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Abstract We investigate the effectiveness of approxi-

mation strategy in a surrogate-assisted fireworks algorithm,

which obtains the elite from approximate fitness landscape

to enhance its optimization performance. We study the

effectiveness of approximation strategy from the aspects of

approximation method, sampling data selection method

and sampling size. We discuss and analyse the optimization

performance of each method. For the approximation

method, we use least square approximation, spline inter-

polation, Newton interpolation, and support vector regres-

sion to approximate fitness landscape of fireworks

algorithm in projected lower dimensional, original and

higher dimensional search space. With regard to the sam-

pling data selection method, we define three approaches,

i.e., best sampling method, distance near the best fitness

individual sampling method, and random sampling method

to investigate each sampling method’s performance. With

regard to sample size, this is set as 3, 5, and 10 sampling

data in both the approximation method and sampling

method. We discuss and compare the optimization per-

formance of each method using statistical tests. The

advantages of the fireworks algorithm, a number of open

topics, and new discoveries arising from evaluation results,

such as multi-production mechanism of the fireworks

algorithm, optimization performance of each method, elite

rank, interpolation times and extrapolation times of elites

are analysed and discussed.

Keywords Fireworks algorithm � Fitness landscape
approximation � Elite strategy � Surrogate-assisted
fireworks algorithm � Dimensionality reduction

1 Introduction

Evolutionary computation (EC) has demonstrated the

powerful capability to solve complex industrial and engi-

neering optimization problems. From a framework view-

point, there are three parts in an EC-based optimization

system, which include a target system that should be

optimized, an EC algorithm (including an user interface for

interactive evolutionary computation (IEC) [21]) that

conducts the concrete optimization operations, and one or

multiple fitness function(s) (including a human user for

IEC). These three parts encompass the corresponding three

study aspects of an EC-based optimization system, i.e., EC

applications, EC algorithms, and EC fitness function(s) or

an IEC human user.

The EC algorithm performance is a serious issue for its

real application. There are three promising study directions
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aiming to meet this challenge in recent decades within EC

community [9]. First is to approximate fitness landscape

and make an operation or a model to assist the EC search.

Takagi, et. al. proposed to use a single peak function to

approximate fitness landscape and conduct a local search

by using an elite obtained from approximated landscape

[22]. Pei, et. al. extended this work by conducting the

approximation in each lower dimensional search space for

simplifying the approximation computation [12]. Other

approximate methods by obtaining a frequency component

information from fitness landscape was proposed in [11,

16]. Second is to develop effective search strategy or revise

search mechanism into an EC algorithm to obtain an

accelerated search convergence. Memetic algorithm was

proposed to conduct individual learning or local improve-

ment procedures for optimization [7]. It also can be

introduced into the IEC for obtain a better optimization

performance [15]. A series of search strategies were

developed in differential evolution (DE) community, which

include SaDE [18], jDE [1], SaJADE [2], JADE [25], etc.

A triple and quadruple comparison-based DE was proposed

in [14], in which an opposition-based learning process is

embedded into the DE selection process. These novel

strategies and mechanisms can be categorized into two

aspects, the one is searching in a form of hybrid global

evolutionary algorithm coupled with a learning procedure

capable of local refinements, the other is conducting the

different search strategies according to the knowledge

obtained from the search process. Third is to create a new

type of EC algorithm that is inspired by biological, phys-

ical or mathematical schemes and phenomenon, such as the

fireworks algorithm [23], chaotic evolution [8, 10], water

wave optimization [27], water cycle algorithm [19], optics

inspired optimization [6], etc. This is the primary subject of

investigation in this paper.

Fireworks algorithm (FWA) is a recently developed

algorithm [23]. It is inspired by the explosion of fireworks

in the night sky, which can illuminate the dark space. The

process of illuminating the nearby space of a firework

position can be considered as the search among the feasible

range. The FWA work mechanism is described in the fol-

lowing. A number of fireworks are set off to the feasible

range, and each position of the firework will be evaluated

by the fitness function. The explosion amplitude and spark

number for each firework are calculated based on the fit-

ness of the fireworks. For a minimal objective problem, the

principle is that the firework with smaller fitness will have

a smaller explosion amplitude and a larger number of

sparks. The fireworks are exploded under the calculated

explosion amplitude and spark number. Moreover, the

Gaussian explosion sparks are also generated to enhance

the diversity of the FWA. A number of fireworks are

selected from the candidate sets, which include the fire-

works, regular explosion sparks and Gaussian explosion

sparks. The FWA will continue until the termination con-

dition is met.

We proposed to use a surrogate model for improving the

performance of FWA. Surrogate-assisted FWA uses effi-

cient computational models for approximating the fitness

landscape where we obtain the elite from search space to

accelerate FWA search. The method is to approximate the

fitness landscape in the one-dimensional search space, and

obtain and synthesize the elite from the approximated

landscape curves. When the elite is better than the worst

firework, surrogate-assisted FWA replaces the worst one

with this elite into the next generation to enhance the FWA

search. An empirical study on influence of approximation

methods on the FWA acceleration performance was ini-

tially investigated and analysed [17]. However, some of the

problems in applying this method need further study and

investigation.

This paper extends the work of [17] and conducts a

further investigation on the approximation method and

strategy influence on surrogate-assisted FWA. We espe-

cially investigate: (1) several approximation methods for

approximating fitness landscape and their acceleration

performance, (2) sampling methods and sizes’ influence on

acceleration performance, (3) the obtained elite rank in the

population and its effectiveness, (4) the obtained elite from

within or beyond the approximation interval, (5) statistical

test on the proposed methods’ significance. Several related

issues are also investigated and discussed. The evaluation

metrics include the convergent fitness value after the same

number of generations, Wilcoxon signed-rank test, elite

rank, and the number of interpolation and extrapolation,

etc.

Following this introductory section, in Sect. 2, an

overview on the FWA is presented. The history, inspiration

and development of the FWA are described in detail. In

Sect. 3, we introduce several techniques on fitness land-

scape approximation and theoretically discuss the compu-

tational complexity. The surrogate-assisted FWA enabled

by a technique for reducing dimensionality of the search

space is explained, and we show how elite can be obtained

from the regression search space. The fitness landscape can

be approximated in lower dimensional space, original

space and higher dimensional space. In Sect. 4, experi-

mental evaluations with 25 benchmark functions with 10

dimension (10-D) and 30-D are conducted, and their results

are analysed and discussed. Finally, we discuss our pro-

posed methods and obtained results in Sect. 5, and con-

clude the analysis and investigation results of the proposed

methods, present future opportunities and open topics in

Sect. 6.
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2 An overview of the fireworks algorithm

As one of the swarm intelligence algorithms, the FWA is

inspired by the phenomenon of the explosion of fireworks

in the night sky. When a firework explodes in the night sky,

it illuminates the dark space, which can be considered as a

kind of search process. In the FWA, the fireworks generate

sparks candidates around themselves in search space. The

search operators, which maintain the exploration ability for

the heuristic algorithms, can be implemented by simulating

some fireworks’ explosions in the potential space.

