
Multi-digit Image Synthesis Using Recurrent
Conditional Variational Autoencoder

Haoze Sun, Weidi Xu, Chao Deng and Ying Tan
Key Laboratory of Machine Perception(MOE), Peking University

Department of Machine Intelligence, School of Electronics
Engineering and Computer Science, Peking University, Beijing, 100871, China
Email: pkucissun@foxmail.com, {wead hsu, cdspace678, ytan}@pku.edu.cn

Abstract—In the field of deep neural networks, several gen-
erative methods have been proposed to address the challenges
from generative and discriminative tasks, e.g., natural language
process, image caption and image generation. In this paper, a
conditional recurrent variational autoencoder is proposed for
multi-digit image synthesis. This model is capable of generat-
ing multi-digit images from the given number sequences and
retaining the generalisation ability to recover different types of
background. Our method is evaluated on SVHN dataset and
the experimental results show it succeeds to generate multi-digit
images with various styles according to the given sequential
inputs. The generated images can also be easily identified by
both human beings and convolutional neural networks for digit
classification.

I. INTRODUCTION

Deep neural networks have seen huge progress in several
major domains, e.g., computer vision [9], speech recognition
[8] and natural language process [2]. However most of those
models are discriminative and need lots of labelled data. In re-
cent years, several advanced deep generative models have been
proposed, e.g., restricted boltzmann machines (RBMs) [9],
variational autoencoders (VAEs) [7, 12, 13, 17] and generative
adversarial networks (GANs) [4, 18]. These models greatly
improved the performance of deep generative networks.

In contrast to conventional generative models, conditional
generative models can generate data while keeping several cer-
tain attributions of given labels (e.g., object category, colour).
Kingma et al.[13, 20] proposed a conditional variational auto-
encoder to successfully separate the image style and content
information. Springenberg et al. [18] proposed a categorical
generative model based on generative adversarial network.
This approach is based on an objective function that trades-
off mutual information between observed samples and their
prediction. These methods can generate particular data samples
with given input.

Conditional generative models are somewhat related to
multi-modal models. Typically, given a meaningful images,
several image-caption models [11, 14, 19] can generate general
captions conditioned on given images. These models are
extensively studied over computer vision and natural language
process communities.

However, although powerful generative models are repre-
sented, image generation method conditioned on sequential
labels has been out of sight. Recently proposed methods, e.g.,

conditional variational autoencoders [13, 20] and CatGAN
[18], originally deal with simple single categorical input but
can not generate image data conditioned on sequential input.
This motivates us to build a model that is capable of generating
general images given label sequence.

The aim of this paper is to generate SVHN-like multi-digit
images using sequential number labels. Caption-image model
[15] was recently proposed to generate general images given
captions. This caption-image model is modified it for multi-
digit image synthesis. The model receives label information
using attention mechanism [1] at each time-step. Hence the
drawing model can modify image canvas by different numbers
iteratively. Attention mechanism allows it to choose where to
focus on during the generation process. Useful information,
i.e., selected number is passed to conditional DRAW model
while others remain unused.

The contributions of this paper are:
1) A new conditional generation framework is proposed for

multi-digit image synthesis.
2) Different from [15], the recurrent encoding layer for

sequential labeled inputs is replaced with an attention-
based model to select raw input features, which is found
better for multi-digit image synthesis.

The rest of the paper is organized as follows. In section II,
we introduce the related works. In section III, our conditional
generative model is presented in detail. In section IV we obtain
both quantitive results and qualitative analysis. In section V,
we conclude the paper with a discussion.

II. RELATED WORKS

This section introduces several related deep generated mod-
els, i.e., restricted boltzmann machines, variational autoen-
coders and generative adversarial networks and their ex-
tensions. Variational autoencoder and its extensions will be
descirbed in detail.

A. Deep Generative Models

Restricted Boltzmann Machine (RBM) is one of the most
successfully models in deep neural learning field. It is widely
used in various applications, however it suffers from costly
posterior distribution inference which needs to take expen-
sive MCMC steps. Generative adversarial network (GAN) is
another novel model for image generation tasks. The model



utilise two networks to compete with each other: one for image
generation and the other tries to tell if the image is generated
by the first network or from dataset.

