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Abstract—Since fireworks algorithm (FWA) debuted in 2010,
a dozen proposals of improvement for FWA had been published
in an effort to enhance, refine and optimize accuracy while mini-
mizing calculation speed and volume. In this paper, we introduce
the covariance mutation operator into cooperative framework
fireworks algorithm (CoFFWA) to create cooperative framework
fireworks algorithm with covariance mutation (CoFFWA-CM) in
order to solve the Congress on Evolutionary Computation (CEC
2016) competition functions on single objective optimization. The
experimental results are calculated on all 10-, 30-, 50- and 100-
dimensional functions.

I. INTRODUCTION

Since its initial introduction by Tan and Zhu in 2010, FWA
has witnessed several dozen designs that sought to improve,
refine and optimize its output [1], [2]. FWA can be enhanced
in three ways, as improvements in the explosion operator, the
mutation operator and or the selection strategies.

The explosion operator was improved in 2013 by Zheng et
al. that addressed to the weaknesses of conventional FWA and
proposed the enhance FWA (EFWA) [3]. Liu et al. constructed
a transfer function to generate sparks and proposed a con-
structed FWA (CFWA) [4]. In 2014, Zheng et al. improved the
explosion amplitude of each firework and put forward dynamic
search FWA (dynFWA) [5]. In 2015, Zheng et al. periodically
reduced the number of explosion dimensions and put forward
an exponentially decreased dimension FWA (eddynFWA) [6].

Enhancements of mutation operator include Yu et al, whom
introduced the differential mutation operator into the EFWA
and perpetuated a fireworks algorithm with differential muta-
tion (FWA-DM) [7], [8], Li et al. calculated the difference
values between the better and worse sparks and proposed
orienting mutation based FWA (FWA-OM) [9]. The most
effective improvement was the covariance mutation, which was
proposed by Yu and Tan in 2015, called FWA with covariance
mutation (FWACM) [10], [11].

The selection strategy was upgraded in 2012 by Pei et al,
which utilized the approximation approaches to produce new
sparks. If the fitness value of the new spark was better than
the current selected spark, the new spark would be selected
and passed down to the next generation. FWA was accelerated
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by this approximation method and the algorithm was named
as accelerate FWA (AcFWA) [12]. In 2015, Zheng et al.
invented an independent selection mechanism in the selection
strategy. In addition, a crowd and bound back mechanism was
introduced. When the selected sparks were too close, all but
one would be generated randomly. The algorithm enhanced the
cooperation between the sparks and called as the cooperative
framework FWA (CoFFWA) [13].

Aside from the algorithmic improvements, FWA had been
applied to many practical fields. Bacanin and Tuba applied
FWA to solve the constrained portfolio optimization problems
[14]. Bouarara et al. utilized FWA to solve the modern web
information retrieval with visual results mining [15]. Rahmani
et al. studied the privacy preservation problems in big data by
FWA [16]. There were many other applications, as evidenced
in article [17]–[19].

This study used CoFFWA with covariance mutation
(CoFFWA-CM) to participate in the competition, as explained
in section II [20]. By introducing the covariance mutation into
the process of CoFFWA, the performance of the CoFFWA was
further enhanced. The new mutation operator in CoFFWA-
CM differed from the covariance mutation in FWACM while
the new mutation operator is analyzed in section III. The
experimental results are displayed in section IV, followed by
discussion and conclusion.

II. COOPERATIVE FRAMEWORK FIREWORKS ALGORITHM

WITH COVARIANCE MUTATION

CoFFWA-CM was proposed based on the previous work
of CoFFWA and covariance mutation. Published in Oct, 2015,
CoFFWA enhanced the diversity of the population by incor-
porating the independent selection strategy and bound back
mechanism, thus outperforming both EFWA and dynFWA.
In the same year, FWACM was put forward and defeated
both EFWA and dynFWA. However, FWACM was based on
the work of dynFWA, whereas dynFWA was not as good as
CoFFWA. Therefore, covariance mutation was introduced to
the most advanced FWA, which was CoFFWA, to proof its
effectiveness.