There are three promising research aspects in recent

studies of the FWA. The first one is to construct a hybrid

optimization framework by using the FWA with other EC

algorithms or computational mechanisms. Zheng et. al.

proposed a hybrid FWA with biogeography-based opti-

mization to enhance the optimization performance of

canonical FWA [24]. Ding et. al. implemented a parallel

FWA by using a parallel processing architecture, GPU. The

second aspect is to establish a FWA optimization frame-

work to solve multi-objective optimization problems [28],

constrained optimization problems, combinatorial opti-

mization problems, etc. The third aspect is to apply the

FWA to the real-world applications. Janecek et. al. used the

FWA with other EC algorithms, such as particle swarm

optimization, genetic algorithms, differential evolution,

and fish school search, for improving the initialization of

the non-negative matrix factorization problem [4].

In general, given the following single objective function

fmin f :X � Rn ! Rg, the FWA is to find a point x 2 X,
for which x has the minimal value. Algorithm 1 presents

the framework of FWA. In each generation of FWA,

N fireworks are randomly initialized in the feasible search

range, and the fitness of each firework will be evaluated to

determine the explosion amplitude and explosion sparks

number. The basic principle for the explosion amplitude

and sparks number is that the firework with better fitness

will have smaller explosion amplitude and larger popula-

tion of sparks to increase the exploited ability, while the

firework with worse fitness will have a small population of

explosion sparks and large explosion amplitude to maintain

search ability. After the calculation of the explosion sparks

number and explosion amplitude for each firework, the

FWA performs the explosion process to generate the reg-

ular explosion sparks by Algorithm 2. To increase the

diversity of the FWA, it introduces another sparks named

Gaussian sparks generated by Gaussian mutation operation

(Algorithm 3). The selection operator is performed to cause

the N fireworks from the candidate set which includes

regular sparks, m̂ Gaussian explosion fireworks and

N fireworks to remain. The algorithm continues until the

termination criterion is met, i.e., maximum generation or

evaluation, maximum running time, or the optimum is

found.

Algorithm 1 The FWA Framework. N is the number
of fireworks, G means generation, and maxIter means
the maximum generation number.
1: Initialization.
2: Randomly generate N fireworks at N locations
3: for G = 1 to maxIter do
4: Generate the regular explosion sparks by Algorithm 2
5: Generate the Gaussian explosion sparks ( i.e., Gaussian

explosion fireworks) by Algorithm 3
6: Obtain N fireworks for the next iteration (the best one

firework is kept, and the rest N−1 fireworks is selected
by the roulette wheel method)

7: end for
8: Return the optima

2.1 Regular explosion sparks

Regular explosion operator is one of the crucial operators

in the FWA. For the simulation of the fireworks explosion

process, the FWA generates a number of sparks si within

the explosion amplitude Ai by Eqs. (1) and (2), where

ymax ¼ maxðf ðxiÞÞ and ymin ¼ minðf ðxiÞÞ, i ¼ 1; 2; . . .;N.

Here Â and M are constants which are determined by a

practical optimization problem. After the calculation of the

number of sparks and explosion amplitude, the fireworks

perform the generation of the regular explosion sparks by

Algorithm 2.

Algorithm 2 – Generating “regular explosion sparks”
in the FWA [26].
1: Initialize the location of the “regular explosion sparks”:

X̂i = Xi

2: Calculate offset displacement: X = Ai × rand(−1, 1)
3: Set zk = round(rand(0, 1)), k = 1, 2, ..., d
4: for each dimension of X̂k

i , where zk == 1 do
5: X̂k

i = X̂k
i + X

6: if X̂k
i out of bounds then

7: X̂k
i = Xk

min + |X̂k
i | % (Xk

max −Xk
min)

8: end if
9: end for

si ¼ M � ymax � f ðxiÞ þ e
Pn

i¼1ðymax � f ðxiÞÞ þ e
ð1Þ

Ai ¼ Â � f xið Þ � ymin þ e
Pn

i¼1 f xið Þ � yminð Þ þ e
ð2Þ
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2.2 Gaussian explosion sparks

To increase the diversity of the explosion sparks, another

kind of sparks is introduced, named Gaussian explosion

sparks. The generation principle of the Gaussian explosion

sparks is to create the fireworks by a random value from a

Gaussian distribution. The detail of this process is imple-

mented by Algorithm 3.

2.3 Selection for the next generation

After the explosion of fireworks, a number of sparks

(regular explosion sparks and Gaussian explosion sparks)

are generated. In the selection of fireworks for the next

iteration, the candidate (fireworks or sparks) with the best

fitness is always kept, the others are selected by the roulette

wheel method by using the following Eqs. (3) and (4),

where the location Xi, the selection probability pðXiÞ is

calculated. Here, K denotes the set of all current locations

which includes the fireworks, regular explosion sparks and

Gaussian explosion sparks (without the best candidate).

Algorithm 3 – Generating “Gaussian explosion
sparks” in the FWA [26].
1: Initialize the location of the “Gaussian explosion sparks”:

X̃i = Xi

2: Calculate offset displacement: e = Gaussian(1, 1)
3: Set zk = round(rand(0, 1)), k = 1, 2, ..., d
4: for each dimension of X̂k

i , where zk == 1 do
5: X̃k

i = X̃k
i × e

6: if X̃k
i out of bounds then

7: X̃k
i = Xk

min + |X̃k
i | % (Xk

max −Xk
min)

8: end if
9: end for

pðXiÞ ¼
RðXiÞP

Xj2K RðXjÞ ð3Þ

RðXiÞ ¼
X

Xj2K
d Xi;Xj

� �
¼

X

Xj2K
Xi � Xj

�
�

�
�

�
�

�
�

ð4Þ

3 Surrogate-assisted fireworks algorithm
framework

3.1 Motivation

Fitness and Fitness landscape approximations are well-

known assisted acceleration techniques in the EC com-

munity over the last decade [5]. In some applications, the

computation of fitness is time-consuming, so fitness

approximation can dramatically save the computation time

so as to improve EC performance. On the other hand,

fitness landscape approximation can obtain the whole

search space structure information to assist EC search.

Unlike the conventional EC algorithms, they use the least

search information that is supported by the limited indi-

viduals’ fitness. The computation of either fitness or fitness

landscape approximations increases an additional time cost

in the EC optimization process. Some of the conventional

approximation methods are time-consuming, so reducing

the approximation time and developing an efficient

approximation method is a promising subject to improve

optimization performance of the surrogate-assisted EC.

Approximation method selection and data sampling

technique are important issues in the computation of fitness

landscape approximation. We have obtained some empir-

ical results on the surrogate-assisted FWA in [17] that

shows: (1) The elite strategy is an efficient method to

enhance the FWA search capability significantly. (2) The

sampling method cannot take effect in isolation, it must be

with a proper approximation model to accelerate the FWA

search for a certain benchmark function, i.e., a certain fit-

ness landscape. (3) For some benchmark problems, the best

sampling method and the random sampling method have

the same acceleration performance. (4) The surrogate-as-

sisted FWA can be obtained by a fitness landscape

approximation with more sampling size and a proper

approximation method. In our study, the better approxi-

mation method is the non-linear model. (5) From a prac-

tical point of view, the random sampling method is a better

sampling way to obtain the higher acceleration perfor-

mance in both computational time and final solution

quality. However, there are many remaining issues that we

need to further investigate, such as the approximate

method, the sampling method and the sampling size. These

investigations and analyses are one of original features of

this paper.

3.2 Approximation methods

In this work, we use the following approximation methods

to investigate our proposed acceleration performance

influenced by the approximation method. They are least

square approximation, spline interpolation, Newton inter-

polation, and support vector regression.

