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Abstract—Inversion is a critical and challenging task in
geophysical research. Geophysical inversion can be formulated
as an optimization problem to find the best parameters whose
forward synthesis data most fit the observed data. The inverse
problems are usually highly non-linear, multi-modal as well as
ill-posed, so conventional optimization algorithms cannot handle
it very efficiently. In the past decades, genetic algorithm (GA)
and its many variants are widely applied to inverse problems and
achieve great success. Swarm intelligence algorithms are a family
of global optimizers inspired by swarm phenomena in nature, and
have shown better performance than GA for diverse optimization
problems. However, swarm intelligence algorithms are not utilized
for geophysical inversion problems until recently and only limited
number of works are reported. In this paper, we try to apply
two swarm intelligence algorithms, Particle Swarm Optimization
(PSO) and Fireworks Algorithm (FWA), to the regional seismic
waveform inversion. To explore the advantages and disadvantages
of swarm intelligence algorithms over GA, synthetic experiments
are conducted by using these two swarm intelligence algorithm
and several GA variants as well as Differential Evolution (DE).
The experimental results show that, both swarm intelligence
algorithms outperform the widely used GA, DE, and the models
estimated by swarm intelligence algorithms are closer to the true
solution. The promising results imply that swarm intelligence
algorithms are a potentially more powerful tool for inversion
problems.

I. INTRODUCTION

An integral part of geophysics is to infer the inferior of
the earth based on the observational data. Most often than not,
the collected data are not directly related to the subsurface
characterization, so an inverse problem must be solved to
estimate these properties of interest. In general, the aim of
an inverse problem is to find an parameterized model that is
consistent with the observed data. It is usually assumed that
the forward problem is well understood so that reasonably
accurate simulated data can be calculated for an arbitrary
model. The objective function (alternatively called misfit or
fitness function) is typically some measure of the difference
between observational data and synthetic data calculated for a
trail model.
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Most practical geophysical inverse problems are highly
nonlinear and multi-modal. Conventional local optimizers such
as gradient descent method, quasi-Newton method are sensitive
to the initial model and prone to get stuck to local minima.

Compared to the conventional derivative-based methods,
Genetic Algorithm (GA) works better with the ability to
overcome the locally optimal solutions and have the advantages
of being fit for parallel computation, independent of an initial
model, stable to noise, strongly robust, easily constrained, and
so on [1]. Thus, GA and its variants have been widely applied
to tackle inverse problems [2], [3].

Swarm intelligence algorithms are a cluster of population-
based meta-heuristic stochastic algorithms for optimization.
They are based on the study of collective behaviors in de-
centralized, self-organized systems [4]. The collective system
is capable of performing complex tasks in a dynamic envi-
ronment without external guidance and central coordination.
Swarm intelligence algorithms have been proven very effective
for solving complicatedly non-linear and non-differentiable
optimization problems.

Though swarm intelligence algorithms are similar to the
GA in the sense that these two heuristics are population-based
search methods, swarm intelligence algorithms emphasize the
cooperation among agents instead of competition. These two
school of algorithms show very different trajectory with re-
spect to optimization. Swarm intelligence algorithms turn out
to be more computationally efficient (consume less function
evolutions to achieve solutions of the comparable quality) for
many real world applications [5], [6]. In spite of the their
efficiency, swarm intelligence algorithms are far less well-
known to the geophysical inverse problems and only few trials
are reported [7], [8], [9].

In this work, we apply two swarm intelligence algorithms,
Particle Swarm Optimization (PSO) and Fireworks Algorithm
(FWA), to the regional seismic waveform inversion problem.
To our best knowledge, it is the first time that swarm in-
telligence algorithms are used for this type of geophysical
inversion. To verify the applicability and efficiency of swarm
intelligence algorithms, simulation experiments are conducted
and the inverted results are compared to those achieved by
evolution-based algorithms such as GA, Niche GA (NGA) and
Differential Evolution (DE). Experimental results show that
both swarm intelligence algorithms outperform GA et al., thus
make them completive tools for geophysical inversion.

The remainder of this paper is organized as follows. Section
II formulates the inverse problems and give a brief overview of
optimization for these problems. Section III discusses swarm
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intelligence algorithms, and special attention is given to PSO
and FWA. The experimental setting and result analysis are
presented in detail in section IV. Section V summarizes and
concludes this paper.