Recently, variaional autoencoder (VAE) have drawn a lot
of attentions due to its impressive results reported in [12]
and [7]. With a top-down generative network and a bottom-
up recognition network, the model is trained to maximize the
variational lower bound of data likelihood.

B. Conditional Variational Autoencoder

Since standard variational autoencodes[12] are pure gener-
ative models, many looked for conditional generative models.
Kingma et al. [13] proposed a conditional generative model
which can utilise label feature and generate images with
certain characteristics. Specifically it adds another label factor
into probabilistic graphical model and reformulates the varia-
tional lower bound with this additional factor. Kingma et al.
[13] firstly proposed this conditional variational autoencoder
and Yan et al. [20] extended it with a powerful convolutional
neural network for complex image generation. Both works
show the effectiveness of variational autoencoders.

C. Recurrent Variational Autoencoder

Considering that single step generation is difficult in han-
dling various hidden information, Gregor et al. [7] extended
the conventional variational autoencoder structure to recur-
rent form. Their model draws a picture with multiple steps
of modification. DRAW network converts both encoder and
decoder of conventional VAE into recurrent networks so that
it can handle long hidden variable sequence. In short, DRAW
decides at each time-step ”where to read” and ”where to write”
as well as ”what to write”. With help of dynamic spatial
attention mechanism this model can achieve the best generative
performance so far on mnist dataset.

While many approaches have been proposed for uncondi-
tional generation or simple category-based conditional gener-
ation, in this paper we propose an image generative model
conditioned on given sequential labels.

III. CONDITIONAL GENERATIVE MODEL

The model is divided into two main parts due to its
complexity: 1) a variational autoencoder network whose basic
structure is similar with Conditional DRAW network [15]. 2)
an attention-based sequence processing network. The architec-
ture is sketched in figure 1.

A. Conditional DRAW Network

At first, some basic conceptions of conditional variational
autoencoder (CVAE) is described and then we present con-
ditional DRAW network, a recurrent form of CVAE. In this
paper, we use the notation b =W (a) to denote a linear weight
matrix with bias from vector a to vector b for simplicity .

Given dataset X = {x1, x2, ......, xN}, the variational au-
toencoder aims to maximize the loglikelihood of all datapoints,
the following variational lower bound is optimized:

log pθ(x) ≥ Eqφ [log pθ(x|z)]−KL[qφ(z|x)||pθ(z)] (1)

Fig. 1. Left: This is the sketch of sequential input structure. Sequential
input represented as vectors is imported and the output is weighted over all
elements in sequence using attention method. Right: 1) At each time-step data
is encoded by enocoder RNN 2) A sample zt from prior p(zt|z1:t−1, y1:t−1)
is passed to recurrent decoder nework, which modifies part of the canvas
matrix. The output of decoder RNN computes the approximate posterior over
z1:T and y1:T .

The first item performs reconstruction approximation while the
second one acts as a regulariser.

In the context of conditional model, additional input y is
given and hence this equation simply extends to equation 2.

log pθ(x|y) ≥ Eqφ(log pθ(x|z, y))−DKL(qφ(z|x, y)||pθ(z|y))
(2)

where inference model qφ and ground prior is conditioned on
given input y.

In original DRAW network hidden variable zt at each
step is sampled from standard Gaussian N (0, I). However in
conditional DRAW network this distribution is transformed
to base on previous hidden variables and input yt. Since
previous hidden variable hdect−1 in recurrent decoder contains
all information from previous zt and yt, the mean and variance
of this prior distribution over zt are given by:

p(zt|z1:t−1, y1:t−1) = N (µ(hdect−1), σ(h
dec
t−1)) (3)

µ(hdect−1) =Wµ(h
dec
t−1) (4)

σ(hdect−1) = exp(Wσ(h
dec
t−1)) (5)

Where Wµ ∈ Rn×m,Wσ ∈ Rn×m are parameters learned
during training, n is the dimension of vector hdect−1 and m is
the dimension of N .