3.2.1 Least square approximation

The approximation method does not require approximated

curves to pass through all discrete points exactly, but rather

to approach the original curve at its discrete points, i.e.

ðxi; yiÞ, as near as possible. When we define the error vector

norm as 2-norm, the approximation method is referred to as

the least squares method.
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There is a function spanning space shown in Eq. (5), U
denotes the function class, Span means spanning space, and

uiðxÞ; ði ¼ 0; 1; . . .; nÞ denotes a function in the space. We

want to find a function that makes the 2-norm error vector

(jjd�jj22) be minimized as shown in Eq. (6). The approxi-

mation function is shown in Eq. (7), where a�i ; ði ¼
0; 1; :::; nÞ are the parameters that make the Eq. (6) to be

minimized. If we set u0ðxÞ ¼ 1;u1ðxÞ ¼ x, and u0ðxÞ ¼
1;u1ðxÞ ¼ x;u2ðxÞ ¼ x2 as the approximation function in

Eq. (6), they are called linear least squares approximation

method and 2-degree polynomial least squares approxi-

mation method, respectively.

U ¼ Span u0ðxÞ;u1ðxÞ; . . .;unðxÞf g ð5Þ

d�j jj j22¼
Xm

i¼0

d�2i ¼
Xm

i¼0

u�ðxiÞ � yi½ �2¼ min
uðxÞ2U

d�j jj j22 ð6Þ

u�ðxÞ ¼ a�0u0ðxÞ þ a�1u1ðxÞ þ � � � þ a�nunðxÞ ð7Þ

3.2.2 Spline interpolation

Spline interpolation is defined by a polynomial function.

Compared with polynomial interpolation, spline interpo-

lation has a better approximation performance. We can

obtain the interpolation results by spline interpolation with

lower degree function, while avoiding the instability of

interpolation due to Runge’s phenomenon. This shows the

advantage of spline interpolation [3].

Suppose that there are different points

ðxi; yiÞ; ði ¼ 0; 1; . . .; nÞ, the objective of spline interpola-

tion finds an n-degree spline function S(x) defined in

Eq. (8), where SiðxÞ is a k-degree polynomial function. The

linear spline function is given as in Eq. (9).

SðxÞ ¼

S0ðxÞ x 2 x0; x1½ �
S1ðxÞ x 2 x1; x2½ �
..
. ..

.

Sn�1ðxÞ x 2 xn�1; xn½ �

8
>>>><

>>>>:

ð8Þ

SiðxÞ ¼ yi þ
yiþ1 � yi

xiþ1 � xi
x� xið Þ ð9Þ

3.2.3 Lagrangian interpolation and newton interpolation

The Lagrange interpolation polynomial has the character-

istics of linear and unique. For one-dimensional data from

individuals x0, x1, ..., xn, we can set up an n-degree poly-

nomial l0ðxÞ, l1ðxÞ, ..., lnðxÞ. We set its type as liðxjÞ ¼ dij ,
where the form of dij is as shown in Eq. (10).

dij ¼
0 if i ¼ j

1 if i 6¼ j

�

ð10Þ

From the definition of l(x), we can obtain Eq. (11), which is

the n-degree interpolation polynomial, where lkðxÞ is an n-

degree polynomial. The relationships of the Lagrange

interpolation polynomial are shown in Eqs. (11), (12), (13)

and (14).

pnðxÞ ¼
Xn

k¼0

lkðxÞyk ¼ yi ð11Þ

lkðxÞ ¼ aðx� x0Þ. . .ðx� xk�1Þðx� xkþ1Þ. . .ðx� xnÞ
ð12Þ

When the condition is lkðxkÞ ¼ 1 in Eq. (12), we can obtain

Eq. (13). Then, Eq. (12) can be re-written as in Eq. (14).

Equations (14) and (15) are the n-degree Lagrange inter-

polation basis function and the n-degree Lagrange inter-

polation polynomial, respectively.

a ¼ xk � x0ð Þ. . . xk � xk�1ð Þ xk � xkþ1ð Þ. . . xk � xnð Þ½ ��1

ð13Þ

lkðxÞ ¼
Yn

i¼1;i6¼k

ðx� xiÞ
ðxk � xiÞ ð14Þ

LnðxÞ ¼
Xn

k¼0

lkðxÞyk; i ¼ 0; 1; . . .; n ð15Þ

Because the polynomial interpolation is unique, the New-

ton interpolation has the same form as the Lagrange

interpolation shown in Eq. (15).

3.2.4 Support vector regression

Support vector regression (SVR) is a kernel method that is

used in regression. If a problem is non-linear, instead of

trying to fit a non-linear model, the SVR projects the

problem from the input space to a higher dimensional

space, i.e., a feature space, to find a linear model by con-

ducting a non-linear transformation using suitably chosen

kernel functions. It uses the linear model in the feature

space to solve the problem. There are two aspects in the

primary motivation of SVR. One is to project the original

space into a high dimensional space to find the linearity in

such space. The other is to conduct the regression process

with those linearity characteristics.

There are several training sample data in the original

space, x1, x2,..., xN , and there is a feature map function

/ðxiÞ, i ¼ 1; 2; . . .;N, which conducts the feature map to

project the data into a higher dimensional space (Eqs. (16),

(17) and (18), X denotes a matrix that encompasses all the

data that are projected into a feature space, y denotes the

matrix that the value of each data xi; i ¼ 1; . . .; n.). From

the normal equation of linear regression, we can obtain the

support vector regression expression (Eq. (19)). K(x, y) is a
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kernel function, which is defined as Kðx; yÞ ¼
exp�jjx� yjj, i.e., a Gaussian kernel function, in our

evaluation.

X ¼
/ðx1ÞT

..

.

/ðxNÞT

2

6
4

3

7
5 ð16Þ

X ¼
/ðx1Þ

T

..

.

/ðxNÞ
T

2

6
6
4

3

7
7
5 ¼

1; /ðx1ÞT

..

.

1; /ðxNÞT

2

6
6
4

3

7
7
5 ¼ 1N�1;X½ � ð17Þ

y ¼

y1

..

.

yN

2

6
6
4

3

7
7
5 ð18Þ

f ðxÞ ¼ a1 þ � � � þ aNð Þ þ a1K x1; xð Þ þ � � � þ aNK xN ; xð Þ
ð19Þ

a ¼ XðXT
XÞ�2

X
T
y ð20Þ

3.3 Sampling selection methods

When a regression model is established by a given

approximation method, the sample data should be selected

with certain criteria to train the model. This is also a

subject of study in this paper. We use three sampling data

selection methods in our investigation to understand dif-

ferences of the FWA acceleration performance by these

three sample data selection methods. They are listed as

follows.

– The best sampling method selects the best K individuals

as sampling data.

– The distance near the best fitness individual sampling

method selects the nearest K individuals to the best

individual using Euclidean distance as sampling data.

– The random sampling method selects K individuals

randomly as sampling data.

3.4 Sampling sizes

The sampling size is another factor that influences the

approximate model’s accuracy and acceleration perfor-

mance of the FWA. Theoretically, where a large sampling

size is applied in the approximation or interpolation pro-

cess, the better approximation result will be obtained, if

over-fitting does not occur. In this study, the influence of

sampling size on acceleration performance of the FWA is

also a subject of investigation. Specifically, we set the

sample size as 3, 5, 10 for the methods that conduct the

approximation and interpolation in lower and higher

dimensional space, and set the sampling size as 2Dþ 1 (D

is the dimension of benchmark function) for the approxi-

mation and interpolation in original space, because the

regression model in original space has 2Dþ 1 unknown

parameters.