II. BACKGROUND

A. Formulation of Inverse Problems

To solve a geophysical inverse problem, the problem should
be formulated properly to a optimization problem thus can be
tackled by various optimizers [10].

With collected data and a proper forward model at hand,
an objective function can be defined which is some measure
of distance between the observational data and the simulated
data.

f(d,m) = 0. (1)

The usual situation is that the observational data d repre-
sents the solution of the theoretical problem, while the model
m represents the model witch typically a vector of parameters.
In many cases, this becomes more explicit because the theory
can be expressed in the reduced form.

d = a(m). (2)

By solving the forward problem, a solution d that represents
the data can be obtained. A inverse problem arises when the
data d is given and the task is to find a model m that is
compatible with these data.

For most nontrivial problems, the inverse problem cannot
be solved analytically to obtain a solution of the inverse
problem in the form

m = a−1(d). (3)

The usual situation is that only the forward problem can be
solved analytically or semi-analytically [11]. The solution of
the inverse problem then proceeds by solving the forward
problem employing a candidate model m in order to obtain
theoretical simulated data a(m). A comparison between the
simulated data and the observed data can then be used to make
improvements to the candidate model, as depicted by Fig. 1.
Some measure of distance in the data space is needed which
can be presented as

N(d,m) = ||d− a(m)||. (4)

To minimizing the deviation from the model or fluctuation in
the model, some regularization condition should be considered
besides the distance measurement.

Ω(d̃,m) = N(d̃,m) + β · S(m). (5)

where S is regularization term, β is a parameter weighting
the relative importance of fitting the data and satisfying the
regularization condition and d̃ the observational data.

With the definitions above, the geophysical inverse problem
can be formulated as a typical numerical optimization problem.

Fig. 1: In general, the target of inversion is to find a parame-
terized model that can fit the observed data as best

Given observational data d̃ of finite dimension, determine a
model m∗ as the solution of

min Ω(d̃,m),

s.t. ce(m) = 0,

ci(m) ≥ 0. (6)

where ce(m) and ci(m) are constraints the model m should
meet.

B. Global Optimization for Inverse Problems

Formulated as optimization problems, inverse problems can
be tackled with standard optimizers, among which the most
well studied and widely used are a family of local optimization
algorithms such as gradient descent.

Local optimization algorithms typically attempt to find a
local minimum in the close neighborhood of the starting solu-
tion [11]. They use local properties of the objective function
to calculate an update to the current answer and search in
the downhill direction. As most practical geophysical inverse
problems are highly nonlinear, multi-modal and ill-posed, these
methods are prone to get stuck to local minimum with poor
initial models. Thus a good starting model is required to
obtain an acceptable solution, which however is not piratical
considering the fact that in most cases, little knowledge can
be gotten about the landscape of the objective function.

A simple alternative for local algorithms is grid search,
which conduct a point-to-point search in the parameter space.
However, such grid search is very ineffective thus infeasible
for high dimensional inverse problems.

Since 1980s, Genetic Algorithm and its many versions,
as global optimization algorithms, have widely been used for
various geographical inverse problems [11]. GA addresses the
optimization problems as a search problem, thus derivative is
needed.

The earliest application of GA may be proposed in [2],
where GA with a binary string representation model param-
eters was utilized for inversion of plane-wave seismograms.



Detailed discussions, along with the comparison with Monte
Carlo method, is presented by Sambridge [3].

To tackle inverse problems with multiple distinct solutions,
Niche Genetic Algorithm (NGA) was utilized in [12] where
real coding was adopted for the inversion of teleseismic body
waves.

As an emerging research topic, multi-objective optimiza-
tion has been proposed recently [13], which is critical for
the robust estimates of some inverse problems where a single
misfit function may insensitive to certain properties.

In comparison with GA, swarm intelligence algorithms are
applied to geophysical inverse problem more recently [7]. For
specific inversion problems, comparative results show that the
time required to execute a swarm intelligence algorithm is
comparable to that of GA [7] with higher convergence speed
and accuracy [8]. A few inverse problems have been addressed
by swarm intelligence algorithms, especially PSO [8], [9].