CoFFWA-CM generated two kinds of sparks: explosion
sparks from the explosion operator and mutation sparks from
the covariance mutation. Similar to the FWA variants, the



sparks were then systematically evaluated and selected for the
next generation. This iteration continued until the termination
conditions were met, usually when the maximum number of
function evaluations and or the accuracy requirements had been
reached. CoFFWA-CM proposed to further improve accuracy
with fewer generations. The covariance mutation was a muta-
tion with Gaussian distribution and utilized the better sparks in
each generation, instead of using the single best spark. The aim
of covariance mutation was to use more effective information
and thus increase the information utilization ratio.

CoFFWA-CM consisted of explosion operator, mutation
operator, mapping rules and selection strategy. The details of
them were as follows.

A. Explosion Operator

The explosion operator emulated a firework explosion,
where sparks were generated encompassing a central firework.
Before the explosion occurred, the number of sparks and the
amplitude of the explosion were determined, and were gener-
ated in the same fashion as dynFWA, FWACM and CoFFWA.
The explosion amplitude and the number of explosion of each
firework all factored into the optimization results.

Fig. 1. Real fireworks explosion is illustrated in (a), and the explosion
operation in FWA is shown in (b).

Before a firework exploded, the number of the sparks and
the amplitude of the explosion were calculated in advance. In
CoFFWA-CM, the number of sparks was inherited from the
conventional FWA.

Let Si denotes the number of sparks for the ith firework.

Si = Ŝ ∗ f(Xw)− f(Xi) + ε
N∑
i=1

(f(Xw)− f(Xi)) + ε

, (1)

where the parameter Ŝ determines the sum of sparks in each
generation. The Function f(x) represents the fitness value
of the input x. Since Xw is the individual with the worst
fitness value, function f(Xw) gives the fitness value of that
individual Xw. The parameter N is the number of fireworks
in a generation, whereas ε is used to prevent the denominator
from becoming zero. There are lower and upper boundaries
for Si, which are set empirically.

The sign ACF stands for the explosion amplitude of the
core firework. When saying the ‘core firework’, it refers to the
firework with the best fitness value in the current iteration. The
calculation of the ACF is as in Eq. 2.

ACF (g) =

{
ACF (1), if g = 1
ACF (g − 1) ∗ Ca, iff(XCF (g)) < f(XCF (g − 1))
ACF (g − 1) ∗ Cr, otherwise

,

(2)
where the parameter g is the number of generations, Ca and
Cr stands for the amplification and reduction factors of the
explosion amplitude, and XCF (g) is the core firework in the
gth generation.

Different from the core firework, the other fireworks have
the traditional way to calculate the explosion amplitude, which
is inherited from the conventional FWA. The amplitude of
explosion of the ith firework is denoted as Ai.

Ai = Â ∗ f(Xi)− f(XCF ) + ε
N∑
i=1

(f(Xi)− f(XCF )) + ε

, (3)

where the parameter Â is a constant used to control the am-
plitude of explosions, Xi is the ith individual. The parameter
N and ε are the same as mentioned in Eq. 1.

Under the effect of the explosion operator, a firework
produces a certain number of sparks within a preset amplitude,
both of which are vital to the experimental results. However,
compared to the number of sparks, the experimental results
are much worse if the explosion amplitudes are set improperly.
For example, if the number of sparks enlarges 10 times, the
experimental results are The explosion amplitudes are always
worth for studying.

B. Mutation Operator

In CoFFWA-CM, the covariance mutation utilizes informa-
tion from the sparks generated by the core firework, instead
of solely focusing on the single best spark. Unlike previous
mutation operators, covariance mutation uses both the sparks
produced by the fireworks with best fitness values from the
current generation and from the single most recent generation
to calculate an optimal solution. By using sparks from the pre-
vious generation, the covariant mutation selects better sparks
with proper fitness values than previous algorithms.