3.5 Surrogate-assisted fireworks algorithm

The surrogate-assisted FWA uses an approximation or

interpolation model of fitness landscape as the surrogate

model to assist FWA search. The approximation or inter-

polation can be conducted in lower dimensional space,

original space and high dimensional space. After we obtain

the approximated fitness landscape, we can apply the elite

strategy from the approximated fitness landscape to

enhance optimization performance of the FWA.

The elite strategy in lower dimensional space for

approximating fitness landscape uses only one of the n pa-

rameter axes at a time instead of all n parameter axes, and

projects individuals onto each 1-dimensional (1-D) space.

Each of the n 1-D spaces has K projected individuals,

which come from the different sampling methods with a

different sampling size. We approximate the landscape of

each 1-D space using the projected K individuals and select

the elite from the n approximated 1-D landscape shapes.

The elite are generated from the resulting 1-D approxi-

mated shapes, see Fig. 1.

The actual least square regression functions used is

polynomial curve fitting, given by Eq. (21), where xij, ði ¼
1; 2; . . .;DÞ and ðj ¼ 1; 2; . . .;KÞ are the projected indi-

vidual of point set Xi, ði ¼ 1; 2; . . .;DÞ and their fitness

values among (xij; yj) in the i-th 1-D regression space for

ði ¼ 1; 2; . . .;DÞ and ðj ¼ 1; 2; . . .;KÞ, a0, a1, ..., ak are the

parameters obtained by least squares method, t is the power

of polynomial function.

xt11 xt�1
12 . . . x01K

xt21 xt�1
21 . . . x02K

..

. ..
. ..

.

xtD1 xt�1
D2 . . . x0DK

0

B
B
B
B
@

1

C
C
C
C
A

a1

a2

..
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Least square approximation by a two-degree polynomial

function (t = 2) simplifies a fitness landscape with a non-

linear curve, and it is easy to obtain its inflection point from

its gradient, using the inflection point as the elite. Linear

least square approximation uses a linear function (t = 1) to

approximate the fitness landscape. Its gradient is either

descent or ascent. A safer approach, taking into account

both descent and ascent, is to select the average point of the

linear approximation line as the elite. The other approxi-

mation and interpolation methods obtain the elite from
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their shapes by re-sampling 100 times and selecting the re-

sample data with the best fitness as the elite.

The proposed methods replace the worst individual in

each generation with the selected elite. Although we cannot

deny the small possibility that the global optimum is

located near the worst individual, the possibility that the

worst individual will become a parent in the next genera-

tion is also low. Removing the worst individual therefore

presents the least risk and is a reasonable choice.

The whole workflow of the surrogate-assisted FWA with

an elite strategy is shown in Algorithm 4, where algorithm

initialization is in step 2, the optimization of one generation

is presented in steps 3 to 17, and in step 18, the algorithm

returns the best obtained solution. It is the crucial process in

step 11 to step 16 that explains the elite strategy. This

includes (a) obtain sampling data with a certain sampling

select method and sampling size from N fireworks (step 11),

(b) approximate fitness landscape (step 12), (c) obtain a

spark from approximated curves by elite strategy (step 13),

and (d) if the fitness of the elite is better than that of the worst

firework, the worst one will be replaced (steps 14–16).

Algorithm 4 Pseudo-code of the surrogate-assisted
FWA with an elite strategy.
1: Initialization.
2: Randomly selectN fireworks at N locations
3: for G = 1 to maxIter do
4: Evaluate theN fireworks using objective function
5: Calculate the number of sparks and explosion ampli-

tude of each fireworks
6: Generate regular explosion sparks by Algorithm 2
7: Generate Gaussian explosion sparks by Algorithm 3
8: Obtain the optimal candidate in theSet which includes

generating sparks, m̂ Gaussian explosion fireworks and
N fireworks

9: Randomly select the otherN − 1 fireworks
10: ObtainN fireworks for the next iteration
11: Obtain sampling data with a certain sampling select

method and sampling size from N fireworks
12: Approximate fitness landscape
13: Obtain a spark from approximated curves by elite strat-

egy
14: if EliteFitness > WorstIndividualFitness then
15: Replace the worst individual
16: end if
17: end for
18: Return the optima

Fig. 1 Original n-D space and 1-D spaces obtained by reducing the

dimensions of the original one. In our proposed approximation of

fitness landscape in lower dimensional space, first, we project fitness

landscape in each lower dimension (in this paper, we project it into

one dimensional search space, but it is not limited to one dimensional

search space), second, we conduct approximation in each lower

dimensional search space and obtain elite from each simple shape or

surface, finally, we combine these lower dimensional elite together in

each related dimensional position as the final elite to enhance FWA

optimization performance
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4 Experimental evaluation

4.1 Experimental setting

In our evaluations, the sampling size is set as 3, 5 and 10,

i.e., K = 3, K = 5 and K = 10 to investigate the sampling

size’s influence on the acceleration performance of surro-

gate-assisted FWA. This sampling size setting is applied in

the approximation and interpolation methods in lower and

higher dimensional space. It needs at least 2Dþ 1 sam-

pling number for least squares approximation with one and

two degree polynomial functions, because there are 2Dþ 1

unknown parameters. We investigate least squares

approximation with one and two degree polynomial func-

tions, spline interpolation, Newton interpolation for

approximating the fitness landscape in projected 1-D space,

and least squares approximation with two degree polyno-

mial functions for approximating fitness landscape in

original space, and the SVR with Gaussian kernel function

for approximating fitness landscape in high dimensional

space. Three sampling selection methods are applied in

each approximation and interpolation methods with dif-

ferent sampling sizes.

The number of fireworks (N) and Gaussian explosion

firework (m̂) are both set as 8 and other parameters are set

as in [23]. Experimental evaluations run 30 trials of 1000

generations on each benchmark function independently.

The experimental platform is MATLAB 2011b, running

under Windows 7 on an Intel Core i7-2600 CPU with 3.7

GHz and 8GB RAM. To validate the performance of the

proposed algorithm and investigate the influences of dif-

ferent approximation strategies, two groups of experiments

are designed: performance comparison on benchmark

functions with dimension set to 10 and 30 (10-D and 30-D).

The abbreviations of the proposed algorithm, sampling

method and sampling size are shown in Table 1.

4.2 Benchmark functions

We investigate our proposed algorithms and related issues

by using benchmark functions from CEC2005 benchmark

test suite [20]. In the benchmark functions, 25 functions are

included, which presents a variety of fitness landscapes,

such as uni-modal and multi-modal, shifted, rotated, global

optimum on bounds, etc. Table 2 presents a detailed

description of these benchmark functions.

4.3 Evaluation metrics

For comparing and analysing the performance of different

algorithms, the fitness values, elite rank, elite location,

approximation interval are recorded. The Wilcoxon signed-

rank test is applied to validate the significant difference

between two algorithms. In our evaluation, the significance

level is set to 5 %, i.e., p\0:05 (p means p-value in

Wilcoxon signed-rank test.).