III. SWARM INTELLIGENCE ALGORITHMS FOR
OPTIMIZATION

Swarm intelligence is the collective behavior of decen-
tralized, self-organized systems. A typical swarm intelligence
system consists of a population of simple agents which can
communicate (either directly or indirectly) locally with each
other by acting on their local environment. Though the agents
in a swarm following very simple rules, the interactions
between such agents can lead to the emergence of very compli-
cated global behavior, far beyond the capability of individual
agents [4]. Examples in natural systems of swarm intelligence
include bird flocking, ant foraging, and fish schooling.

Inspired by swarm’s such behavior, a class of algorithms
are proposed for tackling optimization problems, usually under
the title of swarm intelligence algorithms [14]. In swarm intel-
ligence algorithms, a swarm is made up of multiple artificial
agents. The agents can exchange heuristic information in the
form of local interaction. Such interaction, in addition with
certain stochastic elements, generates the behavior of adaptive
search, and finally leads to global optimization.

The most respected and popular swarm intelligence algo-
rithms are Particle Swarm Optimization (PSO) which is in-
spired by the social behavior of bird flocking or fish schooling
[15], and Ant Colony Optimization (ACO) which simulates the
foraging behavior of ant colony [16]. PSO is widely used for
real-parameter optimization while ACO has been successfully
applied to solve combinatorial optimization problems, the most
well-known of such problems are the Traveling Salesman
Problem (TSP) and Quadratic Assignment Problem (QAP).
Novel swarm intelligence algorithms with particular search
mechanisms have been proposed and achieved success on
specific problems.

There exists a class of optimization algorithms of similar
favor with swarm intelligence algorithms – evolutionary al-
gorithms, which are inspired by nature evolution. The field
mainly includes: Genetic Algorithm (GA) [17], Evolutionary
Strategies (ES) [18], Differential Evolution (DE) [19] and their
variants.

Algorithm 1 Particle Swarm Optimization
1: Initialize N particles
2: Calculate the fitness value of each particle
3: while Termination condition unsatisfied do
4: Update global best P̂
5: Update personal best P̃i

6: for i = 1 to N do
7: Update velocity Vi according to Eq. 7
8: Update position Xi according to Eq. 8
9: end for
10: Calculate the fitness value of each particle
11: end while

Both swarm intelligence algorithms and evolutionary al-
gorithms are population-based, iterative stochastic global opti-
mization algorithms which can be applied for black-box prob-
lems. They are both branches of computational intelligence,
and can be discussed in similar framework [14]. However,
one critical factor makes swarm intelligence algorithms and
evolution-based algorithms different from each other. Swarm
intelligence algorithms simulate the collaboration behavior in
nature while evolutionary algorithms mimic the competitive
phenomenon in natural evolution. The difference in heuristics
may lead to different trajectory when optimizing particular
problems. As will be seen, this difference is obvious with
respect to the waveform inversion.

In our work, two swarm intelligence algorithms which are
under active research are applied to the inversion problem. The
remainder of the section, we will give a brief description of
these two algorithms.

A. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO), developed by Eberhart
and Kennedy in 1995, is a stochastic global optimization
technique inspired by social behavior of bird flocking or fish
schooling [15]. In the PSO, each particle in the swarm adjusts
its position in the search space based on the best position it
has found so far as well as the position of the known best-fit
particle of the entire swarm, and finally converges to the global
best point of the whole search space.

The procedure of PSO is demonstrated by Algorithm 1.
Each solution of the optimization problem is called a particle
in the search space. The search of the problem space is done by
a swarm with a specific number of particles. Assume that the
swarm size isN and the problem dimension isD. Each particle
i (i = 1, 2, ...N ) in the swarm has the following properties:
a current position Xi, a current velocity Vi, a personal best
position P̃i. There is a global best position P̂ , which has
been found in the search space since the start of the evolution.
During each of the iteration, the position and velocity of every
particle are updated according to P̃i and P̂ . This process in
the PSO can be formulated as follows:

Vid(t+1) = wVid(t)+c1r1(P̃id(t)−Xid(t))+c2r2(P̂d(t)−Xid(t))
(7)

Xid(t+ 1) = Xid(t) + Vid(t) (8)



Algorithm 2 Attract-Repulse Fireworks Algorithm
1: Initialize n fireworks
2: Calculate the fitness value of each firework
3: Calculate Ai according to Eq.9
4: while Termination condition unsatisfied do
5: for i = 1 to n do
6: Search according to Algorithm 3
7: end for
8: for i = 1 to n do
9: if rand(0, 1) < cr then
10: Mutate according to Algorithm 4
11: end if
12: end for
13: Calculate the fitness values of the new fireworks
14: Update Ai according to Eq.9
15: end while

Algorithm 3 FWA Search
1: Generate m sparks
2: Evaluate the fitnesses of each sparks
3: Find the best spark with best fitness value, replace it with
the current firework if better.

where i = 1, 2, ...N , d = 1, 2, ...D. In (7) and (8), the learning
factors c1 and c2 are nonnegative constants, r1 and r2 are
random numbers uniformly distributed in the interval [0, 1],.
The parameter w is the inertia weight, which is a constant in
the interval [0, 1] used to balance the global and local search
abilities.

