
Comparison of Random Number Generators in
Particle Swarm Optimization Algorithm

Ke Ding and Ying Tan

Abstract—Intelligent optimization algorithms are very effec-
tive to tackle complex problems that would be difficult or
impossible to solve exactly. A key component within these algo-
rithms is the random number generators (RNGs) which provide
random numbers to drive the stochastic search process. Much
effort is devoted to develop efficient RNGs with good statistical
properties, and many highly optimized libraries are ready to use
for generating random numbers fast on both CPUs and other
hardware platforms such as GPUs. However, few study is focused
on how different RNGs can effect the performance of specific
intelligent optimization algorithms. In this paper, we empirically
compared 13 widely used RNGs with uniform distribution based
on both CPUs and GPUs, with respect to algorithm efficiency as
well as their impact on Particle Swarm Optimization (PSO). Two
strategies were adopted to conduct comparison among multiple
RNGs for multiple objectives. The experiments were conducted
on well-known benchmark functions of diverse landscapes, and
were run on the GPU for the purpose of accelerating. The results
show that RNGs have very different efficiencies in terms of speed,
and GPU-based RNGs can be much faster than their CPU-
based counterparts if properly utilized. However, no statistically
significant disparity in solution quality was observed. Thus it is
reasonable to use more efficient RNGs such as Mersenne Twister.
The framework proposed in this work can be easily extended to
compare the impact of non-uniformly distributed RNGs on more
other intelligent optimization algorithms.

I. INTRODUCTION

Random numbers are widely used in intelligent optimiza-
tion algorithms such as Genetic Algorithm (GA), Ant Colony
Optimization (ACO) and Particle Swarm Optimization (PSO),
just to name a few. Random numbers are usually generated by
deterministic algorithms called Random Number Generators
(RNGs) and play a key role in driving the search process.

The performance of RNGs can be analyzed theoretically
using criteria such as period and lattice structure [1], [2],
or by systematic statistical test [3]. However, none of these
analyses are relevant directly to RNGs’ impact on optimization
algorithms like PSO.

It is interesting to ask how RNGs can effect these stochastic
methods. Clerc [4] replaced the conventional RNGs with a
short length list of numbers (i.e. a RNG with a very short
period) and empirically studied the performance of PSO. The
experiments show that, at least for the moment, there is no
sure way to build a ”good” list for high performance. Thus,

Ke Ding and Ying Tan (corresponding author) are with the Department
of Machine Intelligence, School of Electronics Engineering and Computer
Science, Peking University and Key Laboratory of Machine Perception (Min-
istry of Education), Peking University, Beijing, 100871, P.R. China. (Email:
{keding,ytan}@pku.edu.cn).

This work was supported by the National Natural Science Foundation of
China under grants number 61375119, 61170057 and 60875080.

RNGs with certain degree of randomness are necessary for the
success of stochastic search.

Bastos-Filho et al. [5], [6] studied the impact of the quality
of CPU- and GPU-based RNGs on the performance of PSO.
The experiments show that PSO needs RNGs with minimum
quality and no significative improvements were achieved when
comparing high quality RNGs to medium quality RNGs.
Only Linear Congruential Generator (LCG) [1] and Xorshift
algorithms [7] were compared for CPUs, and only one method
for generating random numbers in an ad hoc manner on GPUs
was adopted for comparing GPUs.

In general, RNGs shipped with math libraries of program-
ming languages or other specific random libraries are used
when implementing intelligent optimization algorithms. These
RNGs generate random numbers of very diverse qualities with
different efficiency. A comparative study on the impact of these
popular RNGs will be helpful when implementing intelligent
algorithms for solving optimization problems.

In this paper, we selected 13 widely used, highly opti-
mized uniformly distributed RNGs and applied them to PSO
for empirically comparing their impact on the optimization
performance. Nine well-known benchmark functions were
implemented for the sake of comparison. All the experiments
were conducted on the GPU for fast execution. Two novel
strategies, league scoring strategy and lose-rank strategy, were
introduced to conduct a systematic comparison on these RNGs’
performance. Though the work is limited to the impact on PSO,
other intelligent algorithms can also be studied in the proposed
framework.

The remainder of this paper is organized as follows. The
next section presents a brief introduction to RNGs. Special
attention is drawn to well-studied and popular algorithms for
uniformly distributed random number generation. The experi-
mental setup is described in detail in Section III. Section IV
presents the experimental results on both RNGs’s efficiency
and the performance of PSO with these RNGs. Analyses of
the results are also given in this section. We conclude this
paper in section V.

II. RANDOM NUMBER GENERATORS

According to the source of randomness, random num-
ber generators fall into three categories [8]: true random
number generators (TRNGs), quasirandom number generators
(QRNGs) and pseudorandom number generators (PRNGs).

TRNGs utilize physical sources of randomness to provide
truly unpredictable numbers. These generators are usually slow
and unrepeatable, and usually need the support of specialist

2664

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

hardware [2]. So TRNGs hardly used in the field of stochas-
tic optimization. QRNGs are designed to evenly fill an n-
dimensional space with points. Though quite useful, they are
not widely used in the domain of optimization. PRNGs are
used to generate pseudorandom sequences of numbers that
satisfy most of the statistical properties of a truly random
sequence but is generated by a deterministic algorithm. PRNGs
are the most common RNGs of the three groups, and provided
by almost all programming languages. There also exit many
well optimized PRNGs for open access. As we discuss PRNGs
in this work, we will use random numbers and pseudorandom
numbers alternatively henceforth.