Tables 3 and 4 present the 10-D benchmark function’s

mean values of each algorithm, and the Wilcoxon signed-

rank test results from comparing the canonical FWA and

our proposed surrogate-assisted FWA with different

approximation methods, different sampling methods and

sampling sizes. The y mark in these tables means the

proposed method significantly outperforms the canonical

FWA by Wilcoxon signed-rank in the significant level

p\0:05. Table 5 shows the average elite rank from each

proposed algorithm for 10-D and 30-D benchmark func-

tions. Figure 2 describes the average times of elite obtained

outside of approximation interval, i.e., extrapolation phe-

nomenon occurs. We discuss and analyse optimization

performance of each method based on these results.

5 Discussion

5.1 Analysis of approximation approach influence

In the approximation method aspect, the approximation

method in low dimensional space and original space seems

to obtain the same optimization results. However, the

approximation method in the high dimensional space, i.e.,

support vector regression method, is effective in a few of

Table 1 Abbreviation of proposed algorithm, sampling method and

sampling size

Abbreviation Meaning

LS1 Least square approximation with linear function [12]

LS2 Least square approximation with second degree

polynomial function [12]

Spline Spline interpolation

Newton Newton interpolation

OLS Least square approximation with a single peak

function in original space [22]

SVR Support vector regression [13]

BST Best sampling method

DIS Distance sampling method

RND Random sampling method

3 Sampling size is 3

5 Sampling size is 5

10 Sampling size is 10

In this paper, we use six approximation methods, three sampling data

selection methods and three sampling sizes in the evaluation experi-

ments. There are total of 48 algorithms plus one canonical FWA
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the benchmark problems. In the projected high dimensional

feature space, linear regression can be perfectly constructed

by the SVR method, however, this model cannot present

the actual fitness landscape in the original space. The over-

fitting issue is the reason that leads to the worse fitness

approximation and optimization performance, so, from a

practical viewpoint, the SVR is not a good approximation

method that can be applied in a fitness landscape approx-

imation field. The same results are also obtained in the

work of [13].

Compared with approximation methods in lower

dimensional space and that in original space, optimization

results by lower dimensional approximation are better than

that by original dimensional approximation from the

observations of Tables 3 and 4. This indicates that rough

and simple approximation of fitness landscape can be

useful in EC enhancement application, and the exact

approximation performance sometimes leads to local

optimal. Approximation in original space needs more time

because of many matrix operations, its computational

complexity is higher than that of approximation in lower

dimensional space. Along with the dimension increasing,

the computational complexity of approximation in original

space will dramatically rise up. Comparing these two

methods applied in 10-D and 30-D benchmark problems,

optimization performance obtained by approximation in

low dimensional space outperforms that obtained by

approximation in original space. As dimensionality is more

higher, the optimization result is more better. So, from

whatever theoretical analysis and practical evaluation of

these two approximation method, approximation in low

dimensional space by dimension reduction technique has

its advantages and practical benefits.

Our proposed methods fail to optimize the complex

fitness landscape benchmark functions (e.g., f18, f19, and

f20) and specific fitness landscape structure (e.g., f8: opti-

mum at bounds, f12: shifted global optimum, etc.). This

result indicates a limitation of our proposed methods,

which is effective for the problems with simple fitness

landscape. We should analyze the characteristics of the

optimization problem and select a proper approximation

method to obtain the better optimization performance

before we apply our proposed surrogate-assisted FWA.

5.2 Analysis of sampling method influence

In this work, we propose three sampling data selection

methods, i.e., the BST method, the DIS method, and the

RND method, which mean selecting sampling data from

the best n data, selecting sampling data from n nearest data

from the best data, and selecting sampling data randomly,

respectively. From the optimization results by comparing

these three methods, when the BST and RND methods can

obtain significant optimization performance, the DIS

method cannot obtain the same result. From this observa-

tion, the DIS method seems less useful than other two

methods. Sampling data distribution is a significant factor

that influences approximation effect. The DIS method

selects data that are nearest to the current best point, it

leads to local approximation rather than global approxi-

mation that can be obtained by the other two methods. This

maybe a reason that why the DIS method fails in most of

the benchmark problems.

Both the DIS method and BST method need to use

search and sorting algorithms for selection. However, the

RND method processes the sampling data randomly with a

certain distribution probability. From the practical view-

point, the computational complexity of the RND method is

less than that of other two methods, and the RND method

can obtain significantly better optimization performance

from the above observation and analysis, we conclude that

Table 2 Benchmark functions in our evaluation experiments from

[20]

No. Type Description Bounds Optima

f1 Uni Sh Sphere -450

f2 Sh Schwefel 1.2 -450

f3 Sh Rt Elliptic ½�100; 100� -450

f4 f2 with Noise -450

f5 Schwefel 2.6 GB -310

f6 Multi Sh Rosenbrock ½�100; 100� 390

f7 Sh Rt Griewank [0, 600] -180

f8 Sh Rt Ackley GB ½�32; 32� -140

f9 Sh Rastrigin ½�5; 5� -330

f10 Sh Rt Rastrigin ½�5; 5� -330

f11 Sh Rt Weierstrass ½�0:5; 0:5� 90

f12 Schwefel 2.13 ½p;p� 460

f13 Sh Expanded F8F2 ½�3; 1� -130

f14 Sh Rt Scaffer F6 ½�100; 100� -300

f15 Hybrid HC Function 120

f16 Rt HC Function 1 120

f17 f16 with Noise 120

f18 Rt HC Function 2 10

f19 f18with Basin 10

f20 f18 with GB ½�5; 5� 10

f21 Rt HC Funtion 3 360

f22 f21 with NM 360

f23 NC Rt f21 360

f24 Rt HC Function 4 260

f25 f24 without Bounds 260

The abbreviations in this table present as follows. Uni Uni-modal,

MultI Multi-modal, Sh Shifted, Rt Rotated, GB Global on Bounds,

HC Hybrid Composition, NM Number Matrix
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the RND method is a practical sampling selection method

that can be reasonably applied in the real world conditions.

5.3 Analysis of sampling size influence

Theoretical speaking, a large sampling size means more

accuracy in approximation performance, except over fitting

issues. From the evaluation results (i.e., Tables 3 and 4),

we can obtain the same conclusion by comparing the same

approximation method with different sampling sizes.

However, more sampling size requires more time spent in

the approximation process. When we apply one of the

approximation methods with a certain sampling size

mentioned in this paper, we should consider the final

optimization results and time cost used in approximation

process to achieving a balance state for a better optimiza-

tion performance.

5.4 Analysis of obtained elite rank

One characteristic of our proposed method for enhancing

the FWA optimization performance is obtaining an elite

from simplified approximation fitness landscape. For

approximation method in low dimensional space, we obtain

elite in each lower dimensional space and combine these

elite into original space. The fitness rank of obtained elite is

one of the evaluation metrics for evaluating performance of

our proposed method. Here, we discuss this issue based on

Table 5, which shows the average elite rank from our

evaluation experiments. From Table 5, the average ranks of

elite obtained by the BST method, the RND method and

the DIS method are about 2, 5, and 6, respectively. The

rank of elite presents the accuracy and performance of each

approximate method and each sampling method.

