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Abstract— The idea of fireworks algorithm (FWA) is inspired
by the fireworks explosion in the sky at night. When a firework
explodes, a shower of sparks appear around it. In this way,
the adjacent area of the firework is searched. By controlling
the amplitude of the explosion, the ability of local search for
FWA is guaranteed. The way of fireworks algorithm searching
the surrounding area can be further improved by differential
mutation operator, forming an algorithm called FWA-DM. In
this paper, the benchmark suite in the competition of congress
of evolutionary computation (CEC) 2014 is used to test the
performance of FWA-DM.

I. INTRODUCTION

Fireworks algorithm (FWA) is put forward by Tan and
Zhu in 2010 [1]. As a firework explodes, a shower of
sparks appears around the firework while the adjacent area
is illuminated. The explosion operator in FWA is to find
global minimum values by searching the surrounded area
of an individual. As a swarm intelligence algorithm, FWA
is effective for solving non-linear and complex numerical
optimization problems. Moreover, the applications for FWA
are various. Janecek et al. applied FWA to non-negative
matrix factorization and got good experimental results [2]–
[4]. Gao et al. used FWA to design digital filters and proved
that FWA worked better than particle swarm optimization
(PSO) [5]. He W. et al. applied FWA to the fields of spam
detection [6].

Differential evolution (DE) algorithm was proposed by
Storn and Price [7]. DE algorithm can deal with high di-
mension and non-linear problems. When solving multi-modal
and non-linear problems, DE algorithm performs steadily
and converges quickly. As a simple and effective algorithm,
DE algorithm is widely researched and applied to many
fields. Brest et al. studied the self-adaptive parameters in
DE algorithm on numeric benchmark problems [8]. Das and
Suganthan presented the details of DE and researched the
major variants, application and theory [9]. Mallipeddi et al.
applied ensemble of parameters and mutation strategies to
DE algorithm [10]. Still, there are many people focusing on
DE algorithm [11]–[15].

In this paper, DE mutation operator is introduced to
fireworks algorithm (FWA) so as to form a new algorithm
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called FWA-DM. FWA-DM is then used to find the optima
of CEC 2014 benchmark functions [16].

The remainder of the paper is organized as follows. Section
II shows the process of applying DE mutation operator
to FWA. Section III represents the experimental results,
including the results of mean values and computational time.
The conclusion is given in Section IV.

II. FIREWORKS ALGORITHM WITH DIFFERENTIAL
MUTATION

A. Differential Evolution

DE algorithm belongs to a class of evolutionary algo-
rithms. As a global optimization algorithm, DE is simple
and easy to implement. The core operator in DE is mutation
operator. This operator scales the difference of two individu-
als in the same population, producing a mutant by adding the
scaled difference to a third individual. The produced mutant
is then applied to its parent individual and a trial vector is
generated. Last, the trial vector is compared with the parent
individual and the better one is kept for next generation 1.
DE algorithm keeps finding better objective values until the
terminal condition is met. Since DE algorithm is easy to use,
it is now widely applied to many fields [17]–[21].

The process of DE is similar to other evolutionary al-
gorithms, including population initialization, fitness function
evaluation and population iteration. Algorithm 1 shows DE
with DE/rand/1/bin strategy.

In Algorithm 1, the core of the strategy lies in line 9, while
lines 14 to 19 shows the selection operation. Parameter NP
stands for the number of individuals in a population and
parameter D is the dimension of the problem. Other param-
eters are CR and F , which represent crossover possibility
and scale factor, respectively. rand(0, 1) generates random
numbers from the region (0, 1) with uniform distribution. It
can be seen from Algorithm 1 that DE is simple and easy to
implement.

1) Mutation Operator: As the core operator of DE algo-
rithm, differential evolution operator plays an important role
in DE algorithm. DE/rand/1 is one of the differential evolu-
tion operators. In fact, there are more mutation operators in
DE algorithm. The operators are stated in a form of DE/a/b,
where DE represents the DE algorithm, a stands for the way
to select basic vectors and b indicates the number of vectors
that involved in the mutation operation.

1Without loss of generality, the optimization problem f is treated as a
minimal problem.