The covariance mutation selects the sparks with better fit-
ness values from the sparks produced by a firework, calculates
the mean value of the selected sparks and the covariance
matrix of all the sparks. With the mean value and covariance
matrix, covariance mutation estimates the local distribution of a
function and produces sparks according to normal distribution,
aiming to find potential sparks with better fitness values. The
covariance mutation contains three steps.

Firstly, the covariance mutation selects the sparks produced
by a firework and calculates the mean value. Let the sign λ
represents the sum of sparks and μ stands for the number of
the selected sparks. The mean value of the selected sparks is
represented as m.

m =

μ∑
i=1

xi, (4)



where xi is the ith selected spark. Note that m is the mean
value of the μ individuals, rather than the mean value of all
individuals.

Secondly, the mutation operator calculates the covariance
matrix C of all the λ sparks. The ith row and jth column of
the matrix C is represented as Cij in Eq. 5.

Cij = cov(di, dj)(i, j = 1, ..., D), (5)

where constant D is the dimension of the benchmark function
and sample di is the sparks in their ith dimension. The
cov(di, dj) stands for the covariance of the sparks in ith and
jth dimensions and it is calculated in Eq. 6.

cov(di, dj) =

μ∑
k=1

(ak − Ā)(bk − B̄)

μ
. (6)

where ak and bk are the kth spark in its ith and jth dimen-
sions, Ā and B̄ are the mean value of all the λ sparks in
dimension i and j. Different from calculating the covariance,
the denominator here is not μ− 1 as usual.

Thirdly, the mutation sparks are generated according to
normal distribution, using the m and C obtained before. Figure
2 shows the contour of the mutation sparks in ellipse.
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Fig. 2. The mutation sparks distribution with N(m,C).

It can be seen from Fig. 2 that the possibility of finding
useful sparks increased, as the mutation sparks produced by
covariance mutation can now better navigate towards the
optimal direction.

The algorithm of the covariance mutation is given in Alg. 1.
The two groups of sparks are produced by the current and the
most recent generation best sparks. The sign N(m,C) denotes
a normal distribution with mean m and covariance C.

Algorithm 1 Covariance Mutation

1: collect two groups of sparks
2: calculate the mean value m of the better sparks
3: obtain the covariance matrix C
4: generate mutation sparks with N(m,C)

C. Mapping Rules

Mapping rules are proposed to handle sparks that fell
outside of the boundaries. When a firework is close to the
boundary, the generated sparks can easily stray outside of
the boundary when distributed by a relatively large explosion
amplitude. In CoFFWA-CM, the mapping rules are the same as
in conventional FWA, where the outlying sparks are generated
randomly back into the feasible space.

X = Xl + rand(0, 1) ∗ (Xu −Xl), (7)

where X is the location of the spark X in the feasible space,
Xu and Xl denote the upper and lower boundaries. Function
rand(0, 1) generates a random number within the area from
0 to 1 with uniform distribution.

D. Selection Strategies

The two strategies used in CoFFWA-CM are independent
selection strategy and the crowd bounce off strategy. The inde-
pendent selection strategy selects N individuals independently
of the next generation, where N fireworks produce N groups
of fireworks, followed by the best spark in each group being
selected. The crowd and bounce off strategy filters the selected
sparks. If two selected sparks are too close, then one of them
is bounced off randomly to another location. The effectiveness
of these two strategies are carefully researched in the reference
[13].

To algorithm of CoFFWA-CM is shown in Alg. 2.

Algorithm 2 The algorithm of CoFFWA-CM

1: generate N fireworks with uniform distribution randomly.
2: evaluate the fitness values of the N fireworks
3: while terminate condition is not met do
4: calculate the number of sparks Si

5: calculate the amplitude of explosion ACF and Ai

6: generate Si explosion sparks within the amplitudes
7: calculate m and covariance matrix C
8: generate Gaussian sparks according with N(m,C)
9: evaluate all the fitness values of explosion and Gaussian

sparks
10: keep N individuals for the next generation using selec-

tion strategies
11: end while
12: return the best individual and its fitness value

III. ANALYSIS OF THE MUTATION IN COFFWA-CM

Covariance mutation is an implementation of CoFFWA. In
CoFFWA, there is no mutation operator, as such, it is easy to
add the mutation operator to the CoFFWA without changing
the original structure. The new algorithm firstly utilized the
explosion operator, followed by the mutation operator and the
selection strategies. If any sparks are produced out of the
boundaries, they will be discarded and a new spark will be
generated randomly within the feasible space.