In generation process canvas ct is gradually modified at each
time-step by sequence zt and yt. Given initial hdec0 and y1:T ,
generation goes as:

zt ∼ p(zt|z1:t−1, y1:t−1) = N (µ(hdect−1), σ(h
dec
t−1)) (6)

hdect = RNNdec(hdect−1, [zt, yt]) (7)

ct = ct−1 + write(hdect ) (8)



All above are similar with DRAW network [7] except for
additional input yt and conditional priori distribution.

At each time step, we recompute hdec using recurrent
network according to equations above. Here we simply con-
catenates zt and yt as single-time input. zt is sampled from
prior distribution and yt is generated from sequential input
part which we will describe in detail in next sub-section
III-B. In DRAW network all recurrent networks are long
short-term memory network (LSTM) [3, 6]. LSTM network is
capable of capturing long term dependency while mitigating
annoying gradient vanishing problem occurring in traditional
recurrent networks. Important information will be saved in
memory units on the fly. Adopting LSTM network long-time-
step drawing becomes possible.

The DRAW network carefully designed a method to dynam-
ically write content to canvas at each step. In equation 8 write
function receives hdect as input parameter and then outputs
a five-dimension array specifying where to write. This array
leads to the horizontal and vertical Gaussian filters FX and FY
and finally transforms generated image-patch Wwrite(h

dec
t )

into current canvas ct−1:

write(hdect ) = FY (h
dec
t )Wwrite(h

dec
t )FX(hdect ) (9)

After T time-steps final canvas cT is generated. Finally
generated image is given by:

x ∼ p(x|y, z1:T ) = Bern(σ(cT )) (10)

The second part is inference network which models pos-
terior distribution qφ(z|x, y). Similar to DRAW network,
the inference network produces an approximate posterior
q(z1:T |x, y) where x is data to be generated and y is given
labels. By using read function the DRAW network is able to
gradually read patches of image step by step.

x̂t = x− σ(ct−1) (11)

rt = read(xt, x̂t, h
dec
t−1) (12)

henct = RNNenc(henct−1, [rt, h
dec
t−1]) (13)

q(zt|x, y, z1:t−1) = N (µ(henct ), σ(henct )) (14)

Where x̂t is the error image to make up, henct is the hidden
output of encoder recurrent network, hdect is the hidden output
of aforementioned decoder recurrent network.

Similarly, henc0 is the initial parameter to be learned during
training. According to equations above henct is given by
previous hidden state and rt (generated using origin image
x and error image x̂t) and previous hidden state from decoder
network. Since hdect−1 depends on sampled variables z1:t−1 and
conditional input sequence y1:t−1, henct depends on z and y
which satisfies the required form qφ(z|x, y) in equation 2.
read function acts like the inversion of write function. While
write maps generated patch to the entire canvas read tries to
extract single patch both in x and x̂t by generating two other
Gaussian filters.

B. Attention-based Sequential Input

In this section, we present how sequential input is modelled
to generate yt at each time step. Here we give the network
flexibility to choose which part of input sequence to focus
on by itself. Given a input sequence d = (d0, d1, ..., dL)
with length L and each element in d is a b dimension vector
depicting digit label, yt is produced by standard soft attention
mechanism. This mechanism is carefully studied in [1] and is
widely used in neural translation and image caption models
[19]. The conditional input yt is generated as follows.

yt =

L∑
i=1

αt,idi (15)

αt,i =
exp(eti)∑L
j=1 exp(etj )

(16)

et,i = vTa tanh(Wah
dec
t−1 + Uadi) (17)

Where va, Wa, Ua are parameters in soft attention model.
Since Uadi does not depend on t, we can pre-compute it to
minimize the computational cost. Because hdect−1 represents the
conditional DRAW network and carries necessary information
about z1:t−1 and y1:t−1, we use it as a single factor for
calculating attention weight α.

A simple alternative is to use recurrent network and provide
the last hidden layer output to conditional DRAW network at
each time-step. However in experiments we found it tends to
remember the digits together and generate all digits simultane-
ously. Attention-based method deals this with ability to choose
the conditional label dynamically.

