
1

Swarm Intelligence for Dimensionality
Reduction: How to Improve the Non-

negative Matrix Factorization with
Nature-inspired Optimization Methods

Andreas Janecek 1* and Ying Tan 2

1 University of Vienna, Research Group Theory and Applications of Algorithms, 1090 Vienna,

Austria

2 Key Laboratory of Machine Perception (MOE), and Department of Machine Intelligence;

School of Electronics Engineering and Computer Science, Peking University, Beijing,

100871, China

Email: andreas.janecek@univie.ac.at; ytan@pku.edu.cn * Corresponding author

ABSTRACT:

Low-rank approximations allow for compact representations of data with reduced storage and runtime

requirements and reduced redundancy and noise. The Non-negative Matrix Factorization (NMF) is a

special low-rank approximation which allows for additive parts-based, interpretable representation of the

data. Various properties of NMF are similar to Swarm Intelligence (SI) methods: indeed, most NMF

objective functions and most SI fitness functions are non-convex, discontinuous, and may possess many

local minima. This chapter summarizes our efforts on improving convergence, approximation quality, and

classification accuracy of NMF using five different meta-heuristics based on SI and evolutionary

computation. We present (i) new initialization strategies for NMF, and (ii) an iterative update strategy for

NMF.

The applicability of our approach is illustrated on data sets coming from the areas of spam filtering and

email classification. Experimental results show that both optimization strategies are able to improve NMF

in terms of faster convergence, lower approximation error, and/or better classification accuracy.

2

Keywords: Nonnegative Matrix Factorization, NMF Initialization, Differential Evolution, Particle Swarm

Optimization, Genetic Algorithms, Fireworks Algorithm, Fish School Search, Email Classification, Spam

Filtering, Multiplicative Update

INTRODUCTION

Low-rank approximations are utilized in several content based retrieval and data mining applications,

such as text and multimedia mining, web search, etc. and achieve a more compact representation of the

data with only limited loss in information. They reduce storage and runtime requirements, and also reduce

redundancy and noise in the data representation while capturing the essential associations. The Non-

negative Matrix Factorization (NMF, (Lee and Seung 1999)) leads to a low-rank approximation which

satisfies non-negativity constraints. NMF approximates a data matrix A by ,A WH where W and H

are the NMF factors. NMF requires all entries in A , W and H to be zero or positive. Contrary to other

low-rank approximations such as the Singular Value Decomposition (SVD), these constraints force NMF

to produce so-called “additive parts-based” representations. This is an impressive benefit of NMF, since it

makes the interpretation of the NMF factors much easier than for factors containing positive and negative

entries (Berry, Browne et al. 2007) (Janecek and Gansterer 2010) (Lee and Seung 1999).

The NMF is usually not unique if different initializations of the factors W and H are used. Moreover,

there are several different NMF algorithms which all follow different strategies (e.g. mean squared error,

least squares, gradient descent, etc.) and produce different results. Mathematically, the goal of NMF is to

find a “good” (ideally the best) solution of an optimization problem with bound constraints in the form

min ()x f x , where : Nf   is the nonlinear objective function of NMF, and  is the feasible

region (for NMF,  is restricted to non-negative values). f is usually not convex, discontinuous and may

possess many local minima (Stadlthanner, Lutter et al. 2007). Since meta-heuristic optimization

algorithms are known to be able to deal well with such difficulties they seem to be a promising choice for

improving the quality of NMF. Over the last decades nature-inspired meta-heuristics, including those

based on swarm intelligence, have gained much popularity due to their applicability for various

optimization problems. They benefit from the fact that they are able to find acceptable results within a

reasonable amount of time for many complex, large and dynamic problems (Blackwell 2007). Although

they lack the ability to guarantee the optimal solution for a given problem (comparably to NMF), it has

been shown that they are able to tackle various kinds of real-world optimization problems (Chiong 2009).

Meta-heuristics as well as the principles of NMF are in accordance with the law of sufficiency (Eberhart,

Shi et al. 2001): If a solution to a problem is good enough, fast enough and cheap enough, then it is

sufficient.

In this chapter we present two different strategies for improving the NMF using five optimization

algorithms based on swarm intelligence and evolutionary computing: Particle Swarm Optimization

3

(PSO), Genetic Algorithms (GA), Fish School Search (FSS), Differential Evolution (DE), and Fireworks

Algorithm (FWA). All algorithms are population based and can be categorized into the fields of swarm

intelligence (PSO, FSS, FWA), evolutionary algorithms (GA), and a combination thereof (DE). The goal

is to find a solution with smaller overall error at convergence, and/or to speed up convergence of NMF

(i.e. smaller approximation error for a given number of NMF iterations) compared to identical NMF

algorithms without applied optimization strategy. Another goal is to increase the classification accuracy

in cases where NMF is used as dimensionality reduction method for machine learning applications. The

concepts of the two optimization strategies are the following: In the first strategy, meta-heuristics are used

to initialize the factors W and H in order to minimize the NMF objective function prior to the

factorization. The second strategy aims at iteratively improving the approximation quality of NMF during

the first iterations.

The proposed optimization strategies can be considered successful if they are able to improve the NMF in

terms of either (i) faster convergence (i.e. better accuracy per runtime) (ii) lower final approximation

error, (iii) or better classification accuracy. The optimization of different rows of W and different

columns of H can be split up into several partly independent sub-tasks and can thus be executed

concurrently. Since this allows for a parallel and/or distributed computation of both update strategies, we

also discuss parallel implementations of the proposed optimization strategies. Experimental results show

that both strategies, the initialization of NMF factors as well as an iterative update during the first

iterations, are able to improve the NMF in terms of faster convergence, lower approximation error, and/or

better classification accuracy.

Related Work

The work by Lee and Seung (Lee and Seung 1999) is known as a standard reference for NMF. The

original Multiplicative Update (MU) algorithm introduced in this article provides a good baselines against

which other algorithms (e.g. the Alternating Least Squares algorithm (Paatero and Tapper 1994), the

Gradient Descent algorithm (Lin 2007), ALSPGRAD (Lin 2007), quasi Newton-type NMF (Kim and

Park 2008), fastNMF and bayesNMF (Schmidt and Laurberg 2008), etc.) have to be judged. While the

MU algorithm is still the fastest NMF algorithm per iteration and a good choice if a very fast and rough

approximation is needed, ALSPGRAD, fastNMF and bayesNMF have shown to achieve a better

approximation at convergence compared to many other NMF algorithms (Janecek, Schulze-Grotthoff et

al. 2011).

NMF initialization. Only few algorithms for non-random NMF initialization have been published. (Wild,

Curry et al. 2004) used spherical k -means clustering to group column vectors of A as input for W . A

similar technique was used in (Xue, Tong et al. 2008). Another clustering-based method of structured

initialization designed to find spatially localized basis images can be found in (Kim and Park 2008).

(Boutsidis and Gallopoulos 2008) used an initialization technique based on two SVD processes called

4

nonnegative double singular value decomposition (NNDSVD). Experiments indicate that this method has

advantages over the centroid initialization in (Wild, Curry et al. 2004) in terms of faster convergence.