B. Attract-Repulse Fireworks Algorithm (AR-FWA)

In this work, a FWA variant proposed by Ding et al. [20] is
used. Though targeting the GPU platform, experiment shows
that the proposed algorithm is competitive to the state-of-the-
art FWA. Based on this proposal, a variant with minor modifi-
cation is used here. As this FWA variant core components are
FWA search and attract-repulse mutation, we name it AR-FWA
hereafter.

The pseudo-code of AR-FWA is depicted by Algorithm. 2.
Here, we just present the operations different from [20], other
details about can be found in the original paper.

1) FWA Search: FWA Search is illustrated by Algorithm. 3.
A fixed number of sparks are generated to exploit the neigh-
borhood solution space. Instead of a global selection procedure
in [21], each firework is updated by its current best spark.

2) Attract-Repulse Mutation: Attract-Repulse Mutation is
taken to keep the diversity of the swarm, as illustrated by
Algorithm 4, where xi depicts the i-th firework, while xbest

depicts the firework with the best fitness. Different from [20],
a new parameter cr is introduced to control the mutation
frequency, thus no inner iteration is necessary for Algorithm
3.

3) Amplitude Update: The explosion amplitude of firework
i is calculated as follows.

Ai = Â ·
(

f(xi)− ymin + ξ∑n
i=1(f(xi)− ymin) + n · ξ + δ

)
, (9)

Algorithm 4 Attract-Repulse Mutation
1: Initialize the new location: x̂i = xi;
2: s = U(1− δ, 1 + δ);
3: for d = 1 to D do
4: r = rand(0, 1);
5: if r < 1

2 then
6: x̂i,d = x̂i,d + (x̂i,d − xbest,d) · s;
7: end if
8: if x̂j,d > ubd or x̂j,d < lbd then
9: x̂j,d = lbd + |x̂j,d − lbd|%(ubd − lbd);
10: end if
11: end for

where the predefined Â denotes the maximum explosion
amplitude, and ymin = min(f(xi)) (i = 1, 2, . . . , n) i.e. the
minimum (best) value of the objective function among the
n fireworks, and ξ , which denotes the machine precision,
is utilized to avoid zero division error. (Note that, in the
original literature [21] and many following works, the ξ in
the denominator is not multiplied by n which will cause the
sum of all A surpass Â when the finesses are very close. ) δ
is a small number to guarantee the amplitude is nonzero thus
avoid the search process getting stalled. In [22], a minimum
amplitude check is conducted instead of using δ.

IV. EXPERIMENTS AND ANALYSIS

In order to test the feasibility and efficiency of each
algorithms for the waveform inverse problem, simulation
experiments are conducted here. In the simulation, swarm
intelligence algorithms PSO and FWA, as well GA, NGA as
well as DE are applied to find the structure parameters (density
etc.).

A. Seismic waveform inversion

The goal of geophysics is to determine the properties of
the Earth’s interior from the surface and/or boreholes using
measurements of physical phenomena. In seismology, the
data consist of seismograms (seismic wave amplitude as a
function of time and distance) from earthquakes or man-made
explosions.

In this paper, we use reflectivity method developed by
Fuchs and Muller [23] for calculating the waveform from
source in layered medium (as illustrated by Fig. 2). This
method with high-accuracy and speed is widely used in for-
ward modeling [1] [24] .

A theoretical 4-layered isotropic medium model on top
of a half-space is built based on a set of field data for
forward modeling. The i-th layer is characterized by the P
wave velocity αi, S wave velocity βi, the density ρi and the
thickness hi . The detail of model parameters settings are listed
in Tab. I

We set a double couple source in the depth of 21 km, the
value of the components of moment tensor come from a real
earthquake source shown in the matrix below.