3238

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



Algorithm 1 The process of DE/rand/1/bin algorithm
1: randomly generates the initial population with NP indi-

viduals
2: evaluates the fitness values for all individuals
3: while terminal condition not met do
4: for i = 1→ NP do
5: randomly selects r1 6= r2 6= r3 6= i
6: randomly selects jrand from [1, D] /∗ D stands for

dimension ∗/
7: for j = 1→ D do
8: if rand(0, 1) ≤ CR or j == jrand then
9: Ui(j) = Xr1(j) + F × (Xr2(j)−Xr3(j))

10: else
11: Ui(j) = Xi(j)
12: end if
13: end for
14: end for
15: for j = 1→ D do
16: evaluates the fitness values for Ui

17: if Ui is better than Xi then
18: Xi = Ui

19: end if
20: end for
21: end while

2) Crossover Operator: There are two forms of crossover
operator in DE algorithm, including binomial crossover
operator and exponential crossover operator. The crossover
operator generates the trial vector Ui by dealing with the
mutant vector Vi and the parent vector Xi. The crossover
operation can be stated as follows.

Ui(j) =

{
Vi(j), if rand(0, 1) ≤ CR or j == jrand
Xi(j), otherwise

(1)
In Eq. 1, rand(0, 1) generates random numbers between

0 and 1 with uniform distribution. Parameter CR is the
crossover possibility and parameter jrand is a randomly
selected dimension number, which varies from 1 to D.

3) Selection Operator: After producing a children pop-
ulation with a differential mutate operator and a crossover
operator, the individuals in the children population are
compared with their corresponding parent individuals by
selection operation. The ones with better fitness values are
then selected for next generation. The selection operation can
be described as follows.

Xi =

{
Ui, if(f(Ui) < f(Xi))
Xi, otherwise

(2)

In Eq. 2, f(Xi) stands for the fitness value of an individual
Xi. It can be seen from Eq. 2 that the better one is always
kept for next generation. Therefore, DE algorithm is a steady
evolutionary algorithm.

B. Fireworks Algorithm

The idea of FWA was inspired by the fireworks explosion
in the night sky. When a firework explodes, a shower of
sparks appears around it. In this way, the adjacent area of the
spark is illuminated. The process of fireworks explosion can
be treated as a good way to search the area around a specific
point. Hence, when FWA searches the area, there are two
parameters that have to be determined. The first parameter
is the number of explosion sparks and the second parameter
is the amplitude of the explosion.

Si denotes the number of sparks for a firework Xi.

Si = Ŝ ∗ Ymax − f(xi) + ε
N∑
i=1

(Ymax − f(xi)) + ε

(3)

In Eq. 3, Ŝ is a constant that stands for the total number of
sparks. Parameter Ymax means the fitness value of the worst
individual in the population. f(xi) is the fitness value for an
individual xi, while the last parameter ε is used to prevent
the denominator from becoming zero.
Ai denotes the amplitude for the ith individual.

Ai = Â ∗ f(xi)− Ymin + ε
N∑
i=1

(f(xi)− Ymin) + ε

(4)

In Eq. 4, Â is a constant representing the sum of all the
amplitudes. Parameter Ymin means the fitness value of the
best individual in the population. The meaning of f(xi) and
parameter ε are the same as aforementioned.

As pointed in [22], when an amplitude is too small, it
leads to useless explosion since the new generated sparks are
close and similar. Therefore, a new parameter is proposed to
prevent the amplitudes from being too small. Amin denotes
the minimum of the amplitude. There are two ways to set the
parameter Amin, as linear and non-linear decreasing method,
respectively. The value of Amin decreasing while the number
of iteration increasing.

(Linear)Amin = Ainit− (Ainit−Afinal)∗Iter/MaxEval
(5)

(Non− linear)Amin = Ainit − (Ainit −Afinal)

∗
√

(2 ∗MaxEval − Iter) ∗ Iter/MaxEval
(6)

In both Eq. 5 and Eq. 6, parameters Ainit and Afinal

represent the initial and final minimum amplitude boundaries
of the explosions. Parameter Iter is the number of current
function evaluations and parameter MaxEval represents the
maximum number of function evaluation. In this paper, the
non-linear form of Amin is used due to empirical experi-
ments.

FWA simulates the way of fireworks explode and searches
the around areas of individuals. DE mutation operator can be
used in FWA and solves the function optimization problems.
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Fig. 1. The process of applying DE to FWA.

C. Apply DE to FWA

At first, NP individuals are initialized randomly with
uniform distribution. The random seed is based on time.
This population with NP individuals is marked as POP1.
Secondly, a spark is produced around each individual within
a certain amplitude. The amplitude is determined by FWA
and greater than Amin at the same time. The explosion sparks
form a population POP2. Thirdly, the individuals in POP1
are compared with the corresponding individuals in POP2
in pairs. The ones with better fitness values are kept and
used to form a new population marked as POP3. Fourthly,
the mutation and crossover operators in DE algorithm are
applied to POP3 and a new population is generated as POP4.
Finally, the selection operator is applied to POP4 and the
selected individuals are used to form a new population POP1.
The iteration continues until the maximum times of function
evaluations are achieved or the objective function values are
lower than 1e-8. In this way, DE mutation operator is applied
to FWA.