NMF and meta-heuristics. So far, only few studies can be found that aim at combining NMF and meta-

heuristics, most of them are based on Genetic Algorithms (GAs). In (Stadlthanner, Lutter et al. 2007), the

authors have investigated the application of GAs on sparse NMF for microarray analysis, while (Snásel,

Platos et al. 2008) have applied GAs for boolean matrix factorization, a variant of NMF for binary data

based on Boolean algebra. However, the methods presented in these studies are barely connected to the

techniques presented in this chapter. In two preceding studies (Janecek and Tan 2011), (Janecek and Tan

2011) we have introduced the basic concepts of the proposed update strategies. Very recently, the study in

(LI, YANG et al. 2013) proposed to replace the two NMF algorithm presented in (Lee and Seung 1999)

with the quantum-behaved PSO (QPSO) for speech signal processing. QPSO is used to extract non-

negative components with low cross-talk error and high SNR. Although the authors mention that QPSO is

able to achieve better results than the two classic NMF algorithms, unfortunately no runtime comparisons

are performed to check whether approximation per runtime can be improved. We performed similar

experiments and found that when the complete NMF is replaced with SI methods the runtime increases

significantly. Thus, we expect a significant growth of computation time also in the case of QPSO.

Another very recent study (DAI 2013) uses an approach very similar to the NMF initialization presented

in this chapter. We note that our first publication on this topic (Janecek and Tan 2011) appeared two years

earlier. In their abstract, the authors mention that their approach uses the output of nonsmooth NMF as

initial values for PSO to avoid blind search. However, at the moment this article is only available in

Chinese characters. Similarly to the study (DAI 2013), no runtime measurements are available.

In this chapter we extend our preliminary work in several ways by the following new contributions. At

first, we evaluate our methods on synthetic data as well as on data sets coming from the areas of spam

filtering/email classification. This allows us to evaluate the proposed methods in the application context

of the applied data sets. In other words, we are now able to investigate the quality of the NMF not only in

terms of approximation accuracy but also in terms of classification accuracy achieved with the

approximated data sets as well as with the basic vectors of the NMF factor .W Within this evaluation

process we consider two different classification settings, a static setting where NMF is computed on the

complete data set (training and test data), and a dynamic setting where NMF can be applied dynamically

to new data. Moreover, we present a detailed evaluation of the runtime performance of the proposed

update strategies, and, finally, we are able to compare the performance of our strategies with each other

using the same parameter settings, data sets, and hardware set-up.

Notation

A matrix is represented by an uppercase italic letter (A , B ,  , …), a vector by a lowercase bold letter

(u, x, , q1, …), and a scalar by a lowercase Greek letter ( ,  , …). The thi row vector of a matrix D is

5

represented as r
id , and the

thj column vector of D as c
jd . Matrix-matrix multiplications are denoted by

“*”, element-wise multiplications by “·”, and element-wise divisions by “. / ”.

Synopsis

In the following section we briefly review low-rank approximations and NMF algorithms. Then, we

summarize the swarm intelligence algorithms used in this chapter, and present the proposed optimization

strategies for NMF based on them. Moreover, we discuss different classification methods based on NMF.

Finally, we evaluate our methods, discuss the achieved results, and conclude our work and summarize

ongoing and future research activities in this area.

LOW RANK APPROXIMATIONS

Given a data matrix m nA  whose n columns represent instances and whose m rows contain the

values of a certain feature for the instances, most low-rank approximations reduce the dimensionality by

representing the original data as accurately as possible with linear combinations of the original instances

and/or features. Mathematically, A is replaced with another matrix kA with usually much smaller rank.

In general, a closer approximation means a better factorization. However, it is highly likely that in some

applications specific factorizations might be more desirable compared to other solutions.

The most important low-rank approximation techniques are the Singular Value Decomposition (SVD,

(Berry 1992)) and the closely related Principal Component Analysis (PCA, (Jolliffe 2002)). Traditionally,

the PCA uses the eigenvalue decomposition to find eigenvalues and eigenvectors of the covariance matrix

Cov(A) of A . Then the original data matrix A can be approximated by :k kA AQ , with

1[,...,]k kQ  q q , where 1,..., kq q are the first k eigenvectors of Cov(A). The SVD decomposes A into a

product of three matrices such that A U V   , where  contains the singular values along the diagonal,

and U and V are the singular vectors. The reduced rank SVD to A can be found by setting all but the

first k largest singular values equal to zero and using only the first k columns of U and V , such that

:k k k kA U V   . Other well-known low-rank approximation techniques comprise Factor Analysis,

Independent Components Analysis, Multidimensional Scaling such as Fastmap or ISOMAP, or Locally

Linear Embedding (LLE), which are all summarized in (Tan, Steinbach et al. 2005).

Amongst all possible rank k approximations, the approximation kA calculated by SVD and PCA is the

best approximation in the sense that || ||k FA A is as small as possible (cf. (Berry, Drmac et al. 1999)).

In other words, SVD and PCA give the closest rank k approximation of a matrix, such that

|| || || ||k F k FA A A B   , where kB is any matrix of rank k , and || . ||F is the Frobenius norm, which is

6

defined as 2 1/2(| |) || ||ij Fa A . However, the main drawback of PCA and SVD refers to the

interpretability of the transformed features. The resulting orthogonal matrix factors generated by the

approximation usually do not allow for direct interpretations in terms of the original features because they

contain positive and negative coefficients (Zhang, Berry et al.). In many application domains, a negative

quantification of features is meaningless and the information about how much an original feature

contributes in a low-rank approximation is lost. The presence of negative, meaningless components or

factors may influence the entire result. This is especially important for applications where the original

data matrix contains only positive entries, e.g. in text-mining applications, image classification, etc. If the

factor matrices of the low-rank approximation were constrained to contain only positive or zero values,

the original meaning of the data could be preserved better.

Non-negative Matrix Factorization (NMF)

The NMF leads to special low-rank approximations which satisfy these non-negativity constraints. NMF

requires that all entries in A , W and H are zero or positive. This makes the interpretation of the NMF

factors much easier and enables NMF a non-subtractive combination of parts to form a whole (Lee and

Seung 1999). The NMF consists of reduced rank nonnegative factors m kW  and k nH  with

{ , }k min m n that approximate a matrix m nA  by ,A WH where the approximation WH has

rank at most k . The nonlinear optimization problem underlying NMF can generally be stated as

2
, ,

1
min (,) min || || .

2W H W H Ff W H A WH  (1.1)

The Frobenius norm || . ||F is commonly used to measure the error between the original data A and the

approximation ,WH but other measures such as the Kullback-Leibler divergence are also possible (Lee

and Seung 2001)). The error between A and WH is usually stored in a distance matrix D A WH  (cf.

Figure 1). Unlike the SVD, the NMF is not unique, and convergence is not guaranteed for all NMF

algorithms. If they converge, then usually to local minima only (potentially different ones for different

algorithms). Nevertheless, the data compression achieved with only local minima has been shown to be of

desirable quality for many data mining applications (Langville, Meyer et al. 2006). Moreover, for some

specific problem settings a smaller residual D A WH  (a smaller error) may not necessarily improve

of the solution of the actual application (e.g. classification task) compared to a rather coarse

approximation. However, as analyzed in (Janecek and Gansterer 2010) a closer NMF approximation leads

to qualitatively better classification results and turns out to achieve significantly more stable results.

7

Figure 1 - Scheme of very coarse NMF approximation with very low rank k. Although k is significantly

smaller than m and n, the typical structure of the original data matrix can be retained (note the three

different groups of data objects in the left, middle, and right part of A).

NMF Initialization. Algorithms for computing NMF are iterative and require initialization of the factors

W and H . NMF unavoidably converges to local minima, probably different ones for different

initialization (cf. (Boutsidis and Gallopoulos 2008)). Hence, random initialization makes the experiments

unrepeatable since the solution to Equ.1.1 is not unique in this case. A proper non-random initialization

can lead to faster error reduction and better overall error at convergence. Moreover, it makes the

experiments repeatable. Although the benefits of good NMF initialization techniques are well known in

the literature, most studies use random initialization (cf. (Boutsidis and Gallopoulos 2008). Since some

initialization procedures can be rather costly in terms of runtime the trade-off between computational

cost in the initialization step and the computational cost of the actual NMF algorithm need to be

balanced carefully. In some situations, an expensive preprocessing step may overwhelm the cost savings

in the subsequent NMF update steps.