[
m11 m12 m13

m21 m22 m23

m31 m32 m33

]
=

[
2.710 0.436 −3.15
0.436 −1.76 −2.04
−3.15 −2.04 −1.03

]



Fig. 2: The layered earth model (after [23] )

TABLE I: Model Parameter

i-th layer hi(km) αi(km/s) βi(km/s) ρi(g/cm
3)

1 1.5 4 2.3 2.65
2 10 6 3.46 2.75
3 20 6.25 3.6 2.8
4 18 6.95 4.0 3.1
Half space ∞ 8.1 4.67 3.37

11 receivers are settled in the free surface (i.e. z = 0), distances
of receiver (r) away from epicenter are 77.8, 81.3, 197.6,
211.4, 282.7,292.3, 346.9, 352.7, 399.2, 406.3, 419.7 km.

As we assume the isotropic layered medium is Poisson
solid, so the ratio of P wave velocity to S wave velocity
αi/βi = 1.73, 9 parameters are inversed, including P wave
velocity and thickness of layer 1 - 4, and P wave velocity
of half space. The objective function in our inversion is
weighted combination of root mean square residual (RMR)
and waveform correlation of synthetic and observed waveform
in time domain.

F = (1− λ)×

√∑
i

∑
j

(Oij − Sij)
2

Nw ×
√∑

i

∑
j

O2
ij

+

λ× [1− 1

Nw
×
∑
i

max(Oi ∗ Si)√
Oi ∗Oi

√
Si ∗ Si

]

(10)

In Eq. 10, Oij (Sij) means the amplitude of i-th component
of observed (synthetic) waveform at j-th time point. The first
part of objective function is RMR of observed and synthetic
waveform indicates the amplitude difference of two waveform-
s, the second part is correlation of two waveforms, indicates
waveform similarity which contain phase information, and
(O ∗ S) in equation is

(O ∗ S)(τ) =
∫

O(t)S(t− τ)dt

=

∫
O(t− τ)S(t)dt

Oi and Si is i-th observed and synthetic waveform, with
the combined object function, we can evaluate the influence
of amplitude, phase and arrival time on inversion, which is
suitable for real data inversion. λ is weight parameter to

TABLE III: Feasible Search Range

1 2 3 4 5 6 7 8 9

Real Value 4 6 6.25 6.95 8.1 1.5 10 20 18

Lower Bound 3.5 5.5 5.75 6.45 7.6 1.125 7.5 15.0 13.5
Upper Bound 4.5 6.5 6.75 7.45 8.6 1.875 12.5 25.0 22.5

Fig. 3: Average misfit value on 35 trails along with function
evaluations

balance RMR and waveform correlation error. Nw is number
of waveform data.

B. Experimental Setting

GA and NGA have long been used for solving inverse
problems [12]. In our experiments, the code of GA and NGA
used in [1] is utilized. 8-bit binary encoding is added instead
of only real encoding. DE is well studied and many variants
are proposed, in our work, the classic versions is adopted [19].

For each algorithm, some parameters should be determined
for acceptable performance. As the optimization process is
very time-consuming, it is impossible to tune these parame-
ters within limited time. In our experiment, parameters rec-
ommended in literature are adopted which perform well in
general. The detailed parameters are listed in Tab. II

The feasible research ranges of the model parameters are
listed by Tab. III. Each parameter is normalized such that
the search range falls between 0 and 1 for optimization. All
algorithms are uniformly initialized in [0, 1]. 35 independent
trials are conducted for each algorithm and during each trail,
the optimizer can conduct up to 2× 104 function evaluations.

C. Results and Analysis

Fig. 3 presents how misfit value changes along the increas-
ing of function evaluation times.

Overall, GA and NGA with binary string presentation
show very poor performance compared to their real-encoded
counterparts. Also, DE performs obviously poorly.