The process of applying DE mutation operator to FWA is
drawn in Fig.1. The first row represents a population POP1
with NP individuals. The second row shows the individuals
that are generated by fireworks explosion and the individuals
form a population POP2. After comparing the individuals
in the first row with the second row in pairs, better ones
are chosen and displayed in the third row as a population
POP3. Then DE mutation operator is applied to a population
POP3 and the population POP4 is produced in the last row.
The better individuals between population POP3 and POP4
are selected for next iteration as a new population POP1.
Moreover, the algorithm for FWA-DM is given in Algorithm
2.

III. EXPERIMENTS

A. Benchmark Functions

FWA-DM is used to find the global optimum values of
30 benchmark functions from the CEC’14 competition [16].
The details of the functions are given as follows.

Algorithm 2 The process of FWA-DM
1: randomly generate the initial population with NP indi-

viduals as POP1
2: evaluate the fitness values for all individuals
3: while terminal condition not met do
4: for i = 1→ NP do
5: apply FWA to POP1 and forms POP2
6: choose the better ones from POP1 and POP2 and

forms POP3
7: randomly select r1 6= r2 6= r3 6= i
8: randomly select jrand from [1, D]
9: for j = 1→ D do

10: if rand(0, 1) ≤ CR or j == jrand then
11: Ui(j) = Xr1(j) + F × (Xr2(j)−Xr3(j))
12: else
13: Ui(j) = Xi(j) /∗ Ui forms POP4 ∗/
14: end if
15: end for
16: end for
17: for j = 1→ D do
18: evaluate the fitness values for Ui

19: if Ui is better than Xi then
20: Xi = Ui /∗ Xi return to POP1 ∗/
21: end if
22: end for
23: end while

Unimodal Functions:
1 Rotated High Conditioned Elliptic Function
2 Rotated Bent Cigar Function
3 Rotated Discus Function

Simple Multimodal Functions:
4 Shifted and Rotated Rosenbrocks Function
5 Shifted and Rotated Ackley’s Function
6 Shifted and Rotated Weierstrass Function
7 Shifted and Rotated Griewank’s Function
8 Shifted Rastrigin’s Function
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9 Shifted and Rotated Rastrigin’s Function
10 Shifted Schwefel’s Function
11 Shifted and Rotated Schwefel’s Function
12 Shifted and Rotated Katsuura Function
13 Shifted and Rotated HappyCat Function
14 Shifted and Rotated HGBat Function
15 Shifted and Rotated Expanded Griewank’s plus Rosen-
brock’s Functions
16 Shifted and Rotated Expanded Scaffer’s F6 Function

Hybrid Functions:
17 Hybrid Function 1 (N=3)
18 Hybrid Function 2 (N=3)
19 Hybrid Function 3 (N=4)
20 Hybrid Function 4 (N=4)
21 Hybrid Function 5 (N=5)
22 Hybrid Function 6 (N=5)

Composition Functions:
23 Composition Function 1 (N=5)
24 Composition Function 2 (N=3)
25 Composition Function 3 (N=3)
26 Composition Function 4 (N=5)
27 Composition Function 5 (N=5)
28 Composition Function 6 (N=5)
29 Composition Function 7 (N=3)
30 Composition Function 8 (N=3)

B. Parameter Settings

Each experiment runs 51 times and during each run, the
function is evaluated for 10000*D times. The actual used
parameter values are set as follows. Parameters Ainit and
Afinal are set as 0.2 and 0.001, respectively, as in [22]. In
addition, parameters F and CR are set as 0.5 and 0.9, as in
[7]. The population size is set as 5*D. It is obvious that the
parameters are simple and easy to set.

C. Experimental Results

The experimental platform is Visual Studio 2012 and the
program is running on a Windows 8 operating system. The
experimental results for 10D, 30D, 50D and 100D are listed
below.

The computational complexity of FWA-DM is given in
Table V.

D. Discussion

The functions contain unimodal, simple multimodal, hy-
brid and composition functions. Hence, the experimental
results do not skew to any kind of functions and are objective.