General structure of NMF. In the basic form of NMF (see Algorithm 1), W and H are initialized

randomly and the whole algorithm is repeated several times (maxrepetition). In each repetition, NMF

update steps are processed until a maximum number of iterations is reached (maxiter). These update steps

are algorithm specific and differ from one NMF variant to the other. Termination criteria: If the

approximation error drops below a pre-defined threshold, or if the shift between two iterations is very

small, the algorithm might stop before all iterations are processed.

Algorithm 1 – General structure of NMF algorithms

Multiplicative update (MU) algorithm. To give an example of the update steps for a specific NMF

algorithm we provide the update steps for the MU algorithm in Algorithm 2. MU is one of the two

original NMF algorithms presented in (Lee and Seung 1999) and still one of the fastest NMF algorithms

per iteration. The update steps are based on the mean squared error objective function and consist of

multiplying the current factors by a measure of the quality of the current approximation. The divisions in

Algorithm 2 are to be performed element-wise.  is used to avoid division by zero (910 ).

Algorithm 2 – Update steps of the multiplicative update algorithm.

SWARM INTELLIGENCE OPTIMIZATION

8

Optimization techniques inspired by swarm intelligence (SI) have become increasingly popular and

benefit from their robustness and flexibility (Chiong 2009). Swarm intelligence is characterized by a

decentralized design paradigm that mimics the behavior of swarms of social insects, flocks of birds, or

schools of fish. Optimization techniques inspired by swarm intelligence have shown to be able to

successfully deal with increasingly complex problems (Blackwell 2007). In this chapter we use five

different optimization algorithms. Particle Swarm Optimization (PSO, (Kennedy and Eberhart 1995)) is a

classical swarm intelligence algorithm, while Fish School Search (FSS, (Bastos Filho, Lima Neto et al.

2009)) and Fireworks Algorithm (FWA, (Tan and Zhu 2010)) are two recently developed swarm

intelligence methods. These three algorithms are compared to a Genetic Algorithm (GA, (Haupt and

Haupt 2005)), a classical evolutionary algorithm, and Differential Evolution (DE, (Price, Storn et al.

2005)), which shares some features with swarm intelligence but can also be considered as an evolutionary

algorithm. Since PSO, GA and DE are well known optimization techniques we will not summarize them

here; instead the interested reader is referred to the references given above.

Fish School Search is a recently developed swarm intelligence algorithm that mimics the movements of

schools of fish. The main operators are feeding (fish can gain/lose weight, depending on the region they

swim in) and swimming (there are three different swimming movements).

Algorithm 3 – Pseudo code of the Fish School Search algorithm

The Fireworks Algorithm is a novel swarm intelligence algorithm that is inspired by observing fireworks

explosion. Two different types of explosion (search) processes are used in order to ensure diversity of

resulting sparks, which are similar to particles in PSO or fish in FSS.

Algorithm 4 – Pseudo code of the Fireworks Algorithm

IMPROVING NMF WITH SWARM INTELLIGENCE OPTIMIZATION

Before describing our two optimization strategies for NMF based on swarm intelligence, we discuss some

properties of the Frobenius norm (cf. (Berry, Drmac et al. 1999)). We use the Frobenius norm (1.1) as

NMF objective function (i.e. to measure the error between A and WH) because it offers some properties

that are beneficial for combining NMF and optimization algorithms. The following statements about the

Frobenius norm are valid for any real matrix. However, in the following we assume that D refers to a

distance matrix storing the distance (error of the approximation) between the original data and the

approximation, D A W H  . The Frobenius norm of a matrix m nD  is defined as

1/21/2(,)
2

1 1 1

|| || | |
min m n m n

F i ij
i i j

D 
  

  
   
   
  d , (1.2)

9

where i are the singular values of D , and ijd is the element in the thi row and thj column of D . The

Frobenius norm can also be computed row wise or column wise. The row wise calculation is

1/2

2

1

|| || | |
m

RW r
F i

i

D


 
  
 
 d , (1.3)

where | |r
id is the norm of the thi row vector of D , i.e. | |r

id = 2 1/2

1

(| |)
n

i
j

j

r

 , and i

jr is the thj element

in row i . The column wise calculation is

1/2

2

1

|| || | |
n

CW c
F j

j

D


 
  
 
 d , (1.4)

with | |c
jd being the norm of the thj column vector of D , i.e. | |c

jd = 2 1/2

1

(| |)
m

j
i

i

c

 , and j

ic being the thi

element in column j . Obviously, a reduction of the Frobenius norm of any row or any column of D leads

to a reduction of the total Frobenius norm || ||FD .

Figure 2 – Illustration of the optimization process for row l of the NMF factor W. The lthrow of A (al
r)

and all columns of H0 are the input for the optimization algorithms. The output is a row-vector wl
r (the

lthrow of W) which minimizes the norm of dl
r, the lthrow of the distance matrix D. The norm of dl

r is the

fitness function for the optimization algorithms (minimization problem).

In the following we exploit these properties of the Frobenius norm for the proposed NMF optimization

strategies. While strategy 1 aims at finding heuristically optimal starting points for the NMF factors,

strategy 2 aims at iteratively improving the quality of NMF during the first iterations. All meta-heuristics

mentioned in Section 0 can be used within both strategies. Before discussing the optimization strategies

we illustrate the basic optimization procedure for a specific row (row l) of W in Figure 2. This procedure

is similar for both optimization strategies.

Parameters: Global parameters used for all optimization algorithms are upper/lower bound of the search

space and the initialization, the number of particles (chromosomes, fish, ...), and maximum number of

fitness evaluations. Parameter settings are discussed in Sections 0. For all meta-heuristics, the problem

dimension is equal to the rank k of the NMF. I.e. if, for example, k = 10, a row/column vector with 10

continuous entries is returned by the optimization algorithms.

Optimization Strategy 1 – Initialization

10

Algorithm 5 – Pseudo code for the initialization procedure for NMF factors W and H. The two for-loops

in lines 4 and 10 can be executed concurrently. SIO = Swarm Intelligence Optimization

The goal of this optimization strategy is to find heuristically optimal starting points for the rows of W and

the columns of H , respectively, i.e. prior to the factorization process. Algorithm 5 shows the pseudo code

for the initialization procedure. In the beginning, 0H needs to be initialized randomly using a non-

negative lower bound (preferably 0) for the initialization. In the first loop, W is initialized row wise, i.e.

row r
iw is optimized in order to minimize the Frobenius norm of the thi row r

id of D , which is defined as

0r r r
i i i H d a w . Since the optimization of any row of W is independent to the optimization of any

other row of W , all r
iw can be optimized concurrently. In the second loop, the columns of H are

initialized using on the previously computed and already optimized rows of W , which need to be gathered

beforehand (in line 7 of the algorithm). H is initialized column wise, i.e. column c
jh is optimized in order

to minimize the Frobenius norm of the thj column c
jd of D , which is defined as c c c

j j jW d a h . The

optimization of the columns of H can be performed concurrently as well.

Optimization Strategy 2 – Iterative Optimization

Algorithm 6 - Pseudo code for the iterative optimization for the Multiplicative Update algorithm. SIO =

Swarm Intelligence Optimization. The methods used in this algorithm are explained below.