Random numbers can subject to various distributions,
such as uniform, normal and cauchy distributions. Of all the
distributions, uniform distribution is the most important one.
Not only uniform random numbers are widely used in many
different domains, but they are used as the base generators
for generating random numbers subject to other distributions.
Many methods, like transformation methods and rejection
methods, can be used to convert uniformly distributed numbers
to ones with specific non-uniform distributions [2], [9].

As this work studies uniform distribution only, the re-
mainder of the section merely introduces RNGs with uniform
distribution. RNGs for generating uniform distribution random
numbers can be classified into two group, according to the
basic arithmetic operations utilized: RNGs based on modulo
arithmetic and RNGs based on binary arithmetic.

A. Modulo Arithmetic Based RNGs

RNGs of this type yield sequences of random numbers by
means of linear recurrence modulo m, where m is a large
integer.

1) Linear Congruential Generator (LCG): LCG is one of
the best-known random number generators. LCG is defined by
the following recurrence relation:

xi = a · xi−1 + c mod m

where x is the sequence of the generated random numbers
and m > 0, 0 < a < m, and 0 ≤ c, x0 < m. If uniform
distribution on [0, 1) is need, then use u = x

m as the output
sequence.

For LCG, a, c and m should be carefully chosen to
make sure that maximum period can be archived [1]. LCG
can be easily implemented on computer hardware which can
provide modulo arithmetic by storage-bit truncation. RNG
using LCG is shipped with C library (rand()) as well as many
other languages such as Java (java.lang.Random). LCG has a
relatively short period (at most 232 for 32-bit integer) compared
to other more complicated ones.

A special condition of LCG is when c = 0, which presents
a class of multiplicative congruential generators (MCG) [10].
Multiple carefully selected MCGs can be combined into more
complicated algorithms such as Whichmann-Hill generator
[11].

2) Multiple Recursive Generator (MRG): MRG is a
derivative of LCG and can achieve much longer period. A
MRG of order k is defined as follows:

xi = (a1 · xi−1 + a2 · xi−2 + · · ·+ ak · xi−k) mod m

The recurrence has maximal period length mk − 1, if tuple
(a1, ..., ak) has certain properties [1].

3) Combined Multiple Recursive Generator (CMR): CMR
combines multiple MRGs and can obtain better statistical
properties and longer periods compared with a single MRG.
A well-known implementation of CMR, CMR32k3a [12],
combines two MRGs:

xi = a11 · xi−1 + a12 · xi−2 + x13 · xi−3 mod m1

yi = a21 · yi−1 + a22 · yi−2 + x23 · yi−3 mod m2

zi = xi − yi mod m1

where z forms the required sequence.

B. Binary Arithmetic Based RNGs

RNGs of this type are defined directly in terms of bit strings
and sequences. As computers are fast for binary arithmetic
operations, binary arithmetic based RNGs can be more efficient
than modulo arithmetic based ones.

1) Xorshift: Xorshift [7] produces random numbers by
means of repeated use of bit-wise exclusive-or (xor, ⊕) and
shift (� for left and � for right) operations.

A xorshift with four seeds (x, y, z, w) can be implemented
as follows:

t = (x⊕ (xi � a))
x = y
y = z
z = w
w = (w ⊕ (w � b))⊕ (t⊕ (t� c))

where w forms the required sequence.

With a carefully selected tuple (a, b, c), the generated
sequence can have a period as long as 2128 − 1.

2) Mersenne Twister (MT): MT [13] is one of the most
widely respected RNGs, it is a twisted Generalized Feedback
Shift Register (GFSR). The underlying algorithm of MT is as
follows:

• Set r w-bit numbers (xi, i = 1, 2, · · · , r) randomly as
initial values.

• Let

A =

(
0 Iw−1

aw aw−1 · · · a1

)
,

where Iw−1 is the (w−1)×(w−1) identity matrix and
ai, i = 1, . . . , w take values of either 0 or 1. Define

xi+r =
(
xi+s ⊕

(
x
(w:(l+1))
i |x(l:1)i+1

)
A
)
,

where x(w:(l+1))
i |x(l:1)i+1 indicates the concatenation of

the most significant (upper) w − l bits of xi and the
least significant l bits of xi+1.

• Perform the following operations sequentially:

z = xi+r ⊕ (xi+r � t1)
z = z ⊕ ((z � t2) & m1)
z = z ⊕ ((z � t3) & m2)
z = z ⊕ (x� t4)
ui+r = z/(2w − 1)

2665

where t1, t2, t3 and t4 are integers and m1 and m2 are
bit-masks and ‘&’ is a bit-wise and operation.

ui+r, i = 1, 2, · · · form the required sequence on interval
(0, 1].

With proper parameter values, MT can generate sequence
with a period as long as 219,937 and extremely good statistical
properties [13]. Strategies for selecting good initial values
are studied in [14] while Saito et al. [15] proposed efficient
implementation for fast execution on GPUs.

III. EXPERIMENTAL SETUP

In this section, we describe out experimental environment
and parameter settings in detail.

A. Testbed

We conducted our experiments on a PC running 64-bit
Windows 7 Professional with 8G DDR3 Memory and Intel
core I5-2310 (@2.9 GHz 3.1 GHz). The GPU used for im-
plementing PSO in the experiments is NVIDIA GeForce GTX
560 Ti with 384 CUDA cores. The program was implemented
with C and compiled with visual studio 2010 and CUDA 5.5.

B. Particle Swarm Optimization

A standard PSO algorithms [18] with ring topology was
adopted in our experiments. Velocity vectors and position
vectors are updated with Eq. 1 and Eq. 2, where in Eq. 1, ω =
1/(2 log(2)) ≈ 0.721, c1 = c2 = 0.5+log(2) ≈ 1.193, and r1,
r2 are random numbers derived from uniform distribution on
(0, 1) The swarm size was fixed to 50 for all experiments, and
10,000 iterations was performed for each optimization run.

vid = ω · vid + c1r1(pid − xid) + c2r2(pgd − xid) (1)

xi = xi + vi (2)

The PSO algorithm was implemented on the GPU with
CUDA based on the work by Zhou et al. [19]. The random
numbers generation process was replaced by RNGs under test.