When calculating the functions with 10 dimension, four
global optimum values were found when FWA-DM per-
formed the best. Moreover, one of the mean objective
function values was lower than 1e-8. The best experimental
result came from calculating the F3, which was a unimodal
function. For F23, FWA-DM fell into local optimum values,
as the standard deviation was low.

When the dimension was 30, FWA-DM found the global
optimum values on four functions when it performed the best.
In addition, when applying FWA-DM to calculate F2, F3 and

TABLE I
RESULTS FOR 10D

Func. Best Worst Median Mean Std.
1 2.48E-02 1.12E+05 2.33E+02 5.01E+03 1.67E+04
2 0.00E+00 6.84E-03 7.14E-22 1.34E-04 9.49E-04
3 0.00E+00 5.94E-08 5.38E-18 1.88E-09 9.02E-09
4 0.00E+00 4.73E+00 8.41E-02 1.41E+00 1.60E+00
5 2.00E+01 2.01E+01 2.00E+01 2.00E+01 4.17E-02
6 3.40E-03 2.48E+00 5.74E-01 7.06E-01 6.40E-01
7 1.72E-02 2.24E-01 8.61E-02 9.48E-02 4.92E-02
8 0.00E+00 3.98E+00 1.78E-15 2.54E-01 8.09E-01
9 1.99E+00 1.69E+01 5.97E+00 6.01E+00 2.45E+00

10 9.09E-13 6.95E+00 3.75E-01 1.59E+00 2.08E+00
11 3.98E+01 8.13E+02 3.60E+02 3.72E+02 1.53E+02
12 3.34E-06 2.84E-01 2.82E-02 4.25E-02 4.78E-02
13 3.39E-02 2.99E-01 1.04E-01 1.21E-01 7.18E-02
14 3.87E-02 5.52E-01 1.86E-01 2.14E-01 1.20E-01
15 3.21E-01 1.47E+00 7.43E-01 7.75E-01 2.63E-01
16 7.96E-01 2.82E+00 1.73E+00 1.76E+00 4.68E-01
17 2.63E+00 7.39E+02 2.26E+02 2.55E+02 1.77E+02
18 1.34E+00 8.68E+01 2.01E+01 2.52E+01 1.83E+01
19 3.66E-02 3.00E+00 1.11E+00 1.30E+00 7.75E-01
20 8.81E-01 6.52E+01 9.69E+00 1.34E+01 1.16E+01
21 4.01E-01 4.26E+02 5.90E+01 9.46E+01 9.80E+01
22 1.20E-01 1.57E+02 2.05E+01 3.41E+01 4.40E+01
23 3.29E+02 3.29E+02 3.29E+02 3.29E+02 5.59E-08
24 1.08E+02 2.08E+02 1.16E+02 1.27E+02 2.90E+01
25 1.20E+02 2.01E+02 2.00E+02 1.79E+02 2.76E+01
26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 7.47E-02
27 1.91E+00 4.19E+02 3.49E+02 3.21E+02 1.21E+02
28 3.06E+02 4.13E+02 3.07E+02 3.47E+02 4.76E+01
29 2.02E+02 3.39E+02 2.07E+02 2.12E+02 2.08E+01
30 2.24E+02 7.08E+02 3.67E+02 3.94E+02 1.18E+02

TABLE II
RESULTS FOR 30D

Func. Best Worst Median Mean Std.
1 3.70E+04 9.94E+05 2.24E+05 2.76E+05 1.82E+05
2 4.74E-19 1.13E-15 3.20E-17 1.08E-16 1.87E-16
3 2.35E-17 2.23E-15 2.48E-16 4.42E-16 4.74E-16
4 1.22E-03 7.44E+01 1.58E+01 2.04E+01 1.91E+01
5 2.04E+01 2.06E+01 2.05E+01 2.05E+01 5.36E-02
6 8.12E-02 2.09E+01 1.75E+01 1.29E+01 8.25E+00
7 0.00E+00 3.69E-02 7.40E-03 8.55E-03 9.81E-03
8 0.00E+00 2.69E-12 1.78E-15 1.13E-13 4.51E-13
9 3.32E+01 7.82E+01 5.62E+01 5.66E+01 1.08E+01