The second optimization strategy aims at iteratively optimizing the NMF factors W and H during the

first iterations of the NMF. Compared to the first strategy not all rows of W and all columns of H are

optimized – instead the optimization is only performed on selected rows/columns. In order to improve the

approximation as fast as possible we identify rows of D with highest norm (the approximation of this

row is worse than for other rows of D) and optimize the corresponding rows of W . The same procedure

is used to identify the columns of H that should be optimized. Our experiments showed that not all NMF

algorithms are suited for this iterative optimization procedure. For many NMF algorithms there was no

improvement with respect to the convergence or a reduction of the overall error after a fixed number of

iterations. However, for the multiplicative update (MU) algorithm – which is one of the most widely used

NMF algorithms – this strategy is able to improve the quality of the factorization. Hence, Algorithm 6

shows the pseudo code for the iterative optimization of the NMF factors during the first iterations using

the update steps of the MU algorithm described in Section 0. As shown in Section 0, this update strategy

is able to significantly reduce the approximation error per iteration for the MU algorithm. Due to the

relatively high computational cost of the meta-heuristics the optimization procedure is only applied in the

first m iterations and only on c selected rows/columns of the NMF factors. Similar to strategy one the

11

optimization of all rows of W are independent from each other (identical for columns of H), which

allows for a parallel implementation of the proposed method. In the following we describe the variables

and functions (for updating rows of W) of Algorithm 6. Updating columns of H is similar to updating

the rows of W .

 m: the number of iterations in which the optimization using meta-heuristics is applied

 c : the number of rows and/or columns that are optimized in the current iteration.

 c : the value of c is decreased by c in each iteration. (/)initialc round c m 

 [, _] ((),)r
iVal IX W sort norm descend  d : returns the values Val and the corresponding

indices (_IX W) of the norm of all row vectors r
id of D in descending order.

 _ _ (1:)IX W IX W c : returns only the first c elements of the vector _IX W .

 ||mi ||nimize r r
i i FHa w : see Figure 2 and optimization strategy 1

Using NMF for Classification Problems

As already mentioned before, we also investigate the performance of NMF when applied for classification

tasks. In this article, we use two different classification methods for evaluating the classification accuracy

of NMF based on the optimization strategies discussed in Sections 0 and 0. Both classification methods

have shown to work well for different application areas (Janecek 2010).

Static classification: In the first approach we analyze the classification accuracy achieved with the basis

vectors (i.e. features in W). In this setting the NMF needs to be computed on the complete dataset

(training and test data) which makes this technique only applicable on test data that is already available

before the approximation/classification. However, the advantage of this approach is that any freely chosen

classification method can be applied on the basis features.

If the original data matrix m nA  is an instance  feature matrix, then the NMF factor W is a m k

matrix, where every instance is described by k basis features, i.e. every column of W corresponds to a

basis feature. Note that this setup is different to the one discussed at the beginning of Section 0! By

applying a classification algorithm on the rows of W instead on the rows of A we can significantly

reduce the dimension of the classification problem and thus decrease the computational cost for both,

building the classification model and testing new data.

Dynamic classification: The second approach can be applied dynamically to new data. Here the

factorization of the data (NMF) and the classification process are separated from each other (i.e. the NMF

is performed on labeled training data – the unlabeled test data does not have to be available at the time of

performing the NMF). This approach is called NMF-LSI and is based on an adaptation of latent semantic

indexing which is a variant of the well-known vector space model.

12

A vector space model (VSM, (Raghavan and Wong 1999)) is a widely used algebraic model for

representing objects as vectors in a potentially very high dimensional metric vector space. The distance of

a query vector q to all objects in a given feature  instance matrix A are usually measured in terms of

the cosines of the angles between q and the columns of A such that
2 2|| || || ||

i
i

i

e A q
cos

Ae q
 

 

.

Latent semantic indexing (LSI, (Berry, Drmac et al. 1999)) is a variant of the basic VSM that replaces the

original matrix A with a low-rank approximation kA of A . In the standard version of LSI the SVD (see

Section 0) is used to construct kA , and icos can be approximated as
2 2|| || || ||

i k k k
i

k k k i

e V U q
cos

U V e q
 




 


. LSI

has computational advantages resulting in lower storage and computational cost, and often gives a cleaner

and more efficient representation of the (latent) relationship between data elements.

NMF-LSI: The approximation within LSI can be replaced with other approximations. Instead of using the

truncated SVD (:k k k kA U V  ), we approximate A with :k k kA W H (the NMF). When using NMF,

the value of k must be fixed prior to the approximation. The cosine of the angle between q and the ith

column of A can then be approximated as
2 2|| || || ||

i k k
i

k k i

e H W q
cos

W H e q
 

  

. In order to save computational

cost, the left term in the numerator (i ke H ) and the left part of the denominator (2|| ||k k iW H e) can be

computed a priori. In all three methods (VSM and both LSI variants) a query instance q is assigned to the

same class as the majority of its k-closest (in terms of cosine similarity) instances in A .

SETUP

Software: All software is written in Matlab. We used only publicly available NMF implementations:

Multiplicative Update (MU, Matlab's Statistics Toolbox since v6.2, nnmf()). ALS using Projected

Gradient (ALSPG, (Lin 2007)), BayesNMF and FastNMF (both (Schmidt and Laurberg 2008)). Matlab

code for NNDSVD (Section 0) is also publicly available (cf. (Boutsidis and Gallopoulos 2008)). Codes

for PSO and DE were adapted from (Pedersen 2010), and code for GA from the appendix of (Haupt and

Haupt 2005). For FWA we used the same implementation as in the introductory paper (Tan and Zhu

2010), and FSS was self-implemented following the algorithm provided in (Bastos Filho, Lima Neto et al.

2009).

Hardware: All experiments were performed on a SUN FIRE X4600 M2 with eight AMD Opteron quad-

core processors (32 cores overall) with 3.2 GHz, 2MB L3 cache, and 32GB of main memory (DDR-II

666).

13

Parallel implementation: We implemented parallel variants of the optimization algorithms exploiting

Matlab's parallel computing potential. Matlab’s Distributed Computing Server (which requires a separate

license) allows for parallelizing the optimization process over a large number (currently up to 64) of

workers (threads). These workers can be nodes in multi-core computers, GPUs, or a node in a cluster of

simple desktop PCs. Matlab's Parallel Computing Toolbox (which is included in the basic version of

Matlab) allows to run up to eight workers concurrently, but is limited to local workers, i.e. nodes on a

multi-core machine or local GPUs, but no cluster support.

Parameter setup: The dimension of the optimization problem is always identical to the rank k of the

NMF (cf. Section 0). The upper/lower bound of the search space was set to the interval [0, (4* ())]max A

and upper/lower bound of the initialization to [0, ()]max A . In order to achieve fair results which are not

biased due to excessive parameter tuning we used the same parameter settings for all data sets. These

parameter settings were found by running a self-written benchmark program that tested several parameter

combinations on randomly generated data. For some optimization strategies (PSO, FSS and FWA) the

recommended parameter settings from the literature worked fine. However, for GA and DE the parameter

settings that were used in most studies in the literature did not perform very well. For GA we found that a

very aggressive (high) mutation rate highly improved the results. For DE we observed a similar behavior

and found that the maximum crossover probability (1) achieved the best results. For all experiments in

this paper, the following parameter settings were used:

 GA: mutation rate of 0.5; selection rate of 0.65

 PSO: (bestG topology) following (Bratton and Kennedy 2007)  = 0.8, and 1c = 2c = 2.05

 DE: crossover probability (p c) set to upper limit 1

 FSS: _ind initialstep = 1, _ind finalstep =0.001, scaleW = 10

 FWA: number of sons (sonnum) set to 10

Data sets: We used three different data sets to evaluate our methods. DS-RAND is a randomly created,

fully dense 100 100 matrix which is used in order to provide unbiased results. To evaluate the proposed

methods in a classification context we further used two data sets from the area of email classification

(spam/phishing detection). Data set DS-SPAM1 consists of 3000 e-mail messages described by 133

features, divided into three groups: spam, phishing and legitimate email. An exact description of this data

set can be found in (Janecek and Gansterer 2010). Data set DS-SPAM2 is the spambase data set taken

from (Kjellerstrand 2011) which consists of 1813 spam and 2788 non-spam messages. DS-SPAM1

represents a ternary classification problem; DS-SPAM2 represents a typical binary classification problem.