C. RNGs Used for Comparison

Besides functions provided by programming languages,
many libraries with well-implemented RNGs are available,
such as AMD’s ACML [20] and Boost Random Number
Library [21] targeted at CPUs and specific implementations
([8], [14], [22]) for GPU platform.

Among all these candidates, Math Kernel Library (MKL)
[23] (for CPU) and CURAND [24] (for GPU) were selected
for the experiments considering the following reasons: 1)
RNGs provided by the two libraries cover the most popular
RNG algorithms, and 2) both MKL and CURAND are well-
optimized for our hardware platform (I5 CPU and GeForce 560
Ti GPU), so a fair comparison of efficiency can be expected.
So experiments with these two libraries are broadly covered
in terms of types of RNGs and present a fair comparision in
terms of time efficiency.

As LCG is widely shipped by standard library of various
programming language, we added a RNG with LCG (C’s
rand()). The RNGs used in the experiments are list by Tab. I.

D. Benchmark Functions

Nine benchmark functions were implemented on the GPU
with float numbers of single precision. All these functions are
minimizing problems while f1 ∼ f3 are unimodal function
while the left are multimodal functions.

The search space are all limited within [−10.0, 10.0]D,
where D is the dimension which could be 10, 30, 50, 100 in
the experiments. The optimum points were shifted to 1.0D if
some where else, and bias values were added to each function
to make sure the minimal values are 100 for functions, with
the only except of Weierstrass function. Weierstrass function
was implemented just as Eq. 8 and no effort was made
to move the optima point or adjust the minimal value. The
formulas of the used benchmark functions are listed as follows:

Sphere Function

f1 =
D∑
i=1

x2
i (3)

High Conditioned Elliptic Function

f2 =
D∑
i=1

(106)
i−1
D−1x2

i (4)

Discus Function

f3 = 106 · x2
1 +

D∑
i=2

x2
i (5)

Rosenbrock Function

f4 =

D−1∑
i=1

(100 ·
(
xi+1 − x2

i

)2
+ (1− xi)

2
) (6)

Ackley Function

f5 = −20 ·exp(−0.2 ·

√√√√ 1

D

D∑
i=1

x2
i)−exp(

1

D

D∑
i=1

cos(2π ·xi))

(7)

Weierstrass Function

f6 =
D∑
i=1

(
20∑
k=0

[0.5k cos(2π · 3k(xi + 0.5))]) (8)

Schaffer’s F7 Function

f7 = (
1

D − 1

D−1∑
i=1

(
√
yi +

√
yi sin

2(50 · y0.2
i)))2 (9)

where yi =
√

x2
i + x2

i+1

2666

TABLE I: Random Number Generators Tested

No. Algorithm Description Note

1 xorshift Implemented using the xorshift algorithm [7], created with generator type CU-
RAND RNG PSEUDO XORWOW

CURAND with CUDA
Toolkit 5.5

2 xorshift Same algorithm as 1, faster but probably statistically weaker, set ordering to CU-
RAND ORDERING PSEUDO SEEDED

3 Combined Multiple Recursive Implemented using the Combined Multiple Recursive algorithm [12], created with generator type
CURAND RNG PSEUDO MRG32K3A

4 Mersenne Twister Implemented using the Mersenne Twister algorithm with parameters customized for operation on
the GPU [15], created with generator type CURAND RNG PSEUDO MTGP32

5 Multiplicative Congruential Implemented using the 31-bit Multiplicative Congruential algorithm [10], create with parameter
VSL BRNG MCG31

MKL 11.1

6 Generalized Feedback Shift Register Implemented using the 32-bit generalized feedback shift register algorithms, create with parameter
VSL BRNG R250 [16]

7 Combined Multiple Recursive Implemented using Combined Multiple Recursive algorithm [12], create with parameter
VSL BRNG MRG32K3A

8 Multiplicative Congruential Implemented using the 59-bit Multiplicative Congruential algorithm from NAG Numerical Libraries
[11], create with parameter VSL BRNG MCG59

9 Wichmann-Hill Implemented using the Wichmann-Hill algorithm from NAG Numerical Libraries [11], create with
parameter VSL BRNG WH

10 Mersenne Twister Implemented using the Mersenne Twister algorithm MT19937 [13], create with parameter
VSL BRNG MT19937

11 Mersenne Twister
Implemented using the Mersenne Twister algorithms MT2203 [17] with a set of 6024 configurations.
Parameters of the generators provide mutual independence of the corresponding sequences., create
with parameter VSL BRNG MT2203

12 Mersenne Twister Implemented using the SIMD-oriented Fast Mersenne Twister algorithm SFMT19937 [14], create
with parameter VSL BRNG SFMT19937

13 Linear Congruential Implementing using Linear Congruential algorithm with a = 1103515245, c = 12345, m =
232, only high 16 bits are used as output MS Visual Studio C

library rand()

Griewank Function

f8 =
D∑
i=1

x2
i

4000
−

D∏
i=1

cos(
xi√
i
) + 1 (10)

Rastrigin Function

f9 =
D∑
i=1

(x2
i − 10 cos(2π · xi) + 10) (11)

IV. RESULTS AND ANALYSIS

This section presents the experimental results. Both effi-
ciency of RNGs and solution quality of PSO using each RNG
are described and analyzed.

A. RNGs Efficiency

We ran each RNG program to generate random numbers
in batch of different size, and test the speed. The results are
presented in Tab. II.