10 4.65E+00 1.54E+01 8.09E+00 8.53E+00 2.42E+00
11 2.00E+03 3.03E+03 2.65E+03 2.63E+03 2.48E+02
12 2.08E-01 5.21E-01 3.70E-01 3.71E-01 6.66E-02
13 2.88E-01 4.90E-01 4.00E-01 3.89E-01 5.51E-02
14 1.78E-01 7.40E-01 2.59E-01 2.69E-01 7.76E-02
15 5.64E+00 9.05E+00 7.33E+00 7.37E+00 8.46E-01
16 1.03E+01 1.14E+01 1.10E+01 1.10E+01 2.71E-01
17 1.08E+03 2.43E+04 3.30E+03 6.29E+03 5.95E+03
18 1.17E+01 1.60E+02 6.65E+01 7.67E+01 3.66E+01
19 3.88E+00 1.34E+01 1.03E+01 9.95E+00 1.93E+00
20 1.30E+01 1.40E+02 3.16E+01 4.28E+01 2.61E+01
21 1.09E+02 5.11E+03 4.48E+02 7.29E+02 9.49E+02
22 2.72E+01 3.70E+02 1.53E+02 1.46E+02 8.83E+01
23 3.14E+02 3.14E+02 3.14E+02 3.14E+02 9.28E-14
24 2.22E+02 2.38E+02 2.25E+02 2.26E+02 3.59E+00
25 2.00E+02 2.01E+02 2.01E+02 2.01E+02 1.98E-01
26 1.00E+02 1.01E+02 1.00E+02 1.00E+02 5.35E-02
27 3.13E+02 4.90E+02 4.01E+02 4.01E+02 3.06E+01
28 3.72E+02 4.31E+02 3.90E+02 3.93E+02 1.46E+01
29 2.05E+02 2.17E+02 2.11E+02 2.11E+02 2.90E+00
30 2.35E+02 1.08E+03 3.84E+02 4.51E+02 1.96E+02
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TABLE III
RESULTS FOR 50D

Func. Best Worst Median Mean Std.
1 2.15E+06 1.29E+07 5.76E+06 6.15E+06 2.39E+06
2 2.23E+00 2.10E+04 2.15E+03 4.83E+03 6.06E+03
3 3.09E+01 1.28E+02 7.61E+01 7.66E+01 2.46E+01
4 3.91E+01 1.00E+02 4.30E+01 5.05E+01 1.88E+01
5 2.06E+01 2.08E+01 2.07E+01 2.07E+01 3.61E-02
6 3.66E+01 4.81E+01 4.38E+01 4.39E+01 2.31E+00
7 7.22E-10 1.48E-02 9.06E-09 2.66E-03 4.25E-03
8 4.70E+00 1.59E+01 9.17E+00 9.17E+00 2.39E+00
9 1.17E+02 1.92E+02 1.47E+02 1.47E+02 1.57E+01
10 2.53E+02 8.90E+02 6.07E+02 6.14E+02 1.42E+02
11 4.27E+03 6.15E+03 5.49E+03 5.43E+03 4.02E+02
12 3.94E-01 7.92E-01 6.04E-01 6.02E-01 8.72E-02
13 3.86E-01 6.21E-01 4.82E-01 4.88E-01 4.63E-02
14 2.04E-01 7.99E-01 3.06E-01 3.30E-01 1.05E-01
15 1.74E+01 2.33E+01 2.06E+01 2.08E+01 1.45E+00
16 1.92E+01 2.06E+01 2.00E+01 2.00E+01 3.21E-01
17 3.14E+04 3.19E+05 9.46E+04 1.08E+05 6.03E+04
18 3.20E+02 1.70E+04 1.95E+03 3.31E+03 3.72E+03
19 1.07E+01 2.85E+01 2.09E+01 2.11E+01 3.17E+00
20 2.39E+02 5.70E+02 3.91E+02 4.00E+02 8.12E+01
21 7.78E+03 8.32E+04 2.09E+04 2.55E+04 1.58E+04
22 2.07E+02 8.29E+02 5.49E+02 5.45E+02 1.25E+02
23 3.37E+02 3.37E+02 3.37E+02 3.37E+02 1.31E-05
24 2.64E+02 2.77E+02 2.65E+02 2.66E+02 3.48E+00
25 2.02E+02 2.11E+02 2.04E+02 2.05E+02 2.26E+00
26 1.00E+02 1.01E+02 1.00E+02 1.00E+02 5.98E-02
27 1.27E+03 1.59E+03 1.46E+03 1.45E+03 7.27E+01
28 3.72E+02 4.92E+02 3.88E+02 4.01E+02 3.06E+01
29 2.18E+02 2.31E+02 2.22E+02 2.23E+02 2.67E+00
30 3.95E+02 1.84E+03 7.71E+02 8.36E+02 3.06E+02