EXPERIMENTAL EVALUATION

14

The evaluation is split up into two parts. First we evaluate the two optimization strategies proposed in

Section 0 and Section 0, then we evaluate the quality of NMF in a classification context.

Evaluation of Optimization Strategy 1

Initialization: Before evaluating the improvement of the NMF approximation quality as such, we first

measure the initial error after initializing W and H (before running the NMF algorithm). Figure 3 and

Figure 4 show the average approximation error (i.e. Frobenius norm / fitness) per row (left) and per

column (right) for data set DS-RAND.

Figure 3 – Left hand-side: average approximation error per row (after initializing rows of W). Right

hand-side: average approximation error per column (after initializing of H). NMF rank k = 5. Legends

are ordered according to approximation error (top = worst, bottom = best).

Figure 4 – Similar information as for Figure 3, but for NMF rank k = 30.

The figures on the left side show the average (mean) approximation error per row after initializing the

rows of W (first loop in Algorithm 5). The figures on the right side show the average (mean)

approximation error per column after initializing the columns of H (second loop in Algorithm 5). The

legends are ordered according to the average approximation error achieved after the maximum number of

function evaluations for each figure (top = worst, bottom = best). When the NMF rank k is small (see

Figure 3, k=5) all optimization algorithms except FWA achieve similar results. Except FWA, all

optimization algorithms quickly converge to a good result. With increasing complexity (i.e. increasing

rank k) FWA clearly improves its results, as shown in Figure 4. The gap between the optimization

algorithms is much bigger for larger rank k. Note that GA needs more than 2000 evaluations to achieve a

low approximation error for initializing the rows of .W When initializing the columns of H , PSO and

GA suffer from their high approximation error during the first iterations, which is caused by the relatively

sparse factor matrix W for PSO and GA. Although PSO is able to reduce the approximation error

significantly during the first 500 iterations, FSS and GA achieve slightly better final results. Generally,

FSS achieves the best approximation accuracy after the initialization procedure for large k. However, as

shown later the initial approximation error is not necessarily an indicator for the approximation quality of

NMF or the resulting classification accuracy.

Runtime performance: When parallelizing a sequential algorithm over p processors the speed-up

indicates how much the parallel algorithm can perform specific tasks faster than the sequential algorithm.

Speed-up is defined as /p sequential parallelE ES T T , where ET is the execution time. A linear speed-up is

achieved when pS is equal to p . Efficiency is another metric that estimates how well-utilized the

processors are in solving the problem, compared to the cost of communication and synchronization.

15

Efficiency is defined as /p pE S p . For algorithms with linear speed-up the efficiency is 1, for

algorithms with lower speed-up ratio it is between 0 and 1.

Figure 5 – Runtime and speed-up measurement/estimation for DS-RAND using 1500 function evaluations per

row/column for k= 5. As a reference, NNDSVD needs about 0.16 seconds for k=5. This indicates that if the number

of workers is larger than 12, the proposed optimization strategy is faster than NNDSVD.

Figure 5 shows the runtime behavior for optimization strategy 1 with increasing number of Matlab

workers. Runtimes are shown for the FSS optimization algorithm – however, all optimization algorithms

have rather similar runtimes. Due to license limitations we only had Matlab’s Parallel Computing

Toolbox available which is limited to 8 workers (cf. Section 0). We measured runtimes and speed-up for

up to 8 workers (average efficiency of about 0.95) and estimated the behavior of speed-up and runtime for

a larger number of workers (based on this efficiency). Upgrading to Matlab’s Distributed Computing

Server is possible without any code-changes and thus only a license issue. When using eight workers, the

NNDSVD initialization (the best NMF initialization strategy from the literature, Section 0) is a bit faster,

but estimation shows that the proposed initialization strategy is faster when 12 or more workers are used.

NNDSVD is already optimized and cannot be parallelized further in its current implementation.

Figure 6 – Approximation error archived by different NMF algorithms using different initialization variants (k=30,

after 1500 fitness evaluations)

Approximation quality: For evaluating the approximation results achieved by NMF using the factors W

and H initialized by the optimization algorithms, we compare our results to random initialization as well

as to NNDSVD. Figure 6 shows the approximation error on the y-axis (log scale) after a given number of

NMF iterations for four NMF algorithms using different initialization methods (for DS-RAND). The

initialization methods in the legend are ordered (top = worst, bottom = best). Since the MU algorithm (A)

has low cost per iteration but converges slowly, the first 100 iterations are shown (for all other algorithms

the first 25 iterations are shown). For MU, all initialization variants achieve a smaller approximation error

than random initialization. NNDSVD shows slightly better results than PSO and FWA, but GA, DE and

especially FSS are able to achieve a smaller error per iteration than NNDSVD. For ALSPG (B), the new

initialization strategy achieves better results than random initialization and also achieves a better

approximation error than NNDSVD. This improvement is independent of the actual optimization

algorithm. The same behavior can be seen for FastNMF (C) and BayesNMF (D). It has to be mentioned

that FastNMF and BayesNMF were developed after the NNDSVD initialization. Surprisingly, when using

FastNMF, NNDSVD achieves a lower approximation than random initialization. When comparing the

different meta-heuristics, FSS achieves the best results amongst all optimization algorithms and achieves

the closest approximation after 100 (MU) and 25 (ALSPG, FastNMF, BayesNMF) iterations,

16

respectively. DE and GA follow with a small gap since they are not as stable as FSS (i.e. they achieve

good results for some, but not for all NMF algorithms.

Evaluation of Optimization Strategy 2

Figure 7 shows the convergence curves for the NMF approximation using optimization strategy 2 for

different values of rank k (data set DS-RAND). Due to the relatively high computational cost of the meta-

heuristics we applied our optimization procedure here only on the rows of W , while the columns in H

remained unchanged. Experiments showed that with this setting the loss in accuracy compared to

optimizing both, W and H , is relatively small while the runtime can be increased significantly. m was

set to 2 which indicates that the optimization is only applied in the first two iterations, and c was set to 20.

As can be seen, the approximation error per iteration can be reduced when using optimization strategy 2.

For small rank k (left side of Figure 7) the improvement is significant but decreases with increasing

values of k (see right side of Figure 7). For larger k (larger than 10) the improvement over the basic MU is

only marginal.

Figure 7 – Accuracy per Iteration when updating only the row of W, m=2, c=20. Left: k=2, right: k=5

Runtime performance: Figure 8 shows the reduction in runtime for different rank k when the same

accuracy as for basic MU should be achieved. Runtimes are shown for a parallel implementation using 32

Matlab workers. Basic MU sets the baseline (1 = 100%), the runtimes of the optimization strategy 2

(using different optimization algorithms) are given as /opt XX Basic MUt t . For example, for small rank k the

runtime can often be reduced by more than 50%. With increasing rank k the runtime savings get smaller

and are only marginal for k=10. For rank k larger than 12 the basic MU algorithm is faster than

optimization strategy 2.

Figure 8 – Proportional runtimes for achieving the same accuracy as basic MU after 30 iterations for different

values of k when updating only the rows of W. (m=2, c=20)

Evaluation of the Classification Accuracy

Since optimization strategy 1 (initialization, Sections 0 and 0) achieves a faster, closer, and more stable

approximation as optimization strategy 2 (iterative update, Sections 0 and 0) we evaluate the

classification accuracy for this strategy. In the following, we measure the quality of optimization strategy

1 as pre-processing step for the two classification approaches mentioned in Section 0. Within the static

classification approach any machine learning algorithm can be used for classification, but the

approximation used for reducing the dimensionality of the data set (SVD, PCA, NMF) needs to be

applied on the complete data set. Contrary, the dynamic classification approach can be applied on the

training data, the test data does not need to be available at the time of computing the approximation.