GA and NGA have similar convergence trajectory, so do
AR-FWA and PSO. However, swarm intelligence algorithms



TABLE II: Parameter Settings for each Optimization Algorithm

Methods Parameters

GA POP = 100, cr = 0.9, m = 0.15

NGA #demes = 5, #models = 20, #elitist = 1, others are as GA

DE POP = 50, F = 0.7, cr = 0.5, rand/1/1
PSO POP = 30, ω = 0.722984, c1 = c2 = 2.05, global topology

AR-FWA n = 10, m = 10, cr = 0.3, δ = 0.01

TABLE IV: The true and inverted results using NGA, PSO, DE and AR-FWA for the given model

1 2 3 4 5 6 7 8 9

Groundtruth 4 6 6.25 6.95 8.1 1.5 10 20 18

GA 4.090 6.017 6.257 6.956 8.102 1.628 10.43 19.63 17.94
GA (binary) 4.029 6.061 6.342 6.917 8.333 1.799 12.42 17.47 21.02
NGA 3.955 5.970 6.222 6.921 8.111 1.478 8.278 20.56 19.03
NGA (binary) 3.998 5.982 6.350 6.823 8.569 1.375 12.50 19.71 17.49
DE 3.830 6.102 6.282 7.022 8.066 1.725 11.055 19.741 18.612
PSO 3.907 5.983 6.237 6.969 8.099 1.347 9.908 20.312 17.993
AR-FWA 4.043 5.998 6.242 6.946 8.095 1.521 9.945 19.849 18.079

(PSO and FWA) and evolution-based algorithm (GA, NGA)
show different trajectories. GA and NGA can find a solution
with relative less misfit more quickly than swarm intelligence
algorithms do. So the curves of GA and NGA drop more s-
teeply than PSO and AR-FWA. But, this advantage in the early
phase implies that GA and NGA are more prone to get pre-
mature, which is well-known for evolution-based algorithms
[8]. As the optimization procedure goes on, the GA and NGA
make progress much less than PSO and AR-FWA, and the
advantage is reversed to the side of PSO and AR-FWA.

From first glance, PSO and AR-FWA obtain misfit values
only slightly better than GA and NGA. As less misfit value
does not mean necessarily that the archived model is closer to
the real model, we list the inverted models in Tab. IV along
with the groundtruth values.

As can be seen, parameter 1 to 5 are relatively easy to
estimate. All algorithms can achieve estimates very close to
the real values. However, parameter 6 to 9 are more sensitive
(in Tab. IV, the estimated values close to the real values are
emphasized in bold type). Based on the observation above, it is
obvious that the slightly better misfit contributes substantially
to a more accurate model estimate. To see intuitively how good
the estimate is, Fig. 5 illustrates the estimated model by AR-
FWA compared to the real model.

It is interesting to see how each algorithm performs along
different trails. Fig. 4 shows the boxplot for 35 trials for all
algorithms. Once again, the binary-encoded GA and NGA
show poor performance with respect to the robustness. Though
enjoying different performance for misfit value, the variations
are comparable for all the other algorithm.

In summary, the inverted parameters with small misfit value
are closer to the real values and some parameters are more
sensitive to the misfit than others. The better misfit achieved
by PSO and AR-FWA contribute to the a better estimates of
these sensitive parameters, thus PSO and AR-FWA get more
accurate models compared to other methods.

V. CONCLUSIONS AND FUTURE WORK

In this work, two swarm intelligence algorithms, PSO and
AR-FWA, are applied to regional waveform inverse problem

Fig. 4: Boxplot comparing the variations of misfit achieved by
different algorithms

for the first time. Relying on the collaboration of the agents,
PSO and AR-FWA avoid premature better in the experiment,
compared to the widely used evolution-based algorithms, GA,
NGA as well as DE. As some of the parameters in inverse
problem are sensitive to misfit, the improvement of misfit
achieved PSO and AR-FWA bring substantial improvement to
the estimation of the model. Experimental results show that
PSO and AR-FWA can find models very close to the real
model and whose synthetic data can better fit the observed
waveforms. As the simulation experiments have shown PSO
and AR-FWA are potentially more power tools for waveform
inversion, in the future we will use them to real world seismic
data to invert the real structures.

REFERENCES

[1] S. Li, Y. Wang, Z. Liang, S. He, and W. Zeng, “Crustal structure in
southeastern gansu from regional seismic waveform inversion,” Chinese
Journal of Geophysics, vol. 55, no. 4, pp. 1186–1197, April 2012.

[2] P. L. Stoffa and M. K. Sen, “Nonlinear multiparameter optimization
using genetic algorithms: nversion of plan-wave seismograms,” GEO-
PHYSICS, vol. 56, no. 11, pp. 1794–1810, 1991.

[3] M. Sambridge and G. Drijkoningen, “Genetic algorithms in seismic
waveform inversion,” Geophysical Journal International, vol. 109,
no. 2, pp. 323–342, 1992.