A two-dimensional function f(x) = x1+x2 is taken as an
example to visualize the covariance mutation in CoFFWA.

In Fig. 3, the processes of generating mutation sparks by
covariance mutation is shown one by one. The contour lines



is drawn in Fig. 3(a), where the bottom left indicates better
fitness values. Figure 3(b) illustrates the selected λ sparks.
The better sparks are shown in Fig. 3(c) marked as black ‘x’.
The mutation sparks are represented in Fig. 3(d) marked with
red ‘+’.
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Fig. 3. The process of generating mutation sparks by covariance mutation.

It can be seen from Fig. 3 that the sparks marked with
red ‘+’ distributed in a direction from the bottom left to the
upper right, which is close to the direction of the gradient.
Besides, the relatively better sparks in Fig. 3d are all produced
by covariance mutation, which are marked with red ‘+’.
Therefore, the covariance mutation operator is effective at
finding local optimal values with the information of the sparks.
The characteristic of covariance mutation can be extended to
higher dimensions and more complicated functions.

To validate the performance of covariance mutation, the
rotated high conditioned elliptic function was utilized. This
function was the number 1 function in CEC 2016 single ob-
jective optimization function, which was a unimodal function.
The comparison experiments show the CoFFWA with and
without covariance mutation. All of the four dimensions were
considered, as 10, 30 and 50 dimensions. Each algorithm ran
for 51 times and the average mean errors were recorded.

TABLE I. THE COMPARISON OF COFFWA WITH COFFWA-CM ON

FUNCTION 1 IN 10, 30 AND 50 DIMENSIONS

Dimensions CoFFWA CoFFWA-CM

10 4.39e+04 2.16e+04
30 1.12e+06 6.24e+05
50 2.12e+06 1.61e+06

The experimental results in Table I indicated that when
the dimension increased to 50, CoFFWA-CM still had the
better performance than the original CoFFWA. Note that the
parameters chosen for CoFFWA were its default parameters,
whereas the parameters of CoFFWA-CM were the same as
indicated in the experiments section. The better performance
of CoFFWA-CM proof its effectiveness on 10, 30 and 50
dimensional of a unimodal function.

IV. EXPERIMENTS

This part first introduce the benchmark functions, followed
by the parameter settings and experimental results. Note that

a value of 100 was added to function 1, 200 to function 2,
..., and a value of 3000 to function 30, all of which were not
subtracted. In this way, the experimental results were displayed
as they were calculated from their corresponding benchmark
functions.

A. Benchmark Functions

CoFFWA-CM was used to find the global optimum values
of 30 benchmark functions from the CEC’16 competition.
The details of the functions could be found in [21]. The
names and numbers of the functions were given in Table
II. The functions included unimodal, multi-modal, hybrid and
composition functions, which were divided by horizontal lines
in Table II.

TABLE II. BENCHMARK FUNCTIONS

No. Name

1 Rotated High Conditioned Elliptic Function
2 Rotated Bent Cigar Function
3 Rotated Discus Function

4 Shifted and Rotated Rosenbrocks Function
5 Shifted and Rotated Ackley’s Function
6 Shifted and Rotated Weierstrass Function
7 Shifted and Rotated Griewank’s Function
8 Shifted Rastrigin’s Function
9 Shifted and Rotated Rastrigin’s Function

10 Shifted Schwefel’s Function
11 Shifted and Rotated Schwefel’s Function
12 Shifted and Rotated Katsuura Function
13 Shifted and Rotated HappyCat Function
14 Shifted and Rotated HGBat Function
15 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Functions
16 Shifted and Rotated Expanded Scaffer’s F6 Function