However, this approach cannot be applied to all classification methods.

17

J4.8 kNN(1) SVM (SMO)
all features: 0,973 all features: 0,977 all features: 0,976

NMF Alg Init k = 30 k = 15 k = 5 k = 30 k = 15 k = 5 k = 30 k = 15 k = 5

ALSPG DE 0,968 0,972 0,965 0,974 0,972 0,968 0,973 0,956 0,940

ALSPG FSS 0,961 0,972 0,967 0,971 0,972 0,969 0,973 0,954 0,939

ALSPG FWA 0,973 0,969 0,970 0,972 0,973 0,968 0,964 0,954 0,938

ALSPG GA 0,970 0,968 0,969 0,973 0,970 0,968 0,973 0,957 0,947

ALSPG PSO 0,971 0,972 0,969 0,977 0,971 0,968 0,972 0,954 0,937

ALSPG NNDSVD 0,963 0,976 0,964 0,969 0,972 0,968 0,966 0,952 0,938

ALSPG RAND 0,943 0,938 0,935 0,952 0,940 0,938 0,948 0,942 0,913

BAYES DE 0,971 0,970 0,970 0,974 0,973 0,968 0,971 0,954 0,946

BAYES FSS 0,966 0,973 0,971 0,976 0,971 0,969 0,975 0,953 0,947

BAYES FWA 0,970 0,970 0,968 0,972 0,974 0,968 0,957 0,954 0,941

BAYES GA 0,966 0,971 0,968 0,974 0,973 0,969 0,972 0,955 0,947

BAYES PSO 0,968 0,967 0,969 0,970 0,971 0,970 0,966 0,957 0,937

BAYES NNDSVD 0,968 0,972 0,968 0,970 0,973 0,969 0,966 0,952 0,947

BAYES RAND 0,952 0,941 0,953 0,961 0,951 0,947 0,958 0,937 0,926

FAST DE 0,966 0,969 0,969 0,977 0,973 0,968 0,970 0,955 0,946

FAST FSS 0,967 0,971 0,970 0,976 0,971 0,969 0,975 0,953 0,947

FAST FWA 0,968 0,970 0,969 0,971 0,974 0,968 0,957 0,954 0,941

FAST GA 0,966 0,965 0,968 0,973 0,971 0,969 0,973 0,955 0,947

FAST PSO 0,968 0,970 0,970 0,974 0,971 0,970 0,973 0,956 0,937

FAST NNDSVD 0,966 0,973 0,970 0,970 0,973 0,968 0,966 0,952 0,939

FAST RAND 0,954 0,949 0,937 0,958 0,951 0,941 0,957 0,935 0,917

MU DE 0,955 0,952 0,965 0,966 0,959 0,968 0,962 0,953 0,940

MU FSS 0,965 0,960 0,967 0,967 0,964 0,969 0,966 0,952 0,939

MU FWA 0,949 0,956 0,970 0,964 0,966 0,968 0,959 0,955 0,938

MU GA 0,954 0,961 0,969 0,966 0,966 0,968 0,961 0,944 0,947

MU PSO 0,958 0,939 0,969 0,949 0,946 0,968 0,953 0,940 0,937

MU NNDSVD 0,964 0,967 0,964 0,972 0,973 0,968 0,963 0,954 0,938

MU RAND 0,941 0,937 0,947 0,948 0,941 0,951 0,951 0,930 0,927

Table 1 – Classification results (static classification) for DS-SPAM1

Static classification: We used three classification algorithms from the freely available WEKA toolkit

(Witten and Frank 2005) to compare the classification accuracies achieved with the NMF factor W based

on different NMF initializations: A support vector machine (SVM) based on the sequential minimal

optimization (SOM) algorithm using a polynomial kernel with an exponent of 1; a k-nearest neighbor

(kNN) classifier; and a J4.8 decision tree based on the C4.5 decision tree algorithm. Results were

achieved using a 10-fold cross-validation, i.e. by randomly partitioning the data sets into 10 subsamples

and then iteratively using one 9 subsamples as training data and 1 for testing.

18

Table 1 shows the overall classification results achieved with data set DS-SPAM1 using three different

values of rank k and the three different classification methods mentioned above. The overall classification

accuracy is computed as the number of correct classified email messages divided by the total number of

messages. The most-left column indicates the NMF algorithm and the second column the initialization

strategy used for computing the NMF (RAND = random initialization). Note that the number of features

is reduced to 30, 15 and 5, respectively, compared to 133. This reduction in the number of features

significantly speeds up both, the process of building the classification model and the classification process

itself. The best result for each NMF algorithm and each rank k is highlighted in bold letters. The proposed

initialization strategies achieve better classification results as the state-of-the-art initialization method

NNDSVD and significantly better results as random NMF initialization. Among the applied optimization

algorithms there is not much difference, though FSS achieves a larger number of best results then the

other algorithms. Results for J4.8 and kNN are very stable even for k=5 and are almost identical to the

classification result achieved with all features. For SVM, the classification result tends to decrease with

decreasing rank k. This behavior has been observed in another study (Janecek, Gansterer et al. 2008)

where SVM has been applied on data sets from other dimensionality reduction methods (PCA). However,

compared to NNDSVD and random initialization the proposed initialization methods achieve better

results for all ranks of k. Comparing the different NMF algorithms it can be seen the MU achieves lower

classification accuracy compared to ALSPG, FastNMF and BayesNMF.

J4.8 kNN(1) SVM (SMO)
all features: 0,921 all features: 0,907 all features: 0,904

NMF Alg Init k = 30 k = 15 k = 5 k = 30 k = 15 k = 5 k = 30 k = 15 k = 5

FAST DE 0,918 0,893 0,863 0,902 0,880 0,821 0,905 0,865 0,798

FAST FSS 0,920 0,920 0,773 0,895 0,889 0,826 0,894 0,880 0,773

FAST FWA 0,916 0,916 0,864 0,887 0,898 0,797 0,893 0,885 0,757

FAST GA 0,918 0,914 0,865 0,889 0,896 0,827 0,896 0,891 0,778

FAST PSO 0,921 0,911 0,878 0,895 0,892 0,850 0,896 0,881 0,827

FAST NNDSVD 0,919 0,911 0,811 0,895 0,894 0,816 0,894 0,882 0,766

FAST RAND 0,907 0,908 0,813 0,885 0,886 0,803 0,887 0,864 0,752

Table 2 – Classification results (static classification) for DS-SPAM2 (FastNMF)

Table 2 shows the static classification results achieved with data set DS-SPAM2. Results are shown for

the FastNMF, which achieved the most stable results of all NMF algorithms for this data set. Again, the

proposed initialization strategy again achieves better results as NNDSVD and random initialization.

Compared to DS-SPAM1, the results for this data set tend to decrease with decreasing rank k. This

indicates that it is important to find a good trade-off between classification accuracy and computational

cost.

Dynamic classification: Table 3 shows the classification results achieved with the dynamic classification

approach described in Section 0 for DS-SPAM1. In general, the classification accuracies achieved for

19

data set DS-SPAM2 using the dynamic classification approach are rather similar to the results for DS-

SPAM1 shown in Table 3. The baseline to which the NMF-LSI variants are compared are given by a

standard LSI classification using SVD as approximation algorithm (see Section 0). A basic vector space

model achieves a classification accuracy of 0.911, while LSI achieves 0.911, 0.914 and 0.887,

respectively, for rank k set to 30, 15 and 5. Similar to Table 2 (DS-SPAM2) the results are sensible with

respect to the value of rank k. For very small values of k (5) the classification results generally tend to

decrease. Overall, the initialization strategy based on meta-heuristics achieve much better classification

accuracy as NNDSVD and random initialization, and also outperform basic LSI in many cases. The best

results are again highlighted in bold letters. Especially GA and FWA achieve good classification results.