In general, RNGs based on both CPUs and GPUs achieve
better performance by generating batches of random numbers,
and GPUs need larger batch size to get peek performance than
CPUs. In the condition of large batch size, CURAND can be
several to tens fold faster than MKL for the same algorithms.

Modulo arithmetic based RNGs are less efficient than bi-
nary arithmetic ones, just as aforementioned. Combined Multi-
ple Recursive algorithm (No. 7) and Wichmann-Hill algorithm
(No. 9) present the slowest RNGs, followed by Multiplicative
Congruential (No. 8). As a comparison, Mersenne Twister
algorithm presents the fastest RNGs. CPU-based SFMT19937

(No. 12) can be one order of magnitude faster than CPU-based
CMR32K3A (No. 7) while the GPU version (No. 4) can be
5 fold faster than the CPU implementation. Considering the
good statistical property of MT [13], [14], [17], it makes the
best RNG of all the RNGs concerned.

B. Solution Quality

In all experiments, 150 independent trials were performed
for per function on each dimension, where 10,000 iterations
were executed for each trial. 150 integer numbers were
randomly generated from uniform distribution as seeds for
each trail, and all RNGs shared the same 150 seeds. All
particles were initialized randomly within the whole feasible
search space and the initialization was shared by all RNGs
(to be exactly, RNG No. 10 was used for the purpose of
initialization).

The results (average values and standard deviations) are
listed by Tab. III.

For a particular function, the solution quality can compared
between any two RNGs with statistical test. But there is
no direct way to compare a groups of RNGs (13 in our
experiments).

1) League Scoring Strategy: To compare the results in a
systematic and quantitative way, a league scoring strategy was
adopted here. The results for two different RNGs, say A and
B, on the same function of the same dimension are compared
with p = 0.05 using rank-sum test. The scoring rules are
illustrated by Tab. V. If A is better than B (i.e. A < B
assuming minimum problems), then A scores a points while
B scores b points. On the contrary, if B is better than A, then
B scored a points while A scores b points. Otherwise, it’s a

2667

TABLE II: RNG Efficiency Comparison Under Different Batch Size
(# of random numbers per nanosecond)

GPU CPU
CURAND MKL C

Batch Size 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.3 0.3 0.3 0.3 17.5 17.3 14.8 15.9 7.8 15.2 14.7 15.2

36.5

10 2.7 2.6 1.9 2.6 95.2 116.3 54.6 109.9 56.8 93.5 87.7 129.9
20 4.8 4.9 3.2 5.1 144.9 166.7 67.1 192.3 79.4 181.8 161.3 227.3
50 10.9 11.0 7.2 12.8 294.1 227.3 112.4 285.7 120.5 344.8 294.1 454.5

100 21.1 21.6 14.2 25.8 400.0 263.2 138.9 357.1 142.9 434.8 384.6 714.3
200 41.7 43.7 28.9 49.8 555.6 285.7 156.3 416.7 158.7 500.0 555.6 1111.1
500 104.2 114.9 76.9 125.0 625.0 416.7 178.6 454.5 166.7 625.0 666.7 1428.6

1000 200.0 243.9 163.9 232.6 666.7 555.6 185.2 454.5 172.4 666.7 769.2 1111.1
2000 312.5 476.2 344.8 434.8 666.7 666.7 188.7 454.5 172.4 714.3 769.2 1250.0
5000 500.0 1250.0 1000.0 909.1 769.2 769.2 192.3 476.2 172.4 833.3 833.3 1428.6

10000 588.2 2500.0 1428.6 1250.0 714.3 833.3 192.3 476.2 175.4 833.3 833.3 1428.6
20000 666.7 3333.3 1666.7 1666.7 714.3 833.3 192.3 476.2 175.4 769.2 769.2 1428.6
50000 769.2 10000.0 2500.0 3333.3 769.2 833.3 192.3 476.2 175.4 769.2 769.2 1428.6

100000 714.3 10000.0 2500.0 5000.0 714.3 833.3 192.3 476.2 175.4 769.2 769.2 1428.6
200000 714.3 10000.0 2500.0 10000.0 714.3 714.3 192.3 476.2 175.4 769.2 769.2 1666.7

TABLE IV: Scores Achieved by RNGs for each Function

Function D

GPU CPU
CURAND MKL C

1 2 3 4 5 6 7 8 9 10 11 12 13

Sphere

10 14 14 14 14 14 14 14 14 14 14 14 14 14
30 14 14 13 14 14 15 14 14 14 14 14 14 14
50 14 14 14 14 14 14 14 14 14 14 14 14 14
100 14 14 14 14 12 14 16 14 14 16 12 14 14

Elliptic

10 14 14 14 14 14 14 14 14 14 14 14 14 14
30 14 14 14 14 14 14 14 14 14 14 14 14 14
50 14 14 14 14 14 14 14 14 14 14 14 14 14
100 14 14 14 15 14 14 11 15 14 14 15 14 14

Discus

10 14 14 14 14 14 14 14 14 14 14 14 14 14
30 14 14 14 14 14 14 14 14 14 14 14 14 14
50 14 14 14 14 14 14 14 14 14 14 14 14 14
100 14 14 14 14 14 14 14 14 14 14 14 14 14

Ronsenbrock

10 14 14 15 14 13 10 14 15 14 14 15 13 17
30 14 14 14 14 14 15 14 13 14 14 14 14 14
50 15 14 14 14 12 14 14 14 14 14 14 14 15
100 14 11 11 19 14 11 11 12 14 18 14 13 20