TABLE IV
RESULTS FOR 100D

Func. Best Worst Median Mean Std.
1 1.49E+08 3.23E+08 2.22E+08 2.28E+08 4.08E+07
2 1.25E+03 1.03E+05 9.31E+03 1.62E+04 1.81E+04
3 2.03E+04 3.57E+04 2.98E+04 2.95E+04 3.64E+03
4 9.74E+01 4.02E+02 1.52E+02 1.83E+02 1.00E+02
5 2.09E+01 2.11E+01 2.10E+01 2.10E+01 2.44E-02
6 1.09E+02 1.19E+02 1.14E+02 1.14E+02 2.54E+00
7 7.08E-02 2.05E-01 1.23E-01 1.29E-01 3.14E-02
8 9.52E+01 1.20E+02 1.09E+02 1.08E+02 5.40E+00
9 4.53E+02 6.36E+02 5.58E+02 5.52E+02 4.44E+01
10 4.97E+03 6.21E+03 5.66E+03 5.67E+03 3.04E+02
11 1.32E+04 1.58E+04 1.46E+04 1.46E+04 6.30E+02
12 1.08E+00 1.37E+00 1.23E+00 1.21E+00 7.78E-02
13 4.68E-01 6.36E-01 5.62E-01 5.61E-01 3.61E-02
14 1.47E-01 2.28E-01 1.89E-01 1.89E-01 2.06E-02
15 7.47E+01 9.91E+01 8.72E+01 8.74E+01 5.87E+00
16 4.24E+01 4.43E+01 4.35E+01 4.35E+01 3.75E-01
17 1.39E+07 4.17E+07 2.30E+07 2.31E+07 5.63E+06
18 3.93E+02 3.70E+04 2.29E+03 5.68E+03 8.70E+03
19 5.48E+01 6.97E+01 6.40E+01 6.34E+01 2.43E+00
20 4.12E+04 9.49E+04 6.98E+04 6.93E+04 1.10E+04
21 3.40E+06 1.55E+07 9.41E+06 9.57E+06 2.31E+06
22 1.23E+03 1.84E+03 1.54E+03 1.51E+03 1.34E+02
23 3.45E+02 3.47E+02 3.46E+02 3.46E+02 2.18E-01
24 3.58E+02 3.69E+02 3.64E+02 3.63E+02 2.85E+00
25 2.62E+02 3.28E+02 3.10E+02 3.03E+02 1.74E+01
26 1.01E+02 2.25E+02 2.12E+02 1.61E+02 5.88E+01
27 1.32E+03 3.44E+03 3.21E+03 3.14E+03 4.13E+02
28 1.07E+03 2.43E+03 1.54E+03 1.60E+03 3.42E+02
29 2.59E+02 2.85E+02 2.69E+02 2.70E+02 5.23E+00
30 9.18E+02 5.99E+03 1.84E+03 2.23E+03 1.16E+03

TABLE V
COMPUTATIONAL COMPLEXITY OF FWA-DM GIVEN FOR 10, 30, 50

AND 100 DIMENSIONAL F18

T0 T1 T̂2 (T̂2-T1)/T0
D=10 0.077 0.223 1.9142 21.96364
D=30 0.077 0.84 2.582 22.62338
D=50 0.077 1.992 3.7522 22.85974

D=100 0.077 6.926 8.6232 22.04156

F8, the objective function values were lower than 1e-8. For
F23, the standard deviation was low, which means FWA-DM
achieved local optimum values.

The experimental results on 50D functions shown worse
performance than both 10D and 30D. The global optimum
was found on F7 alone. In addition, no global optimum was
found on 100D functions.

IV. CONCLUSION

In this paper, the performance of FWA-DM is tested on
benchmark suite of CEC 2014. The mean objective function
values of FWA-DM were lower than 1e-8 on three functions
in dimension 30, one function in dimension 10 and one
function in dimension 50. In addition, the convergence curves
were given at the end of this paper.

FWA-DM is proposed by applied DE mutation operator
to FWA. The potential of the parameters tuning is not used.
Also, the experimental results can be further improved by
introducing strategies. At last, it would be interesting to
compare the results of the proposed algorithm with single
FWA and DE in future.
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Fig. 2. Convergence curves for FWA-DM on function 1 to 12 in Dimension 10, 30, 50 and 100.
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Fig. 3. Convergence curves for FWA-DM on function 13 to 24 in Dimension 10, 30, 50 and 100.
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Fig. 4. Convergence curves for FWA-DM on function 25 to 30 in Dimension 10, 30, 50 and 100.
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