Baseline LSI 0,911 0,914 0,887 LSI 0,911 0,914 0,887

NMF Alg Init k = 30 k = 15 k = 05 NMF Alg Init k = 30 k = 15 k = 05

ALSPG DE 0,911 0,898 0,889 FAST DE 0,912 0,895 0,888

ALSPG FSS 0,943 0,899 0,877 FAST FSS 0,926 0,897 0,879

ALSPG FWA 0,930 0,914 0,883 FAST FWA 0,913 0,912 0,891

ALSPG GA 0,927 0,901 0,896 FAST GA 0,927 0,914 0,875

ALSPG PSO 0,918 0,889 0,885 FAST PSO 0,923 0,914 0,847

ALSPG NNDSVD 0,914 0,911 0,840 FAST NNDSVD 0,911 0,913 0,846

ALSPG RAND 0,901 0,886 0,874 FAST RAND 0,898 0,899 0,838

BAYES DE 0,911 0,906 0,888 MU DE 0,893 0,897 0,834

BAYES FSS 0,926 0,897 0,879 MU FSS 0,892 0,882 0,807

BAYES FWA 0,914 0,911 0,891 MU FWA 0,913 0,882 0,843

BAYES GA 0,930 0,916 0,875 MU GA 0,899 0,899 0,795

BAYES PSO 0,922 0,915 0,848 MU PSO 0,922 0,900 0,812

BAYES NNDSVD 0,904 0,913 0,846 MU NNDSVD 0,906 0,908 0,795

BAYES RAND 0,898 0,896 0,854 MU RAND 0,876 0,889 0,817

Table 3 – Dynamic Classification using DS-SPAM1. Basic Vector Space Model (all features): 0,911

CONCLUSION

In this chapter we presented two new optimization strategies for improving the NMF using optimization

algorithms based on swarm intelligence. While strategy one uses swarm intelligence algorithms to

initialize the factors W and H prior to the factorization process of NMF, the second strategy aims at

iteratively improving the approximation quality of NMF during the first iterations of the factorization.

Overall, five different optimization algorithms were used for improving NMF: Particle Swarm

Optimization (PSO), Genetic Algorithms (GA), Fish School Search (FSS), Differential Evolution (DE),

and Fireworks Algorithm (FWA).

Both optimization strategies allow for efficiently computing the optimization of single rows of W and/or

single columns of H in parallel. The achieved results are evaluated in terms of accuracy per runtime and

per iteration, final accuracy after a given number of NMF iterations, and in terms of the classification

20

accuracy achieved with the reduced NMF factors when being applied for machine learning applications.

Especially the initialization strategy (optimization strategy 1) is able to significantly improve the

approximation results of NMF compared to random initialization and state-of-the-art methods. Among the

different optimization algorithms, the recently developed fish school search algorithm achieves slightly

better results than the other heuristics. The iterative strategy (optimization strategy 2) can improve one of

the basic NMF algorithms (the multiplicative update strategy) for very small rank k and can thus be used

if a rough and very fast approximation method is needed. Moreover, the NMF subsets achieved with

optimization strategy 1 have shown to clearly improve the classification accuracy of NMF compared to

state-of-the-art initialization strategies, and also achieve better results as feature subsets computed with

other low-approximation techniques.

Future work: Our investigations provide several important and interesting directions for future work.

First of all, we will set the focus on developing optimization strategies that update the factor matrices W

and H concurrently instead of applying an alternating update fashion where one factor is fixed and the

other one is optimized. Moreover, we will apply the optimization strategies on NMF problems were

sparseness constraints are enforced, i.e. the optimization strategies are enforced to compute solutions with

a certain percentage of zero values. We also plan to use different NMF optimization functions (not based

on the Frobenius norm) for our optimization methods and several recently developed NMF algorithms

(HALS, multilayer NMF, etc.).

Acknowledgments: This work was supported by National Natural Science Foundation of China (NSFC),

Grant No. 61375119, 61170057 and 60875080. Andreas wants to thank the Erasmus Mundus External

Coop. Window, Lot 14 (2009-1650/001-001-ECW).

REFERENCES

Bastos Filho, C. J. A., F. B. Lima Neto, A. J. C. Lins, A. I. S. Nascimento and M. P. Lima (2009). Fish School
Search. In R. Chiong (Ed.), Nature‐Inspired Algorithms for Optimisation (pp. 261‐277), Springer, .

Bastos Filho, C. J. A., F. B. Lima Neto, M. F. C. Sousa, M. R. Pontes and S. S. Madeiro (2009). On the
influence of the swimming operators in the Fish School Search algorithm. In Proceedings of Systems,
Man and Cybernetics (pp. 5012‐5017), San Antonio, TX: IEEE.

Berry, M. W. (1992). Large Scale Singular Value Computations. International Journal of Supercomputer
Applications, 6(1), 13‐49.

Berry, M. W., M. Browne, A. N. Langville, P. V. Pauca and R. J. Plemmons (2007). Algorithms and
Applications for Approximate Nonnegative Matrix Factorization. Computational Statistics & Data
Analysis, 52(1), 155‐173.

Berry, M. W., Z. Drmac and E. R. Jessup (1999). Matrices, Vector Spaces, and Information Retrieval. SIAM
Review, 41(2), 335‐362.

Blackwell, T. (2007). Particle Swarm Optimization in Dynamic Environments. In Yang et al. (Eds.)
Evolutionary Computation in Dynamic and Uncertain Environments (pp. 29‐49). Berlin, Heidelberg:
Springer

21

Boutsidis, C. and E. Gallopoulos (2008). SVD based Initialization: A Head Start for Nonnegative Matrix
Factorization. Pattern Recogn, 41(4), 1350‐1362.

Bratton, D. and J. Kennedy (2007). Defining a Standard for Particle Swarm Optimization. In Proceedings
of Swarm Intelligence Symposium, (pp. 120‐127). Honolulu, HI:IEEE

Chiong, R. (2009). Nature‐Inspired Algorithms for Optimisation, Berlin, Heidelberg: Springer.

Dai H, and X. Wang and H. HU and Wang Y. (2013). Nonsmooth Nonnegative Matrix Factorization
Algorithm Based on Particle Swarm Optimization. Computer Engineering, 39(1), 204‐207.

Eberhart, R. C., Y. Shi and J. Kennedy (2001). Swarm Intelligence, San Francisco, CA:Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Boston, MA:
Addison‐Wesley Longman.

Haupt, R. L. and S. E. Haupt (2005). Practical Genetic Algorithms (2nd ed.), Hoboken, NJ: John Wiley &
Sons, Inc.,

Janecek, A. (2010). Efficient Feature Reduction and Classification Methods: Applications in Drug
Discovery and Email Categorization, PhD Thesis, University of Vienna.

Janecek, A. and W. N. Gansterer (2010). Utilizing Nonnegative Matrix Factorization for E‐mail
Classification Problems. In M. W. Berry (Ed.) Survey of Text Mining III: Application and Theory,(pp. 57‐
80), Hoboken, NJ: John Wiley & Sons, Inc

Janecek, A., W. N. Gansterer, M. Demel and G. F. Ecker (2008). On the Relationship Between Feature
Selection and Classification Accuracy. JMLR: Workshop and Conference Proceedings, 4(1), 90–105.