Ackley

10 14 14 12 15 14 14 14 15 14 14 14 14 14
30 14 14 14 14 14 14 14 14 14 14 14 14 14
50 14 14 14 14 14 14 14 14 14 14 14 14 14
100 14 14 14 14 14 14 14 14 14 14 14 14 14

Weierstrass

10 14 14 14 14 14 14 14 14 14 14 14 14 14
30 13 14 14 14 13 14 17 14 14 13 14 14 14
50 14 14 14 14 14 14 14 14 14 14 14 14 14
100 14 14 14 14 14 14 14 14 14 14 14 14 14

Schaffers F7

10 14 14 14 14 14 14 14 14 14 14 14 14 14
30 14 14 14 14 14 14 14 14 14 14 14 14 14
50 14 14 14 14 14 14 14 14 14 14 14 14 14
100 14 14 14 14 14 14 14 14 14 14 14 14 14

Griewank

10 15 15 15 14 14 15 9 15 14 14 14 14 14
30 14 14 14 14 14 14 14 14 14 14 14 14 14
50 14 14 14 14 14 14 14 14 14 14 14 14 14
100 14 14 14 14 14 14 14 14 14 14 14 14 14

Rastrigin

10 14 14 14 14 14 14 14 14 14 14 14 14 14
30 14 14 14 15 14 13 14 14 14 14 14 14 14
50 14 14 14 14 14 14 14 14 14 14 14 14 14
100 14 14 14 14 14 14 14 14 15 13 14 14 14

total 505 502 500 512 498 499 498 505 505 508 504 502 514

tie so each scores c points. a, b and c satisfy the relation of
b < c < a.

The scores calculated by the proposed method is presented
by Tab. IV, where a = 2, b = 0, c = 1. For each row in the
table, a maximum value can be picked out.

Observing Tab. IV and the corresponding Radar Map

TABLE V: Scoring Rules for Quality Comparison

Condition Score of A Score of B
A < B +a +b

A > B +b +a

Otherwise +c +c

Fig. 1: Scores of All RNGs for Each Function

(Fig. 1), almost all cell were 14. Intuitively, it seems no
significant disparity among all these RNGs. To analyze the
performance in a more quantitative manner, the total scores
were calculated (see the last row in Tab. IV). At most 16 points
gap was observed among all the 13 RNGs. It is a very narrow
gap considering that it’s the total difference after 12∗36 = 432
rounds of ‘competitions’.

To make a detailed observation about if disparity exits
for particular dimension or specific function, the scores were
aggregated by dimension and by function respectively. Fig. 2
and Fig. 3 illustrate the aggregated results. No significant
disparity was observed for these two conditions.

As a last comment on league score strategy, we shall take
notice that the score-based comparison depend on the selection
of scoring rules which determine to what degree a win be
awarded and a lose be penalized. However, since what we
encounter here is in effect a multi-objective comparison, there
is no trivial optimal strategy without further knowledge. But
the conclusion holds for common scoring rules, such as a =
3, b = 0, c = 1 and a = 1, b = −1, c = 0.

2) Lose-rank Strategy: To avoid determining the rational
scoring rules, we proposed a new criterion named ‘lose-rank’
to compare the performance of multiple RNGs.

2668

TABLE III: Results for Benchmark Functions

Function D 1 2 3 4 5 6 7 8 9 10 11 12 13

Shpere

10
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

30
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(1.19E-03) (8.29E-04) (8.40E-04) (1.00E-03) (6.48E-04) (9.33E-04) (1.42E-03) (7.47E-04) (5.83E-04) (3.71E-04) (5.67E-04) (9.30E-04) (1.18E-03)

50
1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.02E+02 1.02E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02
(2.06E-01) (2.82E-01) (2.71E-01) (2.56E-01) (2.59E-01) (2.22E-01) (2.51E-01) (2.52E-01) (2.45E-01) (2.40E-01) (3.28E-01) (2.38E-01) (2.89E-01)

100
1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02
(3.71E-03) (5.03E-03) (6.59E-03) (9.43E-03) (6.46E-03) (3.88E-03) (5.46E-03) (6.03E-03) (5.74E-03) (1.06E-02) (6.64E-03) (5.82E-03) (5.55E-03)

Elliptic

10
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

30
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(1.11E-05) (1.13E-05) (4.20E-05) (1.34E-05) (1.26E-05) (2.74E-05) (1.56E-05) (2.09E-05) (1.55E-05) (1.39E-05) (1.18E-05) (1.49E-05) (1.31E-05)

50
1.09E+02 (1.09E+02 1.08E+02 1.08E+02 1.08E+02 1.08E+02 1.08E+02 1.08E+02 1.08E+02 1.08E+02 1.08E+02 1.08E+02 1.09E+02

(1.57E+00) (1.69E+00) (1.75E+00) (1.44E+00) (1.52E+00) (1.35E+00) (1.47E+00) (1.82E+00) (1.36E+00) (1.46E+00) (1.74E+00) (1.30E+00) (1.43E+00)

100
4.46E+02 4.46E+02 4.46E+02 4.46E+02 4.46E+02 4.46E+02 4.46E+02 4.46E+02 4.46E+02 4.46E+02 4.46E+02 4.46E+02 4.46E+02
(1.02E-02) (1.07E-02) (1.02E-02) (1.14E-02) (8.95E-03) (2.39E-02) (7.79E-03) (1.38E-02) (1.06E-02) (9.73E-03) (9.27E-03) (5.59E-03) (6.89E-03)

Discus

10
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02

(0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00) (0.00E+00)

30
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(3.88E-06) (6.91E-06) (5.93E-06) (5.84E-06) (7.92E-06) (5.37E-06) (3.93E-06) (5.96E-06) (6.52E-06) (6.62E-06) (7.35E-06) (6.24E-06) (6.01E-06)