[4] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence. Morgan
Kaufmann, 2001.



Fig. 5: Comparison between the given velocity model with the
final inverted average model. Black solid line show the given
model, red dashed line show the final inverted result of AR-
FWA. The prescribed ranges for velocity and depth in which
the model parameters are allowed to change in the inversion
are shown by black dashed lines.

[5] S. Panda and N. P. Padhy, “Comparison of particle swarm optimization
and genetic algorithm for facts-based controller design,” Applied Soft
Computing, vol. 8, no. 4, pp. 1418–1427, 2008.

[6] R. Hassan, B. Cohanim, O. de Weck, and G. Venter, “A comparison
of particle swarm optimization and the genetic algorithm,” in 46th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Ma-
terials Conference. Austin, Texas: American Institute of Aeronautics
and Astronautics, April 2005, pp. 1–13.

[7] R. Shaw and S. Srivastava, “Particle swarm optimization: A new tool to
invert geophysical data,” GEOPHYSICS, vol. 72, no. 2, pp. F75–F83,
2007.

[8] S. Yuan, S. Wang, and N. Tian, “Swarm intelligence optimization and its
application in geophysical data inversion,” Applied Geophysics, vol. 6,
no. 2, pp. 166–174, 2009.

[9] T. Mukerji, A. Suman, J. L. Fernández-Martı́nez, and E. Garcı́a-
Gonzalo, “A family of particle swarm optimizers for reservoir charac-
terization and seismic history matching,” in 9th Biennial International
Conference & Explosition on Petrolelum Geophysics, Hyderabad, India,
February 2012.

[10] J. Barhen, “Optimization and geophysical inverse problems,” San Jose,
California, Tech. Rep., February 1999.

[11] M. K. Sen and P. L. Stoffa, Global Optimization Methods in Geophys-
ical Inversion, 2nd ed. Cambridge, UK: Cambridge University Press,
April 2013.

[12] K. D. Koper, M. E. Wysession, and D. A. Wiens, “Multimodal function
optimization with a niching genetic algorithm: A seismological exam-
ple,” Bulletin of the Seismological Society of America, vol. 89, no. 4,
pp. 978–988, 1999.

[13] A. Padhi and S. Mallick, “Multicomponent pre-stack seismic waveform
inversion in transversely isotropic media using a non-dominated sorting
genetic algorithm,” Geophysical Journal International, vol. 196, no. 3,
pp. 1600–1618, 2014.

[14] X.-S. Yang, “Swarm intelligence based algorithms: a critical analysis,”
Evolutionary Intelligence, vol. 7, no. 1, pp. 17–28, 2014.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neu-

ral Networks, 1995. Proceedings., IEEE International Conference on,
vol. 4, nov/dec 1995, pp. 1942 –1948 vol.4.

[16] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” Evolutionary
Computation, IEEE Transactions on, vol. 1, no. 1, pp. 53–66, 1997.

[17] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Ppplications to Biology, Control, and Artificial
Intelligence. Oxford, England: Univ. Michigan Press, 1975.

[18] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies a comprehensive
introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[19] R. Storn and K. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[20] K. Ding, S. Zheng, and Y. Tan, “A gpu-based parallel fireworks algo-
rithm for optimization,” in Proceeding of the fifteenth annual conference
on Genetic and evolutionary computation conference, ser. GECCO ’13.
New York, NY, USA: ACM, 2013, pp. 9–16.

[21] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” in Ad-
vances in Swarm Intelligence, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010, vol. 6145, pp. 355–364.

[22] S. Zheng, A. Janecek, and Y. Tan, “Enhanced fireworks algorithm,” in
Evolutionary Computation (CEC), 2013 IEEE Congress on, 2013, pp.
2069–2077.

[23] K. Fuchs and G. Müller, “Computation of synthetic seismograms with
the reflectivity method and comparison with observations,” Geophysical
Journal of the Royal Astronomical Society, vol. 23, no. 4, pp. 417–433,
1971.

[24] S. Jia and X. Zhang, “Study on the crust phases of deep seismic
sounding experiments and fine crust structures in the northeast margin
of tibetan plateau,” Chinese Journal of Geophysics, vol. 51, no. 5, pp.
1431–1443, September 2008.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


		2015-09-21T11:08:59-0400
	Certified PDF 2 Signature