Janecek, A., S. Schulze‐Grotthoff and W. N. Gansterer (2011). libNMF ‐ A library for nonnegative matrix
factorizatrion. Computing and Informatics, 30(2), 205‐224.

Janecek, A. and Y. Tan (2011). Iterative Improvement of the Multiplicative Update NMF Algorithm using
Nature‐inspired Optimization. In Proceedings of the 7th International Conference on Natural
Computation , (pp. 1668‐1672), Shanghai, China: IEEE.

Janecek, A. and Y. Tan (2011). Using Population Based Algorithms for Initializing Nonnegative Matrix
Factorization. In Proceedings of the 2nd International Conference on Swarm Intelligence, Part II, LNCS
67239, (pp. 307‐316), Chongqing, China: Springer.

Jolliffe, I. T. (2002). Principal Component Analysis, New York: Springer.

Kennedy, J. and R. C. Eberhart (1995). Particle swarm optimization. Proceedings of IEEE International
Conference on Neural Networks, (pp. 1942‐1948), Perth, WA:IEEE.

Kim, H. and H. Park (2008). Nonnegative Matrix Factorization Based on Alternating Nonnegativity
Constrained Least Squares and Active Set Method. SIAM J. Matrix Anal. Appl. 30(1), 713‐730.

Kjellerstrand, H. (2011). "hakanks hemsida.". Retrieved from http://hakank.org/weka

Langville, A. N., C. D. Meyer and R. Albright (2006). Initializations for the Nonnegative Matrix
Factorization. In Proceedings of the 12th ACM Int. Conf. on Knowledge Discovery and Data Mining, (pp.
1‐18), Philadelphia, PE: ACM

Lee, D. D. and H. S. Seung (1999). Learning Parts of Objects by Non‐negative Matrix Factorization.
Nature, 401(6755), 788‐791.

Lee, D. D. and H. S. Seung (2001). Algorithms for Non‐negative Matrix Factorization. Advances in Neural
Information Processing Systems, 13(1), 556‐562.

Li, H., J. Yang and C. Hao (2013). Non‐negative Matrix Factorization of Mixed Speech Signals based on
Quantum‐behaved Particle Swarm Optimization. Journal of Computational Information Systems, 9(2),
667‐ 673.

22

Lin, C.‐J. (2007). Projected Gradient Methods for Nonnegative Matrix Factorization. Neural Comput.
19(10), 2756‐2779.

Paatero, P. and U. Tapper (1994). Positive Matrix Factorization: A Non‐negative Factor Model With
Optimal Utilization of Error Estimates of Data Values. Environmetrics, 5(2), 111‐126.

Pedersen, M. E. H. (2010). "SwarmOps ‐ Numeric & Heuristic Optimization Source‐Code Library,
Retrieved from: http://hvass‐labs.org/projects/swarmops/cs/files/SwarmOpsCS1_0.pdf

Price, K. V., R. M. Storn and J. A. Lampinen (2005). Differential Evolution: A Practical Approach to Global
Optimization, Secaucus, NJ: Springer.

Raghavan, V. V. and S. K. M. Wong (1999). A Critical Analysis of Vector Space Model for Information
Retrieval. Journal of the American Society for Information Science, 37(5), 279‐287.

Schmidt, M. N. and H. Laurberg (2008). Non‐negative matrix factorization with Gaussian process priors.
Comp. Intelligence and Neuroscience, 2008(1), 1‐10.

Snásel, V., J. Platos and P. Krömer (2008). Developing Genetic Algorithms for Boolean Matrix
Factorization. In Proceedings of the Dateso 2008 Annual International Workshop on DAtabases, TExts,
Specifications and Objects, (pp. 1‐10), Desna, Czech Republic: CEUR‐WS.org

Stadlthanner, K., D. Lutter, F. Theis and et al. (2007). Sparse Nonnegative Matrix Factorization with
Genetic Algorithms for Microarray Analysis. In Proceedings of the International Joint Conference on
Neural Networks, (pp. 294‐299), Orlando, FL: IEEE.

Storn, R. and K. Price (1997). Differential Evolution ‐ A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces. Journal of Global Optimizatio,n 11(4), 341‐359.

Tan, P.‐N., M. Steinbach and V. Kumar (2005). Introduction to Data Mining, Boston, MA: Addison
Wesley.

Tan, Y. and Y. Zhu (2010). Fireworks Algorithm for Optimization. In Tan et al. (Eds), Advances in Swarm
Intelligence (pp.355‐364), Beijing, China: Springer.

Wild, S. M., J. H. Curry and A. Dougherty (2004). Improving non‐negative matrix factorizations through
structured initialization. Patt. Recog,. 37(11), 2217‐2232.

Witten, I. H. and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques, San
Francisco, CA: Morgan Kaufmann.

Xue, Y., C. S. Tong, Y. Chen and W. Chen (2008). Clustering‐based initialization for non‐negative matrix
factorization. Appl. Math. & Comput., 205(2), 525‐536.

Zhang, Q., M. W. Berry, B. T. Lamb and T. Samuel (2009). A Parallel Nonnegative Tensor Factorization
Algorithm for Mining Global Climate Data. In Proceedings of the 9th International Conference on
Computational Science, (pp. 405‐415), Berlin Heidelberg: Springer

DEFINITION OF KEYTERMS

Non-negative Matrix Factorization: The Non-negative Matrix Factorization (NMF, (Lee and Seung

1999)) leads to a low-rank approximation which satisfies non-negativity constraints by approximating a

data matrix A by ,A WH where W and H are the NMF factors. NMF requires all entries in A , W and

H to be zero or positive.

23

NMF Initialization: Algorithms for computing NMF are iterative and require initialization of the factors

W and H since NMF unavoidably converges to local minima, probably different ones for different

initialization. Contrary to random initialization, a proper non-random initialization can lead to faster error

reduction and better overall error at convergence.

Differential Evolution (DE): In DE, (Storn and Price 1997, Price, Storn et al. 2005) a particle is moved

around in the search-space using simple mathematical formulation, if the new position is an improvement

the particles' position is updated, otherwise the new position is discarded.

Particle Swarm Optimization (PSO): In PSO, (Kennedy and Eberhart 1995) each particle in the swarm

adjusts its position in the search space based on the best position it has found so far as well as the position

of the known best fit particle of the entire swarm.

Genetic Algorithms (GA): GAs, (Goldberg 1989) are global search heuristics that operate on a

population of solutions using techniques encouraged from evolutionary processes such as mutation,

crossover, and selection.

Fireworks Algorithm (FWA): FWA, (Tan and Zhu 2010) is a recently developed swarm intelligence

algorithm that simulates the explosion process of fireworks. Two types of sparks are generated, based on

uniform and Gaussian distribution, respectively.

Fish School Search (FSS): FSS, (Bastos Filho, Lima Neto et al. 2009, Bastos Filho, Lima Neto et al.

2009)is based on the behavior of fish schools. The main operators are feeding (fish can gain/lose weight,

depending on the region they swim in) and swimming (which mimics the collective movement of all fish).

Multiplicative Update (MU) NMF algorithm. MU-NMF is one of the two original NMF algorithms

presented in (Lee and Seung 1999) and still one of the fastest NMF algorithms per iteration. The update

steps are based on the mean squared error objective function and consist of multiplying the current factors

by a measure of the quality of the current approximation.

INDEX

Non-negative Matrix Factorization, Nonnegative Matrix Factorization, NMF

NMF initialization

Low Rank Approximations

Multiplicative Update NMF algorithm, MU-NMF

Differential Evolution, DE

Particle Swarm Optimization, PSO

Genetic Algorithms, GA

24

Fireworks Algorithm, FWA

Fish School Search, FSS