50
1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.02E+02 1.01E+02 1.01E+02 1.01E+02
(3.13E-01) (2.62E-01) (2.94E-01) (2.59E-01) (2.99E-01) (2.22E-01) (2.69E-01) (2.67E-01) (3.15E-01) (3.21E-01) (2.58E-01) (2.88E-01) (3.04E-01)

100
1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02 1.68E+02
(1.13E-02) (5.76E-03) (1.01E-02) (6.42E-03) (5.09E-03) (7.81E-03) (5.41E-03) (7.07E-03) (6.15E-03) (8.30E-03) (1.02E-02) (4.76E-03) (6.64E-03)

Rosenbrock

10
1.05E+02 1.05E+02 1.05E+02 1.05E+02 1.05E+02 1.06E+02 1.05E+02 1.05E+02 1.05E+02 1.05E+02 1.05E+02 1.05E+02 1.05E+02

(1.27E+00) (1.79E+00) (1.54E+00) (1.60E+00) (1.47E+00) (1.20E+00) (1.88E+00) (1.55E+00) (1.84E+00) (1.65E+00) (1.63E+00) (1.29E+00) (1.88E+00)

30
1.27E+02 1.27E+02 1.27E+02 1.27E+02 1.27E+02 1.27E+02 1.27E+02 1.27E+02 1.27E+02 1.27E+02 1.27E+02 1.27E+02 1.27E+02
(2.15E-01) (3.11E-01) (2.50E-01) (2.02E-01) (3.04E-01) (2.27E-01) (2.58E-01) (1.79E-01) (2.44E-01) (2.59E-01) (2.42E-01) (2.27E-01) (4.07E-01)

50
7.54E+03 7.61E+03 7.58E+03 7.57E+03 7.65E+03 7.60E+03 7.57E+03 7.61E+03 7.54E+03 7.58E+03 7.59E+03 7.61E+03 7.57E+03

(2.00E+02) (3.03E+02) (2.03E+02) (1.86E+02) (1.86E+02) (2.07E+02) (2.16E+02) (2.22E+02) (1.97E+02) (2.47E+02) (2.59E+02) (1.99E+02) (2.25E+02)

100
2.60E+04 2.60E+04 2.62E+04 2.58E+04 2.59E+04 2.61E+04 2.60E+04 2.60E+04 2.61E+04 2.58E+04 2.58E+04 2.60E+04 2.59E+04

(8.03E+02) (5.85E+02) (5.23E+02) (6.94E+02) (6.16E+02) (4.65E+02) (7.11E+02) (6.54E+02) (4.73E+02) (6.85E+02) (7.48E+02) (6.34E+02) (4.84E+02)

Ackley

10
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(2.16E-06) (3.31E-06) (3.48E-06) (3.88E-06) (2.96E-06) (6.75E-06) (3.07E-06) (4.17E-06) (3.05E-06) (6.34E-06) (2.74E-06) (2.82E-06) (4.27E-06)

30
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(3.65E-02) (4.75E-02) (4.11E-02) (2.89E-02) (3.25E-02) (2.35E-02) (2.36E-02) (6.79E-02) (3.01E-02) (4.28E-02) (3.48E-02) (3.41E-02) (3.47E-02)

50
1.16E+02 1.16E+02 1.16E+02 1.16E+02 1.16E+02 1.16E+02 1.16E+02 1.16E+02 1.16E+02 1.16E+02 1.16E+02 1.16E+02 1.16E+02
(9.11E-02) (8.76E-02) (8.13E-02) (9.58E-02) (6.69E-02) (9.67E-02) (7.95E-02) (1.16E-01) (8.20E-02) (8.14E-02) (7.89E-02) (9.40E-02) (9.84E-02)

100
1.17E+02 1.17E+02 1.17E+02 1.17E+02 1.17E+02 1.17E+02 1.17E+02 1.17E+02 1.17E+02 1.17E+02 1.17E+02 1.17E+02 1.17E+02

(5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01) (5.15E+01)

Weierstrass

10
-2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01 -2.00E+01
(3.70E-02) (4.20E-02) (9.90E-03) (9.01E-02) (1.24E-02) (6.43E-02) (5.78E-02) (2.06E-02) (5.77E-02) (4.83E-02) (1.08E-02) (1.42E-01) (6.41E-02)

30
-5.82E+01 -5.91E+01 -5.93E+01 -5.80E+01 -5.94E+01 -5.94E+01 -5.98E+01 -5.92E+01 -5.77E+01 -5.80E+01 -5.90E+01 -5.91E+01 -5.84E+01
(4.43E+00) (3.24E+00) (2.87E+00) (4.49E+00) (2.12E+00) (2.15E+00) (1.48E+00) (2.74E+00) (4.95E+00) (5.33E+00) (3.53E+00) (3.44E+00) (3.89E+00)

50
-1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02 -1.00E+02
(2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14)

100
-2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02 -2.00E+02
(2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14) (2.88E-14)

Schaffer’s F7

10
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(3.65E-03) (8.14E-03) (1.16E-02) (4.98E-03) (7.53E-03) (7.99E-03) (1.76E-02) (7.04E-03) (8.09E-03) (6.30E-03) (6.00E-03) (1.01E-02) (9.48E-03)

30
1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02
(1.79E-01) (1.98E-01) (1.38E-01) (1.73E-01) (2.07E-01) (1.59E-01) (1.83E-01) (1.65E-01) (1.45E-01) (1.46E-01) (1.85E-01) (1.79E-01) (1.88E-01)

50
1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02
(2.96E-01) (2.83E-01) (2.88E-01) (2.36E-01) (2.87E-01) (2.67E-01) (2.30E-01) (2.90E-01) (2.16E-01) (2.31E-01) (2.62E-01) (2.84E-01) (2.80E-01)