From this average rank result and mean value of each

method obtained from Tables 3 and 4, we found that

sampling method is an essential factor that influences the

optimization performance of our proposed surrogate-as-

sisted FWA. The influence of the sampling method on the

optimization performance enhancement is more effective

than that of sampling size. On the contrary, if the sampling

method is inefficient, whatever the sampling size is, the

proposed surrogate-assisted FWA cannot be enhanced and

improved significantly. This is a new discovery arising

from our evaluation experiments.

5.5 Analysis of interpolation and extrapolation

of obtained elite

The primary objective of our proposed method is to

approximate fitness landscape with a simple shape, so that

we can roughly find promising global optimum region toT
a
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Table 4 Mean fitness value of F15-F25 with 10 dimension

Method f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25

Normal 340.16 354.47 367.22 910 899.05 910 145.75 1312.65 1465.55 1266.35 1233.37

LS1-BST3 357.54 315.17� 358.34 903.36 910 910 1334.14 1287.47 1347.34 1195.87 1211.92

LS1-BST5 344.51 309.48� 339.62 910 910 910 1265.84� 1240.96� 1411.41 1171.43 1243.55

LS1-BST10 262.14� 332.2� 335.6 910 910 906.68 1289.92 1234.98� 1341.27 1195.16 1147.69

LS1-DIS3 308.37 340.78 351.17 910 910 906.69 1294.18 1273.91� 1386.8 1209.28 1032.63

LS1-DIS5 319.88 318.58� 356.68 910 910 910 1388.08 1247.67� 1458.21 1164.79 1044.72

LS1-DIS10 334.73 321.64� 345.82 910 899.25 910 1341.51 1225.36� 1292.33� 1091.6 1027.73

LS1-RND3 397.81 306.97� 345.66 910 910 910 1227.54� 1226.6� 1252.72� 1085.68 1194.81

LS1-RND5 327.68 309.34� 332.2� 906.7 906.69 910 1284.35 1249.68� 1358.92 1112.71 1065.58

LS1-RND10 353.65 295.95� 337.04 910 910 910 1438.49 1255.8 1254.12� 930.92� 1215.71

LS2-BST3 391.73 314.24� 353.79 907.31 910 910 1276.67� 1268.75 1283.6� 985.34� 922.65�

LS2-BST5 324.93 320.25� 323.63� 910 910 902.68 1335.73 1279.87 1246.34� 891.72� 1043.86

LS2-BST10 331.02 324.96� 345.05 910 910 910 1437.01 1270.78� 1185.12� 862.58� 786.74�

LS2-DIS3 306.85 317.02� 319.9� 910 910 910 1338.18 1224.89� 1307.18� 754.94� 859.67�

LS2-DIS5 342.62 301.65� 324.21� 910 910 910 1314.91� 1215.73� 1341.27� 712.9� 632.18�

LS2-DIS10 376.87 295.44� 308.5� 903.45 910 910 1137.49� 1131.81� 1236.72� 642.33� 580.64�

LS2-RND3 348.45 306.21� 305.55� 906.67 910 906.67 1292.36 1228.29� 1323.84� 903.38� 839.89�

LS2-RND5 339.32 302.14� 310.4� 908.17 910 894.02 1331.99 1212.39� 1323.47� 801.76� 841.93�

LS2-RND10 411.44 293.62� 318.24� 906.68 906.69 906.68 1204.18� 1178.71� 1313.45� 771.28� 735.21�

Spline-BST3 360.71 329.85� 340.09 892.53 910 910 1352.12 1228.52� 1255.02� 983.17� 1006.88

Spline-BST5 347.33 308.89� 339.53 910 910 910 1345.99 1257.68 1288.41� 710.01� 703.95�

Spline-BST10 332.89 325.3� 331.46� 910 910 906.69 1360.34 1257.97� 1232.96� 592.28� 664.01�

Spline-DIS3 308.51 307.12� 321.01� 910 897.54 910 1204.07� 1225.84� 1355.62 550.51� 696.96�

Spline-DIS5 269.16 306.49� 317.29� 910 901.41 910 1373.23 1174.35� 1383.61 602.23� 552.81�

Spline-DIS10 322.63 299.11� 326.97� 910 906.8 910 1347.24 1228.09� 1248.46� 586.59� 484.93�

Spline-RND3 376.83 302.59� 322.68� 900.02 906.67 910 1301.39 1250.29� 1245.65� 789.09� 790.49�

Spline-RND5 307.3 292.15� 310.09� 905.16 910 892.54 1444.25 1239.6� 1245.14� 678.41� 694.62�

Spline-RND10 350.39 281.49� 293.82� 896.52 910 906.7 1192.21� 1203.38� 1229.96� 533.59� 554.19�

Newton-BST3 336.2 320.26� 345.13 897.39 910 910 1394.47 1275.63 1260.61� 961.87� 814.9�

Newton-BST5 346.33 316.93� 359.37 908.92 906.68 910 1363.35 1234.88� 1302.64� 793.32� 1039.07

Newton-BST10 373.71 315.97� 350.54 910 910 910 1285.76 1249.44� 1290.51� 537.27� 533.59�

Newton-DIS3 344.12 292.97� 322.62� 910 910 900.19 1331.69 1172� 1348.93 554.34� 779.32�

Newton-DIS5 293.21 300.04� 317.9� 910 910 910 1374.93 1224.84� 1252.63� 644.01� 799.26�

Newton-DIS10 263.68 309.35� 319.67� 910 910 910 1323.63 1259.07� 1329.89 634.88� 702.7�

Newton-RND3 359.21 307.62� 322.73� 910 910 890.43 1243.67� 1211.18� 1303.19� 748.81� 666.79�

Newton-RND5 346.64 298.06� 314.96� 898.75 900.07 910 1349.1 1189.05� 1282.72� 961.56� 809.37�

Newton-RND10 384.83 281.32� 302.47� 910 910 910 1227.61� 1214.41� 1289.92� 730.17� 918.82�

OLS-BST 323.65 334.42� 373.7 910 910 910 1506.18 1310.7 1464.12 1174.51 1205.43

OLS-DIS 418.33 342.6 354.52 910 910 910 1438.71 1299.62 1427.72 1038.17� 1101.28

OLS-RND 337.8 338.82� 381.78 910 910 910 1537.26 1290.63 1438.77 1183.43 1264.36

SVR-BST3 338.64 339.07 352.95 910 910 910 1492.54 1338.57 1417.2 1375.7 1340.49

SVR-BST5 362.44 326.14� 380.58 910 910 910 1419.81 1323.67 1410.95 1414.75 1089.03

SVR-BST10 357.54 357.94 358.49 910 910 910 1445.33 1337.11 1400.47 1250.93 1175.33

SVR-DIS3 304.78 357.39 381.44 910 910 910 1459.13 1326.04 1608.32� 1333.63 1193.76

SVR-DIS5 357.54 359.95 360.65 910 910 910 1469.35 1300.15 1502.86 1233.33 1345.24

SVR-DIS10 357.54 361.12 346.53 910 910 907.12 1531.2 1304.61 1425.09 1201.96 1188.03

SVR-RND3 326.5 341.8 364.48 910 910 910 1499.58 1299.03 1482.22 963.23� 1277.5

SVR-RND5 357.54 335.69 362.71 910 904.7 910 1487.42 1310.99 1430.69 1185.11 1336.99
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Table 4 continued