17 Hybrid Function 1 (N=3)
18 Hybrid Function 2 (N=3)
19 Hybrid Function 3 (N=4)
20 Hybrid Function 4 (N=4)
21 Hybrid Function 5 (N=5)
22 Hybrid Function 6 (N=5)

23 Composition Function 1 (N=5)
24 Composition Function 2 (N=3)
25 Composition Function 3 (N=3)
26 Composition Function 4 (N=5)
27 Composition Function 5 (N=5)
28 Composition Function 6 (N=5)
29 Composition Function 7 (N=3)
30 Composition Function 8 (N=3)

B. Parameters Settings

The parameters were set identically for all the dimensions.
Some of the parameters’ settings were shown in Table. III. It
was clearly that the parameters were simple and easy to set.
The other parameters are demonstrated in [13].

TABLE III. PART OF THE PARAMETERS’ SETTING

Parameters Values Meanings

N 5 the number of fireworks

Ŝ 150 the number of sparks

Â 40 the amplitude constant
μ/λ 0.25 the percentage of better sparks

C. Experimental Results

The experimental platform is Matlab 2015a and the pro-
gram is run on a Windows 10 operating system. The experi-
mental results on 10, 30, 50 and 100-dimension functions of
CEC 2016 single objective optimization competition are given
in Table IV, V, VI and VII, respectively.

The computational complexity of CoFFWA-CM is given in
Table VIII.



TABLE IV. RESULTS FOR 10D

Function No. Best Worst Median Mean Std.

1 1.75E+03 5.49E+04 1.97E+04 2.16E+04 1.37E+04
2 2.01E+02 9.73E+03 1.74E+03 2.57E+03 2.45E+03
3 3.00E+02 3.90E+02 3.01E+02 3.08E+02 1.55E+01
4 4.00E+02 4.35E+02 4.00E+02 4.04E+02 9.27E+00
5 5.20E+02 5.20E+02 5.20E+02 5.20E+02 1.40E-04
6 6.00E+02 6.05E+02 6.01E+02 6.01E+02 1.18E+00
7 7.00E+02 7.00E+02 7.00E+02 7.00E+02 7.52E-02
8 8.03E+02 8.16E+02 8.06E+02 8.07E+02 3.64E+00
9 9.06E+02 9.45E+02 9.17E+02 9.17E+02 7.73E+00

10 1.00E+03 1.36E+03 1.13E+03 1.11E+03 9.61E+01
11 1.13E+03 2.07E+03 1.62E+03 1.60E+03 2.26E+02
12 1.20E+03 1.20E+03 1.20E+03 1.20E+03 4.64E-02
13 1.30E+03 1.30E+03 1.30E+03 1.30E+03 5.65E-02
14 1.40E+03 1.40E+03 1.40E+03 1.40E+03 6.63E-02
15 1.50E+03 1.50E+03 1.50E+03 1.50E+03 3.00E-01
16 1.60E+03 1.60E+03 1.60E+03 1.60E+03 4.72E-01
17 1.75E+03 6.25E+03 2.41E+03 2.84E+03 1.03E+03
18 1.81E+03 6.68E+03 1.99E+03 2.25E+03 7.46E+02
19 1.90E+03 1.90E+03 1.90E+03 1.90E+03 4.12E-01
20 2.01E+03 3.04E+03 2.08E+03 2.17E+03 2.11E+02
21 2.10E+03 2.91E+03 2.28E+03 2.36E+03 2.04E+02
22 2.20E+03 2.36E+03 2.22E+03 2.23E+03 2.69E+01
23 2.30E+03 2.63E+03 2.63E+03 2.61E+03 6.35E+01
24 2.51E+03 2.54E+03 2.52E+03 2.53E+03 8.34E+00
25 2.62E+03 2.70E+03 2.65E+03 2.66E+03 2.98E+01
26 2.70E+03 2.70E+03 2.70E+03 2.70E+03 6.76E-02
27 2.70E+03 3.10E+03 2.71E+03 2.87E+03 1.87E+02
28 3.10E+03 3.38E+03 3.26E+03 3.25E+03 6.18E+01
29 3.16E+03 4.03E+03 3.35E+03 3.39E+03 1.59E+02
30 3.31E+03 4.44E+03 3.97E+03 3.97E+03 2.73E+02

TABLE V. RESULTS FOR 30D

Function No. Best Worst Median Mean Std.

