2) Direction Selection in Cross State: Since the maximum
distance of the robot and the decoy in this situation is the
sensing range of the robot, the angle from the selected
direction in cross state to the line between the robot and the
decoy should be within the range of

[
−π3 ,−

π
6

]
∪
[
π
6 ,

π
3

]
. The

reason for choosing π
3 and π

6 as the border is that directions
with angles inside the range have the best efficiency for the
hope of searching the target in this area, if there exists any.
Considering fitness of target is larger than decoy most of the
time, we assume robot will experience a boost in fitness if a
target exists near the decoy.

At the angle π
3 which is the largest one available for the

robot, the robot, decoy and another position P in the selected
direction can form a equilateral triangle. The position P
shares the same fitness with the current robot position and
the line between them may have a higher fitness. With any
angle larger than π

3 , the robot may not have the chance to
experience the increase of the fitness. Thus, it’s not helpful
for searching targets near the decoy when angle is large.

If the robot takes the direction with angle π
6 , the closest

distance to the decoy would be half of the robot’s sensing
range at most. At this position, the fitness value is the same
as the decoy which means this closeness is enough for the
robot. It would be a waste for the robot to get any closer
to the decoy, since it can not provide more information for
finding targets near a decoy.

B. Non-Cooperative Strategy

Compared with the cooperative strategy, the non-
cooperative strategy is simpler as shown in Figure 2b. There
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are only two states in this strategy: search and leave. As no
cooperative schemes is included, robots who found a decoy
simple enters the leave state and select a random direction to
leave until the fitness increases again. Since robots go into
the leave state at the position of the decoy, the cross state is
not necessary and robots can select the direction uniformly.

No cooperation occurs among the robots in this strategy.
This strategy is used as the baseline for the decoy avoiding
problem and shows how the simple cooperation in the
previous strategy can improve the performance of the swarm.

C. Why not Storing Decoy History

In the original multiple targets problem in previous work,
the robots have the ability to store limited past history states
(position and fitness) to aid their searching process. However,
in the decoy avoiding problem introduced in this paper,
robots do not store the decoys they found. Actually, this
scheme can be added to the strategy easily, as the history
can act exactly as a beacon and the robot can go into cross
and leave state. The main reason for not introducing such
scheme is make the strategy simple and give a good balance
for the swarm to find those targets nearby the decoys.

As the convergence speed of the swarm toward a target or
decoy is decided by the underlaying algorithm rather than the
strategy itself, the strategy should provide more opportunity
for the swarm to get close to the decoy. If in other problems
where targets and decoys may have different distributions in
position and the swarm will not encounter the problem of
closeness of the target and decoy, then storing decoy history
can definitely accelerate the searching progress which may
not be the case in the problem in this paper.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the two decoy avoiding strategies are
compared based on two underlaying algorithms. We first
briefly introduce the underlaying algorithm and present the
simulation results of several experiments conducted to test
the performance of both strategies in various aspects. The
algorithms are simulated in our self-built simulation plat-
form [20] and tested under various environment setups to
see its adaptability. First, parameter tuning and analysis of
the cooperation strategy is presented. In the second validation
experiment, the two strategies are compared in a default setup
with various numbers of decoys to see if they are capable for
solving the problem. In the last scalability experiment, results
of two strategies in larger scale environment are presented.
The adaptability to various numbers of targets, robots and de-
coys of the two strategies can be observed. The combination
of strategy and algorithm in this section is named after the
syntax like “GES-C” or “RPSO-N” indicating cooperative
strategy with GES or non-cooperative strategy with RPSO.

In all the experiments, the simulations stop when all the
targets are collected. The two most important criteria are the
iterations used and times the swarm visited decoys, which
are denoted as “iteration” and “decoy visit” in the results.
Iteration determines how fast the swarm can collect the
targets and shorter iteration indicates the better performance.

Decoy visit shows how often the swarm finds a decoy, which
is useful for real-life applications especially in situations
when certain punishment will happen when a robot arrives
at a decoy. In this paper however, the robots can just leave
without any delay.

All the experiments in this section use the same environ-
ment setup. The map size is 1000*1000 while the size of
a robot is 1 and its sensing range is 20 which means the
environment is very difficult for the swarm to cover. In each
test, 20 random maps are generated for different setups and
each method is repeated 20 times. The results shown in this
section are the average results of these 400 runs.

The non-cooperative strategy does not have any parameters
and can be used directly. For the cooperative strategy which
has only one parameter, parameter tuning and analysis is
presented in section IV-B in a fixed environment setup. Other
experiments use the tuned parameter for comparison.