100
1.44E+02 1.44E+02 1.44E+02 1.44E+02 1.44E+02 1.44E+02 1.44E+02 1.44E+02 1.44E+02 1.44E+02 1.44E+02 1.44E+02 1.44E+02
(2.09E-01) (1.92E-01) (2.37E-01) (2.10E-01) (1.68E-01) (1.82E-01) (2.43E-01) (2.03E-01) (1.78E-01) (2.52E-01) (1.76E-01) (2.55E-01) (2.03E-01)

Griewank

10
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(8.61E-03) (9.61E-03) (7.99E-03) (8.46E-03) (9.49E-03) (1.10E-02) (1.05E-02) (9.42E-03) (8.29E-03) (8.53E-03) (9.19E-03) (8.37E-03) (1.09E-02)

30
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(4.29E-02) (5.48E-02) (5.47E-02) (4.25E-02) (4.89E-02) (4.80E-02) (5.32E-02) (5.69E-02) (4.88E-02) (4.71E-02) (5.07E-02) (5.04E-02) (5.66E-02)

50
1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
(6.98E-02) (6.96E-02) (7.92E-02) (7.45E-02) (8.14E-02) (1.03E-01) (8.11E-02) (7.20E-02) (7.74E-02) (9.55E-02) (8.30E-02) (9.03E-02) (8.22E-02)

100
1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02
(1.49E-02) (1.24E-02) (1.39E-02) (1.33E-02) (1.38E-02) (1.68E-02) (1.70E-02) (1.62E-02) (1.37E-02) (1.41E-02) (1.12E-02) (1.50E-02) (1.85E-02)

Rastrigin

10
1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.04E+02

(1.20E+00) (1.57E+00) (1.22E+00) (1.82E+00) (1.94E+00) (1.87E+00) (1.60E+00) (1.78E+00) (2.03E+00) (2.20E+00) (1.74E+00) (1.95E+00) (1.67E+00)

30
1.30E+02 1.29E+02 1.30E+02 1.29E+02 1.30E+02 1.30E+02 1.30E+02 1.29E+02 1.29E+02 1.30E+02 1.30E+02 1.30E+02 1.30E+02
(5.51E-01) (8.14E-01) (4.64E-01) (7.81E-01) (6.14E-01) (9.05E-01) (5.53E-01) (8.75E-01) (7.41E-01) (5.28E-01) (4.96E-01) (7.24E-01) (6.15E-01)

50
3.80E+02 3.88E+02 3.86E+02 3.80E+02 3.76E+02 3.85E+02 3.83E+02 3.86E+02 3.93E+02 4.00E+02 3.87E+02 3.85E+02 3.89E+02

(2.90E+01) (2.78E+01) (2.27E+01) (2.48E+01) (3.04E+01) (2.92E+01) (1.85E+01) (2.50E+01) (2.81E+01) (2.47E+01) (3.08E+01) (2.64E+01) (2.44E+01)

100
9.12E+03 9.14E+03 9.13E+03 9.13E+03 9.12E+03 9.14E+03 9.12E+03 9.11E+03 9.12E+03 9.13E+03 9.13E+03 9.12E+03 9.12E+03

(6.59E+01) (5.06E+01) (5.99E+01) (5.44E+01) (5.90E+01) (5.85E+01) (6.05E+01) (6.10E+01) (6.10E+01) (7.26E+01) (5.97E+01) (5.62E+01) (5.94E+01)

2669

Fig. 3: Scores Aggregated by Function

Fig. 2: Scores Aggregated by Dimension

Lose-rank can be calculated as follows. For A certain RNG,
say R1, set its lose-rank to 0. R1 compares its solutions for
a function with those of all other RNGs’s one after another.
If R1 statistically worse than some RNG, then add 1 to its
lose-rank. In this way, we can calculate all RNGs’ lose-ranks
for all functions.

The idea underlying lose-rank is that if some RNG per-
forms significantly worse in terms of solution quality, then it
will has a relative large lose-rank.

The average lose-rank on all functions is listed by Tab. VI.
The maximum lose-rank is about 1.6 (No. 4), which means
any RNG, at its worst, is worse than less than 2 other RNGs.
Considering each RNGs has 12 ‘rivals’, it is a relatively minor
lose-rank. The minimum lose-rank is around 0.4 (No. 5), which
means that any RNG, at its best, will lose to some RNGs for
certain functions. (Note No. 13 is among one of the worst
in accordance with lose rank criterion while it achieved the
highest score under league scoring criterion.)

The average lose-rank on each dimension and each function
type is presented by Fig. 4 and Fig. 5, respectively. For a certain
RNG, the lose-ranks can be lower or higher, but the fluctuation
follows no remarkable pattern, and very high lose-ranks were
observed rarely.

Based on all these observations, there exits no significant
bad RNGs, and there is no outright good ones either. There

Fig. 4: Lose-rank Average on Dimension

is no strong reason to prefer any RNG to others as far as its
impact on solution quality concerned.

V. CONCLUSIONS

Though different RNGs have various statistical strength, no
significant disparity was observed in PSO in the experiments.
Even the most common linear congruential generator performs
very well, despite the fact that random number sequences
generated by LCG are of lower quality in terms of randomness
compared to other more complicated RNGs.

As a result, it is reasonable to utilize the most efficient
algorithms for random number generation. In general, both
CPU- and GPU-based RNGs can achieve best performance
when generating blocks of random numbers that are as large
as possible. Fewer calls to generate many random numbers is
more efficient than many calls generating only a few random
numbers. GPU-based RNGs can be several fold even one order
of magnitude faster than their CPU-based counterparts, and
Mersenne Twister algorithm presents the most efficient random
number generator.