1 1.32E+05 1.98E+06 5.74E+05 6.24E+05 3.67E+05
2 2.04E+02 3.18E+04 9.41E+03 1.03E+04 8.47E+03
3 3.00E+02 3.00E+02 3.00E+02 3.00E+02 0.00E+00
4 4.00E+02 5.43E+02 4.74E+02 4.62E+02 4.52E+01
5 5.20E+02 5.20E+02 5.20E+02 5.20E+02 0.00E+00
6 6.00E+02 6.13E+02 6.06E+02 6.06E+02 3.33E+00
7 7.00E+02 7.00E+02 7.00E+02 7.00E+02 9.78E-03
8 8.42E+02 9.25E+02 8.80E+02 8.83E+02 2.09E+01
9 9.40E+02 1.03E+03 9.88E+02 9.85E+02 2.59E+01

10 2.36E+03 4.90E+03 3.60E+03 3.56E+03 5.05E+02
11 2.36E+03 5.40E+03 4.14E+03 4.06E+03 6.17E+02
12 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.04E-01
13 1.30E+03 1.30E+03 1.30E+03 1.30E+03 7.09E-02
14 1.40E+03 1.40E+03 1.40E+03 1.40E+03 3.54E-02
15 1.50E+03 1.51E+03 1.50E+03 1.50E+03 1.93E+00
16 1.61E+03 1.61E+03 1.61E+03 1.61E+03 4.83E-01
17 5.49E+03 1.23E+05 1.61E+04 3.14E+04 3.35E+04
18 2.12E+03 1.04E+04 3.50E+03 4.26E+03 2.08E+03
19 1.91E+03 1.92E+03 1.91E+03 1.91E+03 2.39E+00
20 2.09E+03 2.40E+03 2.22E+03 2.22E+03 7.22E+01
21 5.89E+03 3.62E+04 1.53E+04 1.57E+04 6.60E+03
22 2.24E+03 2.99E+03 2.60E+03 2.57E+03 1.64E+02
23 2.62E+03 2.62E+03 2.62E+03 2.62E+03 7.79E-03
24 2.62E+03 2.64E+03 2.63E+03 2.63E+03 4.04E+00
25 2.70E+03 2.71E+03 2.71E+03 2.71E+03 2.22E+00
26 2.70E+03 2.70E+03 2.70E+03 2.70E+03 1.04E-01
27 3.00E+03 3.26E+03 3.10E+03 3.12E+03 4.61E+01
28 3.67E+03 5.99E+03 3.86E+03 4.02E+03 4.18E+02
29 5.19E+03 1.63E+04 1.02E+04 1.03E+04 3.40E+03
30 5.22E+03 1.52E+04 7.63E+03 7.94E+03 1.85E+03

V. DISCUSSION

The covariance mutation is effective in estimating local
distribution in all functions. In CoFFWA-CM, each group of
sparks is produced around a firework, thus the local distribution
can be estimated if the information of the sparks was utilized.
The information includes the location of the sparks that are
geologically closest and the fitness values of these sparks.
Early in 2012, Pei et al. proposed an approximate method to
estimate the local distribution of the functions, but now the
covariance mutation is used. There are other ways to estimate
the local distribution of the functions, such as sampling and

TABLE VI. RESULTS FOR 50D

Function No. Best Worst Median Mean Std.