A. Underlaying Algorithms

To verify the adaptiveness of the two strategies on different
underlaying algorithm, the strategies are tested on two algo-
rithms of different types. The two algorithms are GES [17]
and RPSO [16]. Parameters of both algorithms are tuned in
our previous work in the environments without decoys and
are used directly in experiments in this paper.

GES is inspired from the explosion behavior of fireworks
and makes use of both inter and intra group cooperation.
The swarm is self-organized as several groups and searches
in parallel for targets. In RPSO, each robot acts as a particle
from the PSO and the spacial-based topology of the robots
for calculating gbest is adopted. Except the basic search-
ing behaviors, both underlaying algorithms share the same
scheme for better comparison, such as history state updating.

The two algorithms show advantage in performance at
different situations. GES performances better when the fit-
ness is not adequate in the environment or the population is
not very large. When environment is full of targets or the
swarm size is very crowded in the environment, RPSO can
find the targets more quickly. Comparison based on these
two algorithms can show the adaptiveness the strategies to
certain extend, since the two algorithms differs greatly in
both schemes and performances.

B. Parameter analysis

When a searching robot receives signal from the beacon
in the cooperative strategy, it has the probability P to leave
the decoy and probability 1−P to remain searching nearby
the decoy. The effect of P can be deduced from this strategy.
A larger P makes the robot leave the decoy more easily and
quickly and the robots can spend more time in searching
other targets. A smaller P makes the robot stay and search
nearby the decoy in case a target sits within this area.

The parameter is tuned in a fixed environment with the
middle scale of number of targets and robots, compared with
the values used in the scalability experiment in section IV-D.
In this environment, 50 robots are used to collect 20 targets
mixed among 80 decoys. Values of P are within the range
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TABLE I: Validation results of two strategies.

Number GES-N GES-C RPSO-N RPSO-C
of Iteration Decoy CPU Iteration Decoy CPU Iteration Decoy CPU Iteration Decoy CPU

Decoy Visit Time Visit Time Visit Time Visit Time

0 308.65 0.00 53.33 313.70 0.00 60.53 270.11 0.00 32.89 271.66 0.00 34.70
20 564.48 199.19 101.39 549.45 125.68 105.55 456.21 256.62 43.67 434.67 148.97 43.73
40 726.86 346.00 125.74 687.46 239.26 134.27 614.94 407.38 63.81 576.42 258.98 64.46
60 915.16 473.16 187.84 870.74 351.08 187.26 785.44 549.11 84.63 753.96 383.51 86.21
80 1191.00 608.76 274.45 1074.72 463.82 266.91 912.74 673.22 104.58 841.65 471.75 101.95

100 1234.93 730.48 274.37 1172.33 573.03 290.49 1090.30 816.67 131.42 1019.71 606.87 126.27
120 1417.97 894.96 319.48 1366.52 705.44 347.21 1231.41 948.65 151.22 1156.48 723.07 156.52
140 1505.23 997.94 327.97 1500.86 842.00 370.19 1355.90 1072.74 173.67 1279.65 837.92 172.55
160 1569.09 1091.82 352.27 1492.68 909.01 373.71 1447.06 1174.49 181.24 1415.99 965.62 198.11
180 1676.17 1250.53 384.63 1605.80 1098.01 394.40 1582.72 1319.69 215.37 1474.42 1048.11 202.89
200 2012.64 1394.47 526.18 1794.55 1185.32 473.98 1615.38 1382.11 223.67 1563.54 1149.92 227.01
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Fig. 3: Parameter analysis result of probability P.

[0, 1] with a step size of 0.1. The result of non-cooperative
strategy is also shown for comparison. The results are shown
in Figure 3 with both iteration and decoy visit results.

Both iteration and decoy visit trends of GES and RPSO are
quite similar except the turbulence of GES is a little larger
than that of RPSO in iteration. This is simply because of the
difference in basic idea of two algorithms, and GES may be
a little sensitive to the decoys in this environment.

It can be seen from the figure that in almost all P values,
cooperative strategy has a greater performance than non-
cooperative strategy. This shows the cooperative strategy
is taking effect with such few modifications than the non-
cooperative strategy. The cooperation of the swarm can take
effect even when P is very small.

The trend of decoy visit is almost linearly decreasing as
it can be easily seen from the definition of P . A larger P
reduces the possibility of a robot staying near the decoy. The
robot leaves directly without visiting the decoy which makes
this criterion small. However, the trend of iteration is more
complex although the overall trend is still decreasing. This
may have something to do with the distribution of decoys and
targets as well as the randomness when a robot is making
the decision to stay or leave.