Method f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25

SVR-RND10 357.54 341.91 371.05 910 910 910 1336.42 1315.77 1347.34 1078.39� 1214.85

The abbreviations used here are as in Table 1. The fitness value with y mark presents that this algorithm is significantly better than the canonical

FWA by Wilcoxon signed-rank in the significant level p\0:05

Table 5 Average elite rank of

10-D and 30-D benchmark

function when generation

(G) equals to 10, 100 and 1000

Method 10-D 30-D

G = 10 G = 100 G = 1000 G = 10 G = 100 G = 1000

LS1-BST3 3.46 3.59 4.03 4.21 4.89 5.34

LS1-BST5 2.48 2.39 2.32 2.84 2.64 2.67

LS1-BST10 2.68 2.30 2.24 2.55 2.27 2.27

LS1-DIS3 6.96 7.29 7.51 6.81 7.59 7.61

LS1-DIS5 6.35 6.49 6.53 6.29 6.58 6.61

LS1-DIS10 6.09 6.12 6.18 5.73 5.76 6.02

LS1-RND3 5.23 5.07 5.04 5.36 5.05 5.07

LS1-RND5 5.29 4.96 5.14 5.12 5.10 5.05

LS1-RND10 5.21 5.29 5.24 5.05 5.19 5.13

LS2-BST3 2.19 1.94 1.96 2.26 1.99 1.97

LS2-BST5 2.14 1.88 1.90 2.15 1.99 1.92

LS2-BST10 2.11 1.91 1.91 2.21 1.97 1.90

LS2-DIS3 5.90 5.72 5.78 5.60 5.70 5.69

LS2-DIS5 5.42 5.31 5.54 4.94 5.12 5.37

LS2-DIS10 4.87 5.37 5.34 4.47 4.89 4.98

LS2-RND3 4.49 4.13 4.10 4.33 4.36 4.31

LS2-RND5 4.49 4.30 4.45 4.32 4.48 4.58

LS2-RND10 4.71 4.94 5.02 4.36 4.76 4.97

Spline-BST3 2.11 2.03 2.06 2.17 2.06 2.01

Spline-BST5 2.32 2.13 2.10 2.51 2.19 2.14

Spline-BST10 2.66 2.26 2.31 2.61 2.30 2.26

Spline-DIS3 5.68 5.51 5.64 5.33 5.33 5.43

Spline-DIS5 6.02 5.82 6.01 5.69 5.79 5.89

Spline-DIS10 6.30 6.26 6.34 5.98 6.12 6.25

Spline-RND3 4.49 4.05 4.07 4.29 4.21 4.18

Spline-RND5 5.19 5.19 5.21 5.05 5.19 5.15

Spline-RND10 5.95 5.91 5.95 5.84 5.98 5.90

Newton-BST3 2.19 2.00 2.07 2.12 2.06 2.03

Newton-BST5 2.43 2.11 2.16 2.34 2.09 2.11

Newton-BST10 2.58 2.27 2.41 2.60 2.38 2.34

Newton-DIS3 5.67 5.56 5.66 5.39 5.28 5.58

Newton-DIS5 6.11 6.07 6.06 5.70 5.87 6.00

Newton-DIS10 6.45 6.48 6.63 6.29 6.51 6.48

Newton-RND3 4.48 4.18 4.08 4.31 4.35 4.24

Newton-RND5 5.59 5.55 5.55 5.50 5.62 5.47

Newton-RND10 6.56 6.62 6.71 6.49 6.59 6.57

OLS-BST 5.65 5.54 5.43 7.25 6.37 6.33

OLS-DIS 7.02 6.95 6.75 7.29 6.56 6.36

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy



search from this simple shape. From the approximation

point of view, the elite is obtained from interpolation or

from extrapolation, i.e., the elite is from approximation

range or outside of it. This metric is one of the evaluation

factors to evaluate approximation performance of our

proposal.

Figure 2 presents average extrapolation times of each

approximation method applied to 25 benchmark problems.

Except for some special cases of approximation in lower

dimensional spaces, these methods can obtain the elite

from extrapolation, i.e., outside of approximation range,

with about 100 times in 1000 generations. Although the

elite comes from these methods rarely outside its approx-

imation range, from the evaluation results, these methods

can obtain a better optimization performance in most

benchmark problems. It indicates that better local search

can improve the optimization performance of surrogate-

assisted FWA. The times of elite from extrapolation by

approximation in original space and high dimensional

space are more than that of approximation in low dimen-

sion. However, as demonstrated in Tables 3 and 4, they

cannot present better acceleration performance for most

Table 5 continued
Method 10-D 30-D

G = 10 G = 100 G = 1000 G = 10 G = 100 G = 1000

OLS-RND 6.96 6.74 6.62 7.51 6.93 6.96

SVR-BST3 7.58 7.21 7.16 7.21 7.05 7.09

SVR-BST5 7.51 7.13 7.21 6.91 6.69 6.69

SVR-BST10 7.36 6.75 6.73 6.99 6.71 6.76

SVR-DIS3 7.62 7.17 7.13 7.29 7.09 7.05

SVR-DIS5 7.46 6.78 6.74 7.02 6.67 6.73

SVR-DIS10 7.55 6.70 6.77 7.14 6.67 6.72

SVR-RND3 8.05 7.56 7.69 7.63 7.43 7.47

SVR-RND5 7.72 7.33 7.30 7.30 7.12 7.18

SVR-RND10 7.06 6.84 6.75 7.01 6.97 7.03

There are 8 individuals in our evaluation experiments, the number in this table shows the average rank of

elite according to its fitness value. The rank with bold font presents the winner algorithms in each gen-

eration of 10-D and 30-D benchmark functions

Fig. 2 Extrapolation times of each method, when we obtain the elite

from approximated fitness landscape, we judge whether it comes from

the interval of sampling data, if it is out of the interval, we define it as

extrapolation one time. This figure presents that better local search

can improve the optimization performance of FWA. Y-axis and

X-axis show the number of average extrapolation times from 25

benchmark functions of each method and each method’s abbreviation,

respectively
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benchmark problems. This result indicates that wrong

approximation and over-fitting problem can happen when

applying these two types of approximation method.

6 Conclusion

In this paper, we investigated and discussed the effective-

ness of approximation strategy in surrogate-assisted FWA.

We discussed the effectiveness of approximation strategy

from the aspect of approximation method, sampling data

selection method and sampling size. We analysed and

studied the optimization performance of each method. For

the approximation method, we used least square approxi-

mation, spline interpolation, Newton interpolation, and

support vector regression to approximate fitness landscape

of FWA in projected lower dimensional, original and

higher dimensional search space. We found that approxi-

mation in lower dimensional search space can effectively

obtain the rough fitness landscape information, and its

optimization performance outperforms that of approxima-

tion in original and higher dimensional search space. The

problem of over-fitting problem frequently happens when

applying the SVR method in this fitness landscape

approximation problem. In the sampling data selection

method aspect, we defined three sampling data selection

methods, i.e., the best sampling method, the distance near

the best fitness individual sampling method, and the ran-

dom sampling method to investigate each sampling meth-

od’s performance. We found that the RND sampling

selection method is better than the other two methods from

the viewpoints of computational complexity and perfor-

mance of optimization. From the sample size viewpoint,

we set it as 3, 5, and 10 sampling data in each approxi-

mation method and sampling selection method. We notice

that we should balance the final acceleration performance

we obtained and time cost in approximation process we

spent. This is a crucial issue when we apply proposed FWA

to a variety of problems and real-world applications.