Only PSO using uniformly distributed RNGs was discussed
in this work, however the two proposed strategies can be

TABLE VI: Average Lose-rank Values

1 2 3 4 5 6 7 8 9 10 11 12 13

Lose-rank 1.0 0.6 0.8 1.6 0.4 1.1 0.9 1.4 0.9 0.9 1.0 0.5 1.3

2670

Fig. 5: Lose-rank Averaged on Function

extended to compare any stochastic optimization algorithm on
any real-world optimization problems as well as benchmarks.
RNGs for non-uniform distributions can also be researched in
the proposed framework.

REFERENCES

[1] D. E. Knuth, “The art of computer programming, volume 2: Seminu-
merical algorithms,” Amsterdam, London, 1969.

[2] P. L’Ecuyer, “Random number generation,” in Handbook of
Computational Statistics, ser. Springer Handbooks of Computational
Statistics, J. E. Gentle, W. K. Hardle, and Y. Mori, Eds.
Springer Berlin Heidelberg, 2012, pp. 35–71. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21551-3 3

[3] P. L’Ecuyer and R. Simard, “Testu01: A c library for empirical
testing of random number generators,” ACM Trans. Math. Softw.,
vol. 33, no. 4, Aug. 2007. [Online]. Available: http://doi.acm.org/10.
1145/1268776.1268777

[4] M. Clerc, “List-based optimisers: Experiments and open questions,”
International Journal of Swarm Intelligence Research (IJSIR), vol. 4,
no. 4, pp. 23–38, 2013.

[5] C. J. A. Bastos-Filho, J. Andrade, M. Pita, and A. Ramos, “Impact
of the quality of random numbers generators on the performance of
particle swarm optimization,” in Systems, Man and Cybernetics, 2009.
SMC 2009. IEEE International Conference on, 2009, pp. 4988–4993.

[6] C. J. A. Bastos-Filho, M. Oliveira, D. N. O. Nascimento, and A. D.
Ramos, “Impact of the random number generator quality on particle
swarm optimization algorithm running on graphic processor units,” in
Hybrid Intelligent Systems (HIS), 2010 10th International Conference
on, 2010, pp. 85–90.

[7] G. Marsaglia, “Xorshift rngs,” Journal of Statistical Software, vol. 8,
no. 14, pp. 1–6, 2003.

[8] L. Howes and D. Thomas, GPU gems 3. Addison-Wesley Professional,
2007, ch. Efficient random number generation and application using
CUDA, pp. 805–830.

[9] J. A. Rice, Mathematical Statistics and Data Analysis. Belmont, CA
USA: Thomson Higher Education, 2007.

[10] P. L’Ecuyer, “Tables of linear congruential generators of different
sizes and good lattice structure,” Math. Comput., vol. 68, no. 225,
pp. 249–260, Jan. 1999. [Online]. Available: http://dx.doi.org/10.1090/
S0025-5718-99-00996-5

[11] The Numerical Algorithms Group Ltd, “Nag library manual, mark 23,”
http://www.nag.co.uk/numeric/fl/nagdoc fl23/xhtml/FRONTMATTER/
manconts.xml, 2011.

[12] P. L’Ecuyer, “Good parameters and implementations for combined
multiple recursive random number generators,” Operations Research,
vol. 47, no. 1, pp. 159–164, 1999.

[13] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-

erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[14] M. Saito and M. Matsumoto, “Simd-oriented fast mersenne twister:
a 128-bit pseudorandom number generator,” in Monte Carlo and
Quasi-Monte Carlo Methods 2006, A. Keller, S. Heinrich, and
H. Niederreiter, Eds. Springer Berlin Heidelberg, 2008, pp. 607–622.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-74496-2 36

[15] ——, “Variants of mersenne twister suitable for graphic processors,”
ACM Trans. Math. Softw., vol. 39, no. 2, pp. 12:1–12:20, Feb. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2427023.2427029

[16] S. Kirkpatrick and E. P. Stoll, “A very fast shift-register sequence
random number generator,” Journal of Computational Physics,
vol. 40, no. 2, pp. 517 – 526, 1981. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0021999181902278

[17] M. Matsumoto and T. Nishimura, “Dynamic creation of pseudorandom
number generators,” in Monte Carlo and Quasi-Monte Carlo Methods
1998, H. Niederreiter and J. Spanier, Eds. Springer Berlin Heidelberg,
2000, pp. 56–69.

[18] D. Bratton and J. Kennedy, “Defining a standard for particle swarm
optimization,” in Swarm Intelligence Symposium, 2007. SIS 2007. IEEE,
april 2007, pp. 120 –127.

[19] Y. Zhou and Y. Tan, “Gpu-based parallel particle swarm optimization,”
in Evolutionary Computation, 2009. CEC ’09. IEEE Congress on, May
2009, pp. 1493–1500.

[20] AMD Inc., “Core math library (acml),” http://developer.amd.com/
tools-and-sdks/cpu-development/amd-core-math-library-acml/.

[21] “The boost random number library,” http://www.boost.org/doc/libs/1
55 0/doc/html/boost random.html.

[22] W. B. Langdon, “A fast high quality pseudo random number
generator for nvidia cuda,” in Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation
Conference: Late Breaking Papers, ser. GECCO ’09. New York,
NY, USA: ACM, 2009, pp. 2511–2514. [Online]. Available: http:
//doi.acm.org/10.1145/1570256.1570353

[23] Intel Corp., “The math kernel library,” http://software.intel.com/en-us/
intel-mkl.

[24] NVIDIA Corp., CURAND Library Programming Guide v5.5, July 2013.

2671