1 7.16E+05 3.10E+06 1.56E+06 1.61E+06 5.44E+05
2 2.00E+02 2.59E+04 5.25E+03 8.25E+03 8.45E+03
3 3.00E+02 3.00E+02 3.00E+02 3.00E+02 0.00E+00
4 4.23E+02 6.00E+02 4.99E+02 5.06E+02 2.83E+01
5 5.20E+02 5.20E+02 5.20E+02 5.20E+02 1.40E-04
6 6.04E+02 6.28E+02 6.14E+02 6.14E+02 5.27E+00
7 7.00E+02 7.00E+02 7.00E+02 7.00E+02 7.87E-03
8 8.97E+02 1.05E+03 9.66E+02 9.73E+02 4.07E+01
9 9.91E+02 1.18E+03 1.06E+03 1.06E+03 3.84E+01
10 4.94E+03 8.16E+03 6.23E+03 6.24E+03 8.06E+02
11 4.93E+03 8.88E+03 6.74E+03 6.79E+03 8.99E+02
12 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.10E-01
13 1.30E+03 1.30E+03 1.30E+03 1.30E+03 5.87E-02
14 1.40E+03 1.40E+03 1.40E+03 1.40E+03 3.00E-02
15 1.51E+03 1.52E+03 1.51E+03 1.51E+03 2.98E+00
16 1.62E+03 1.62E+03 1.62E+03 1.62E+03 7.69E-01
17 2.10E+04 1.81E+05 6.33E+04 7.34E+04 4.15E+04
18 2.30E+03 8.81E+03 2.74E+03 3.28E+03 1.23E+03
19 1.92E+03 1.98E+03 1.93E+03 1.93E+03 1.32E+01
20 2.26E+03 2.63E+03 2.43E+03 2.44E+03 8.81E+01
21 1.51E+04 2.30E+05 7.24E+04 8.14E+04 5.29E+04
22 2.53E+03 3.74E+03 3.15E+03 3.12E+03 2.27E+02
23 2.64E+03 2.65E+03 2.65E+03 2.65E+03 8.35E-01
24 2.66E+03 2.69E+03 2.68E+03 2.68E+03 5.24E+00
25 2.71E+03 2.73E+03 2.72E+03 2.72E+03 3.74E+00
26 2.70E+03 2.80E+03 2.80E+03 2.77E+03 4.81E+01
27 3.16E+03 3.81E+03 3.41E+03 3.44E+03 1.42E+02
28 4.62E+03 8.92E+03 5.97E+03 6.07E+03 9.73E+02
29 9.22E+03 7.90E+04 2.41E+04 2.64E+04 1.27E+04
30 3.09E+04 7.67E+04 4.15E+04 4.42E+04 9.36E+03

TABLE VII. RESULTS FOR 100D

Function No. Best Worst Median Mean Std.

1 6.27E+06 2.58E+07 1.23E+07 1.32E+07 4.93E+06
2 2.01E+02 1.27E+05 1.33E+04 2.77E+04 3.02E+04
3 3.00E+02 3.00E+02 3.00E+02 3.00E+02 1.96E-04
4 5.60E+02 7.58E+02 6.59E+02 6.62E+02 4.24E+01
5 5.20E+02 5.20E+02 5.20E+02 5.20E+02 0.00E+00
6 6.30E+02 6.75E+02 6.47E+02 6.48E+02 8.67E+00
7 7.00E+02 7.00E+02 7.00E+02 7.00E+02 3.94E-03
8 1.09E+03 1.38E+03 1.25E+03 1.24E+03 6.48E+01
9 1.19E+03 1.60E+03 1.32E+03 1.33E+03 8.39E+01
10 1.05E+04 1.60E+04 1.31E+04 1.30E+04 1.23E+03
11 1.10E+04 1.68E+04 1.38E+04 1.39E+04 1.41E+03
12 1.20E+03 1.20E+03 1.20E+03 1.20E+03 8.57E-02
13 1.30E+03 1.30E+03 1.30E+03 1.30E+03 5.37E-02
14 1.40E+03 1.40E+03 1.40E+03 1.40E+03 2.61E-02
15 1.51E+03 1.54E+03 1.53E+03 1.53E+03 5.73E+00
16 1.64E+03 1.65E+03 1.64E+03 1.64E+03 1.13E+00
17 1.95E+05 1.81E+06 5.06E+05 6.33E+05 3.61E+05
18 2.83E+03 1.04E+04 3.86E+03 4.49E+03 1.81E+03
19 1.98E+03 2.05E+03 2.03E+03 2.02E+03 2.16E+01
20 2.50E+03 2.99E+03 2.76E+03 2.76E+03 1.19E+02
21 3.96E+04 1.04E+06 2.08E+05 2.64E+05 2.09E+05
22 2.87E+03 4.86E+03 4.04E+03 4.03E+03 3.83E+02
23 2.66E+03 2.67E+03 2.66E+03 2.66E+03 2.93E+00
24 2.79E+03 2.82E+03 2.80E+03 2.80E+03 6.73E+00
25 2.74E+03 2.78E+03 2.76E+03 2.76E+03 7.82E+00
26 2.80E+03 2.80E+03 2.80E+03 2.80E+03 1.05E-01
27 3.64E+03 4.98E+03 4.15E+03 4.15E+03 2.78E+02
28 8.53E+03 1.48E+04 1.22E+04 1.23E+04 1.43E+03
29 1.17E+04 5.96E+04 2.34E+04 2.50E+04 9.09E+03
30 4.68E+04 1.26E+05 7.97E+04 8.07E+04 1.65E+04