C. Gradient-based Optimization for Variational Bounds

While conditional variational autoencoder tries to optimize
the variational lower bound in equation 2, this model tries
to optimize an objective function that consists of a sequence
steps of regularization. Formally the equation extends to:

L =Eq(z1:T |x,y)(log p(x|y, z1:T )

−
T∑
t=1

DKL(q(zt|z1:t−1, x, y)||p(zt|z1:t−1, y)))
(18)

Note that there is an expectation here and it is impossible
to iterate all z1:T in practice, it is easier to sample several
hidden variables and then perform stochastic gradient descend
method directly:

L ≈ 1

L

L∑
l=1

(log p(x|y, zl1:T )

−
T∑
t=1

DKL(q(zt|zl1:t−1, x, y)||p(zt|zl1:t−1, y)))

(19)

During the training, variable z is sampled with the repa-
rameterization trick proposed in [12]. An auxiliary variable
ε is first sampled from standard Gaussian distribution and



TABLE I
HYPER-PARAMETERS FOR OUR MODEL. SYMBOL # MEANS THE

DIMENSION OF THE VECTOR.

parameters LSTM #h #z #y b k

rnnDRAW 400 100 50 10 10

seqDRAW 400 100 20 20 10

seqDRAW-cur 400 100 20 20 10

z ∼ N (µ, σ2) can be expressed as z = µ + σε. L times
of sampling are used to approximate variable z:

EN (µ,σ2)[f(z)] ≈
1

L

L∑
l=1

f(µ+ σε) (20)

Since all operations used here are differentiable and hence
the objective function can be optimized using gradient-based
methods. Detailed derivation about DKL of two Gaussian
distribution with different means and variations is stated in
appendix VI.

D. Curriculum Learning

To deal with the variable length of sequences, the total
number of time-step T should be different for each input
sequence. We assume that shorter sequence implies less image
complexity and hence needs fewer iteration steps during image
generation. In the implementation, we simply set T = kL,
where k is const. By using this setting and attention mecha-
nism our model can generate digit canvas sequentially.

Curriculum learning is often used in some comprehension-
related tasks when difficult concepts are hard to be inferred
directly but can be obtained by gradually learning from simple
to complex data [21, 22]. In our model we gradually increase
the difficulty for generation. The dataset is first partitioned
into subsets according to sequence length L. Then the model is
trained with gradually increased data length, i.e., after training
the subset of L = 1, the model is feed with the subset of L = 2
and the rest can be done in the same manner.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Our model was trained with images from Street View
House Numbers (SVHN) [16]. The SVHN dataset has 33k
raw images for training and 13k images for testing. Each data
sample has information about digit labels and digit bounding
boxes (position and size). In training set, the percentage of
images with 1 digit is about 16%, the percentage of images
with 2 digits is about 54%, and 26% for length 3, the rest for
length 4.

Resolution of original images are different from each other,
so the original data is preprocessed into 32x64 size of grey
images. Rather than stretching characters to fill the whole im-
age as in [5] we first count the digits length and then carefully
align each digit from right to left. Several preprocessed images
are shown in figure 2. These images have various kinds of
backgrounds and that increases the difficulty in generation
tasks.

Fig. 2. Several data samples after pre-processing.

A. Quantitive Analysis

To demonstrate the generation ability of our model we
analyse the reconstructed images from test dataset. One obvi-
ous measurement is the reconstruction likelihood of images.
However this measurement has shown high variation in our
experiments and is not able to intuitively show the quality of
generated images. Hence we use one alternative measurement
here, i.e., instead of demonstrating likelihood of dataset, a
classification model is employed to obtain the generating
precision. We trained a convolutional neural network for digit
classification proposed by Goodfellow et al. [5]. This model
jointly determines the digits length and the label of each digits.
We used our preprocessed data to train this model and achieved
about 78% accuracy in testset.