One of the advantages of FWA is that the multi-pro-

duction mechanism presents in its algorithm. This means,

one firework can generate a number of sparks within the

explosion amplitude in each generation. We can use this

local fitness information and combine several sparks to

explore the global fitness landscape by our approximation

method. This is one aspect of our future work. The IEC

application requires the optimization algorithm to have a

better performance with small number of generations and

population size. The fact that the FWA can obtain a rela-

tively better optimization performance with a small popu-

lation size, is another advantage. This characteristic

provides an opportunity to establish an interactive frame-

work of FWA, i.e., interactive FWA. Because the

evaluation space of humans is relatively simple, we can

obtain a better optimization result when we apply our

proposed surrogate-assisted FWA in interactive FWA by

fitness landscape approximation. Some other opportunities

for investigation, such as surrogate-assisted FWA selection

issue, surrogate-assisted FWA for hard optimization prob-

lems, will be involved in our future work.

Acknowledgments This work was supported by the JSPS Grant-in-

Aid for Scientific Research (23500279), Japan. This work was also

supported by the Natural Science Foundation of China (NSFC) under

grant no. 61375119 and 61170057, and partially supported by

National Key Basic Research Development Plan (973 Plan) Project of

China with grant no. 2015CB352302.

References

1. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-

adapting control parameters in differential evolution: a compar-

ative study on numerical benchmark problems. IEEE Trans Evol

Comput 10(6):646–657

2. Gong W, Cai Z, Ling CX, Li C (2011) Enhanced differential

evolution with adaptive stategies for numerical optimization.

IEEE Trans Syst Man Cybern 41(2):397–413

3. Hazewinkel M (2001) Encyclopedia of mathematics, chap-

ter Spline interpolation. Springer, New York

4. Janecek A, Tan Y (2011) Swarm intelligence for non-negative

matrix factorization. Int J Swarm Intell Res (IJSIR) 2(4):12–34

5. Jin Y (2005) A comprehensive survey of fitness approximation in

evolutionary computation. Soft comput 9(1):3–12

6. Kashan AH (2015) A new metaheuristic for optimization: optics

inspired optimization (OIO). Comput Oper Res 55:99–125

7. Ong Y-S, Lim MH, Chen X (2010) Research frontier: memetic

computation—past, present and future. IEEE Comput Intell Mag

5(2):24–31

8. Pei Y (2014) Chaotic evolution: fusion of chaotic ergodicity and

evolutionary iteration for optimization. Natural Comput

13(1):79–96

9. Pei Y (2014) Study on effecient search in evolutionary compu-

tation. Doctoral Dissertation, Kyushu University, Japan

10. Pei Y (2015) From determinism and probability to chaos: chaotic

evolution towards philosophy and methodology of chaotic opti-

mization. Sci World J 704587

11. Pei Y, Takagi H (2012) Fourier analysis of the fitness landscape

for evolutionary search acceleration. In: 2012 IEEE Congress on

Evolutionary Computation (CEC2012), Brisbane, Austrilia,

pp 2934–2940

12. Pei Y, Takagi H (2013) Accelerating IEC and EC searches with

elite obtained by dimensionality reduction in regression spaces.

J Evolut Intell 6(1):27–40

13. Pei Y, Takagi H (2013) Fitness landscape approximation by

adaptive support vector regression with opposition-based learn-

ing. In: 2013 IEEE International Conference on Systems, Man,

and Cybernetics (SMC2013), Manchester, UK, pp 1329–1334

14. Pei Y, Takagi H (2013) Triple and quadruple comparison-based

interactive differential evolution and differential evolution. In:

Foundations of Genetic Algorithms Workshop XII (FOGA 2013),

Adelaide, Australia, pp 173–182

15. Pei Y, Takagi H (2015) Local information of fitness landscape

obtained by paired comparison-based memetic search for inter-

active differential evolution. In: 2015 IEEE Congress on Evolu-

tionary Computation (CEC2015), Sendai, Japan, pp 2215–2221

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy



16. Pei Y, Takagi H (2012) Comparative study on fitness landscape

approximation with fourier transform. In: 2012 Sixth Interna-

tional Conference on Genetic and Evolutionary Computing

(ICGEC2012), Kitakyushu, Japan, pp 400–403

17. Pei Y, Zheng S, Tan Y, Takagi H (2012) An empirical study on

influence of approximation approaches to enhance fireworks

algorithm. In: 2012 IEEE International Conference on Systems,

Man, and Cybernetics (SMC2012), Seoul, Korea, pp 1322–1327

18. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution

algorithm with strategy adaptition for global numberical opti-

mization. IEEE Trans Evol Comput 13(2):398–417

19. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water

cycle algorithm with evaporation rate for solving constrained and

unconstrained optimization problems. Appl Soft Comput

30:58–71

20. Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A,

Tiwari S (2005) Problem definitions and evaluation criteria for

the CEC2005, special session on real-parameter optimization.

KanGAL Report 2005005:2005

21. Takagi H (2001) Interactive evolutionary computation: fusion of

the capabilities of EC optimization and human evaluation. Proc

IEEE 89(9):1275–1296

22. Takagi H, Ingu T, Ohnishi K (2003) Accelerating a GA con-

vergence by fitting a single-peak function. J Jpn Soc Fuzzy

Theory Intell Inform 15(2):219–229 in Japanese

23. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In:

Advances in Swarm Intelligence, Springer, New York,

pp 355–364

24. Zhang B, Zhang M-X, Zheng Y-J (2014) A hybrid biogeography-

based optimization and fireworks algorithm. In: 2014 IEEE

Congress on Evolutionary Computation (CEC2014), Beijing,

China, pp 3200–3206

25. Zhang J, Sanderson AC (2009) JADE: adaptive differential

evolution with external achive. IEEE Trans Evol Comput

13(5):945–958

26. Zheng S, Janecek A, Tan Y (2013) Enhanced fireworks algo-

rithm. In: 2013 IEEE Congress on Evolutionary Computation

(CEC2013), Cancun, Mexico, pp 2069–2077

27. Zheng YJ (2015) Water wave optimization: a new nature-inspired

metaheuristic. Comput Oper Res 55:1–11

28. Zheng YJ, Qin S, Chen SY (2013) Multiobjective fireworks

optimization for variable-rate fertilization in oil crop production.

Appl Soft Comput 13(11):4253–4263

Int. J. Mach. Learn. & Cyber.

123

Author's personal copy


	Effectiveness of approximation strategy in surrogate-assisted fireworks algorithm
	Abstract
	Introduction
	An overview of the fireworks algorithm
	Regular explosion sparks
	Gaussian explosion sparks
	Selection for the next generation

	Surrogate-assisted fireworks algorithm framework
	Motivation
	Approximation methods
	Least square approximation
	Spline interpolation
	Lagrangian interpolation and newton interpolation
	Support vector regression

	Sampling selection methods
	Sampling sizes
	Surrogate-assisted fireworks algorithm

	Experimental evaluation
	Experimental setting
	Benchmark functions
	Evaluation metrics

	Discussion
	Analysis of approximation approach influence
	Analysis of sampling method influence
	Analysis of sampling size influence
	Analysis of obtained elite rank
	Analysis of interpolation and extrapolation of obtained elite

	Conclusion
	Acknowledgments
	References