TABLE VIII. COMPUTATIONAL COMPLEXITY OF COFFWA-CM GIVEN

FOR 10, 30, 50 AND 100 DIMENSIONAL FUNCTION 18

T0 T1 T2 (T2-T1)/T0

D=10 0.129149 0.112624 0.916262 6.222565
D=30 0.129149 0.360556 1.381998 7.909020
D=50 0.129149 0.696860 1.666858 7.510689
D=100 0.129149 2.065286 3.545964 11.464880



based on the probabilistic distribution model, all of which are
worth researching in the future.

As there is no comparison algorithm, the performance can
be analyzed if the global best value has been found. From the
experimental results of 10-dimensional functions, the optimal
values were found on function 7, 12, 13, 14, 15, 16 and 19.
However, when the values were subtracted and the optimal
values became zero, the algorithm found no value that equals
zero. The experimental results on the 3rd function in its 30-,
50- and 100-dimension were great, as the algorithm found all
the values as zero. Therefore, even the global optimal values
were not found on most functions, it didn’t necessary mean the
algorithm performed poorly. The only reasonable explanation
was the functions that were complicated and the global optimal
values of the functions were hard to pinpoint.

Another way to measure the experimental results was to
judge the standard deviation. From the experimental results of
10-dimensional functions, 9 of the 30 standard deviation were
lower than 1. This meant the results were steady with a rela-
tively small variation after 51 cycles. The experimental results
on the 30-dimensional functions were different. The algorithm
found the global optimal value on function 3 and the local
optimal value on function 5, both of the standard deviations
were zero. It can be seen from to the experimental results on
50 dimensional functions that the algorithm found the global
best value on function 3, whereas the algorithm found the local
optimal on function 5 in 100-dimension functions. Both of the
standard deviations were zero.

Although the overall experimental results were acceptable,
there is still much space for improvement of the algorithms
to ascertain better results. CoFFWA-CM uses sparks with
better fitness values from previous generations with the current
generation. However, it would be an interesting study to weigh
how many previous generations could be used to refine the
most recent spark before the refinement process becomes moot.
Nevertheless, we expect to see progressive research to improve
CoFFWA-CM in the near future.

VI. CONCLUSION

This paper utilized the most advanced FWA variant to par-
ticipate the CEC 2016 single objective optimization problems.
The CoFFWA-CM utilized the covariance mutation and in-
creased the local search ability. By successfully integrating
the covariant mutation into CoFFWA, CoFFWA-CM further
enhanced the accuracy of CoFFWA. CoFFWA-CM outper-
formed its predecessors on all accounts and has achieved better
accuracy while minimizing computation time.
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Fig. 4. Convergence curves for CoFFWA-CM on function 1 to 15 in Dimension 10, 30, 50 and 100.
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Fig. 5. Convergence curves for CoFFWA-CM on function 16 to 20 in Dimension 10, 30, 50 and 100.