C. Validation Experiment

Validation results are shown in Table I. Results of two
strategies combined with two algorithms are presented only
in the same environment as we tune the parameters except
that various numbers of decoys are selected from the range of
0 and 200. The full results of different setups are shown in
scalability experiment. The column “CPU Time” indicates
the CPU time used for algorithm calculation itself in the
simulation excluding environment updates and result outputs.
Calculation is an important energy consuming activity in
real robots; therefore a shorter CPU time saves swarm for
a smaller battery which is critical for designs of the robots.
Results of 0 decoys are shown in the first row to give a
baseline of the searching ability of two algorithms.

From the table, the iteration of cooperative strategy is
about 5% better than that of non-cooperative strategy in both
algorithms. The advantage seems not very large especially
when the total iteration is only for hundreds of iterations. The
main reason is that the cooperative strategy has to balance
between the searching of targets near decoys against leaving
the decoys directly. If the distribution of targets and decoys
are different, or the scale of the experiment is even larger,
the advantage of the cooperative strategy will be even more
significant.

Meanwhile, cooperative strategy has much significant ad-
vantage in the decoy visit criteria. The advantage can reach
15-25% for GES and a slightly better 20-30% for RPSO. This
indicates the cooperative strategy can do avoid the decoys
with great performance. This means cooperative strategy is
very useful for many real-life situations when visiting decoys
should be avoided which may damage the robots.

The cooperative strategy shows better performance yet
shares almost the same CPU time with non-cooperative
one. This means that the proposed cooperative strategy is
very simple and really effective with such improvement in
performance without any loss of computational overloads.
This proves that simple and fast cooperative schemes at robot
level can really show great performance at swarm level.
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(b) Decoy Visit Results

Fig. 4: Scalability results. The legend of the whole figure is shown in the center sub-figure. In sub-figure (a), GES iterations
are with the left Y axis and RPSO iterations are with the right Y axis. Two Y axes may have different value range. The
comparison occurs within two groups: 1) GES-N (red) and GES-C (green) 2) RPSO-N (blue) and RPSO-C (black). The
frontier ones are supposed be higher (have larger value) than the latter one in the same group.

D. Scalable Experiment
In the validation experiment, only a fixed number of targets

and robots is considered which can hardly show the effect

and adaptiveness of the strategies. In scalability experiment,
we present the a series of results under several numbers
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of environment setups in both small and large scales. As
mentioned before, an extreme situation where only 1 target
exists in the environment is also taken into consideration.
Such situation can occur in some real-life applications and
the performance in this situation can show the adaptiveness
of the proposed strategies.

Results are shown in Figure 4 in a three by three table
where the rows represent the results of different numbers of
targets (1, 20 and 50) and the columns represent the swarm
populations (10, 50 and 100). X and Y axis of each sub-figure
stands for the number of decoys and iteration or decoy visit.

From the figure, we can see that the overall advantages
of cooperative strategy in iteration and decoy visit are quite
similar than in previous experiment. The advantage in decoy
visit is much more obvious than that of iteration results.

Advantage of iterations grows bigger as the population
increases. There’s hardly any advantage when population is
10, but it becomes quite obvious when population is 50 and
100. This is easy to understand as the cooperative strategy is
hard to take effect when population is small. The beacon has
to stay at the decoy for a few iterations and this is a large
cost when population is small.

The performance is also affected by the ratio of number of
decoys among targets. If the density of decoys is large, say
in the first row in the figure where only one target exist, the
cooperative strategy shows great advantage against the non-
cooperative strategies. As the target grows or when decoys
are small, the advantage is not that obvious in the figure.
It’s not surprise to see such results from the definition of the
cooperative strategy as it requires more decoys to take effect.

V. CONCLUSION

Due to the restriction and designs of hardware of swarm
robots which should be as simple as possible, some objects
may be mistakenly sensed as targets in real-life applications.
In this paper, a new type of object: decoys, are introduced
into the swarm robotics multiple target searching problem.
Decoys behave exactly the same as the targets from robots’
view, except that decoys cannot be collected and targets can.
This makes the searching problem more difficult and realistic.

We proposed two strategies for solving the problem with
decoys, one cooperative and the other not. The strategies are
used to avoid decoys while trying to searching the targets
using the underlaying algorithms. Through our experiment,
the cooperative one shows better performance and good
adaptiveness with almost the same computational overload.
The cooperative strategy is especially effective when there
are more decoys in the environment or the population is large,
demonstrating the cooperative mechanism is very useful.

As for future work, we plan to improve the strategy with
more complex yet effective schemes, such as changing the
value of P adaptively in the search. We also plan to introduce
more types of objects that make the problem more realistic
and possibly difficult, such as objects that can damage the
robots. This will make the swarm robotics searching problem
more applicable in real-life.
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