Here we compare the results of three models. For the
baseline model, we simply replace the sequential input model
with a recurrent network and use the output of last hidden
layer as the input value for all time-steps in conditional
DRAW network. This baseline model is denoted as rnnDRAW.
The second model is described in section III but without
the curriculum learning, namely seqDraw. The last one is
the model with curriculum learning, i.e., seqDRAW-cur. The
hyper-parameters for these models are listed in table I. All
the models take k = 10 steps to reconstruct one digit. Note
that in seqDRAW and seqDRAW-cur label vectors and 10d
position vectors are concatenated together and hence results
in 20d label vectors.

The classification results are shown in table II. Although the
classification accuracy of images with more than two digits is
not very high, it can be used to evaluate the performance. The
low accuracy is somehow due to that 1) the generated images
are vague. According to [10] variational autoencoders tend to
generate vague images while generative adversarial nets do
not. 2) the noise in images.

We can tell from table II that the seqDRAW-cur performs
better comparing to other two models. This indicates that
simple sequence input model with attention mechanism is
capable of feeding conditional DRAW network with more
useful information.



TABLE II
CLASSIFICATION ACCURACIES

length 1 2 3

rnnDRAW 81.25% 7.55% 6.60%

seqDRAW 81.02% 7.66% 6.50%

seqDRAW-cur 81.65% 7.82% 6.80%

Fig. 3. Single-digit image generated given number 7 by seqDRAW-cur

B. Qualitative Analysis

Here we demonstrate several generation processes. We
randomly sampled multi-digit several sequences with differ-
ent length and then generate images conditioned on these
sequences. Figures 3,4,5 are generated using seqDRAW-cur
with sequence length L from 1 to 3. Each row represents one
generation run for certain sequence and the images from left
to right are sampled uniformly from all kL time-steps.

The generated images have various kinds of styles while
having the same digit content. Since the hidden variable zt is
not deterministic in each run, the gray scale of backgrounds
and digits are diverse. However the digits during each genera-
tion process keep the same gray scale. This indicates that our
model is able to generate images with certain sequence while
keeping some global features like image style.

Figure 6 is generated using rnnDRAW, it is more blurry
and all of the digits come out almost simultaneously. This is
because at each time-step, single recurrent network without
attention mechanism tends to extract information from the
whole given sequence but not focus on one digit. The results
also show that the generalisation ability of seqDRAW-cur is
better than rnnDRAW.

V. CONCLUSION

In this paper, a conditional generative model was proposed
to address multi-digit image synthesis tasks. This model com-
bines the conditional variational autoencoders and attention-
based sequential inputs to achieve the conditional sequence
generation ability. To deal with the difficulty arising from
various input length, curriculum learning method is used to
adaptively select the total time-steps for generation process.
The evaluations on SVHN dataset well demonstrate that our
model is able to generate multi-digit images conditioned on the
given sequential inputs while having different backgrounds.

Fig. 4. Two-digits image generated given numbers 68 by seqDRAW-cur

Fig. 5. Three-digits image generated given numbers 157 by seqDRAW-cur

Fig. 6. Three-digits image generated given numbers 334 by rnnDRAW
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VI. APPENDIX

The variational lower bound contains KL term which can
be integrated analytically. Here we give the solution when
the posterior qφ(z|·) = N (µ1, σ

2
1) and the prior pθ(z|·) =

N (µ2, σ
2
2). Let J be the dimensionality of z.∫

qφ(z) log pθ(z)dz =

∫
N (z;µ1, σ

2
1) logN (z;µ2, σ

2
2)dz

= −1

2

∑
j

log(2πσ2
2)−

1

2

∑
j

((µ2 − µ1)
2 +

σ2
1

σ2
2

)

And:∫
qφ(z) log qφ(z)dz =

∫
N (z;µ1, σ

2
1) logN (z;µ1, σ

2
1)dz

= −1

2

∑
j

log(2πσ2
1)−

J

2

Therefor:

DKL(qφ(z|·)||pθ(z|·)) =
1

2
(
∑
j

(µ1 − µ2)
2

+
∑
j

(σ1/σ2)
2 −

∑
j

log(σ1/σ2)
2 − J)


