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Abstract—The nearest neighbor (NN) classifier suffers from
high time complexity when classifying a test instance since the
need of searching the whole training set. Prototype generation is
a widely used approach to reduce the classification time, which
generates a small set of prototypes to classify a test instance
instead of using the whole training set. In this paper, particle
swarm optimization is applied to prototype generation and two
novel methods for improving the classification performance are
presented: 1) a fitness function named error rank and 2) the
multiobjective (MO) optimization strategy. Error rank is pro-
posed to enhance the generation ability of the NN classifier, which
takes the ranks of misclassified instances into consideration when
designing the fitness function. The MO optimization strategy pur-
sues the performance on multiple subsets of data simultaneously,
in order to keep the classifier from overfitting the training set.
Experimental results over 31 UCI data sets and 59 additional
data sets show that the proposed algorithm outperforms nearly
30 existing prototype generation algorithms.

Index Terms—Error rank, multiobjective (MO) optimization,
nearest neighbor (NN) classification, particle swarm optimiza-
tion (PSO), prototype generation.

I. INTRODUCTION

NEAREST neighbor classification is a classic and widely
used supervised learning algorithm. To classify an

instance (i.e., a test instance), this algorithm first gets a cer-
tain number of instances from the training set which are the
nearest to the test instance. These instances are called nearest
neighbors (NNs) of the test instance. The majority class of the
NNs is assigned to the test instance.

The simplest version of NN classification is 1NN. 1NN
just gets one nearest instance in the training set for a test
instance. The class of the nearest instance is assigned to the
test instance.

The main problem faced by NN classification is its low
time and space efficiency when classifying a test instance.

Manuscript received April 10, 2015; revised August 11, 2015; accepted
September 20, 2015. Date of publication October 19, 2015; date of current
version November 15, 2016. This work was supported in part by the Natural
Science Foundation of China under Grant 61375119, Grant 61170057, and
Grant 60875080, and in part by the National Key Basic Research Development
Plan (973 Plan) Project of China under Grant 2015CB352302. This paper was
recommended by Associate Editor S. Yang. (Corresponding author: Ying Tan.)

The authors are with the Key Laboratory of Machine Perception, and
the Department of Machine Intelligence, School of Electronics Engineering
and Computer Science, Peking University, Beijing 100871, China (e-mail:
weiwei.hu@pku.edu.cn; ytan@pku.edu.cn).

Digital Object Identifier 10.1109/TCYB.2015.2487318

The classifier has to store the whole training set in the memory.
For each test instance, the classifier has to search the whole
training set for the NNs, which is very time-consuming.

Prototype generation [1] is a very effective method to over-
come the problem faced by NN classification. It generates a
small set of prototypes based on the training set and just gets
the NNs from the small set of prototypes, rather than from
the whole training set. This approach needs much less space
to store the prototypes, and searching the small set is much
faster than searching the whole training set.

Traditional prototype generation methods include learning
vector quantization [2], bootstrap technique [3], and mixtures
of Gaussians [4]. Evolutionary computation is a new approach
to generate prototypes. As a kind of optimization method, evo-
lutionary computation is used to search for the best positions
of prototypes by regarding the classification performance as
the fitness function. Evolutionary computation-based prototype
generation algorithms usually work better than nonevolution-
ary algorithms, since evolutionary algorithms are good at
global optimization and they generally generate and evaluate
tens of thousands of candidate solutions when searching for
the best set of prototypes.

This paper proposes two novel techniques for evolutionary
computation-based prototype generation, in order to further
improve the performance of NN classification. We found that
particle swarm optimization (PSO) is able to achieve bet-
ter classification performance when using the two proposed
techniques. Therefore, we use PSO-based prototype generation
scheme as the basic framework in this paper.

PSO is a well-known evolutionary computation algorithm
to search for the optimal solution of a specific problem [5].
PSO maintains a swarm of moving particles which repre-
sent candidate solutions. Each particle renews its velocity and
position according to its best position and the swarm’s best
position found so far at each iteration. By this way, a parti-
cle can communicate its information with other particles in
the swarm. Such collaborative searching strategy makes PSO
good at global search. PSO has become one of the most pop-
ular optimization algorithms for continuous real value-based
problems and has been applied to a variety of engineering
fields.

The two main contributions in this paper are as follows.
1) A fitness function named error rank is proposed to

enhance the generalization ability. The traditional fitness
function error rate only considers whether the training
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instances are wrongly classified, while the proposed
error rank utilizes the likelihood information of NN clas-
sification when calculating the fitness function. Such
detailed information makes error rank perform better
than error rate.

2) The multiobjective (MO) optimization strategy for pro-
totype generation is proposed to keep the NN classifier
from overfitting the training set. The MO optimization
refers to optimizing a problem with multiple objective
functions. For example Rosales-Pérez et al. [6] proposed
to minimize the error rate and the number of prototypes
simultaneously for prototype generation. The MO opti-
mization strategy proposed in this paper is different from
their approach since we focus on the problem of weak-
ening overfitting. In the proposed strategy, the training
set is divided into several subsets and the performance
metric (e.g., error rate and error rank) is calculated on
each subset. Then each subset’s performance metric is
regarded as an objective function of MO PSO. The
resulting prototypes will have better classification perfor-
mance simultaneously on multiple subsets and the effect
of overfitting can be weakened.

The proposed prototype generation algorithm is evaluated
on 31 UCI data sets via cross validation. We use the Friedman
aligned (FA) ranks test and the Holm’s test to compare the
proposed algorithm with 16 existing prototype generation
algorithms. The experimental results demonstrate that the pro-
posed method is better than these comparison algorithms. In
addition, we have run the proposed algorithm on the 59 data
sets used in [1]. This paper has compared the experimental
performance of 25 existing prototype generation algorithms on
the 59 data sets and several other papers have also reported
the results of their proposed algorithms on the 59 data sets.
Our method achieves higher average accuracy than all of these
prototype generation algorithms.

This paper is organized as follows. Section II reviews the
related work. A brief introduction to PSO and the frame-
work of applying PSO to generate prototypes are given in
Section III. The novel fitness function error rank is intro-
duced in Section IV. Section V proposes the MO optimization
strategy to weaken the effect of overfitting. Experimental
results are presented in Section VI. Section VII concludes this
paper.

II. RELATED WORK

Many prototype generation algorithms have been proposed
in recent years. In this section, we categorize the prototype
generation algorithms into three classes: 1) the data conden-
sation approach; 2) the prototype tuning approach; and 3) the
evolution-based approach.

The data condensation algorithms such as vector quantiza-
tion are the immediate ways to generate prototypes.

Vector quantization is a classic approach to reduce the size
of a set of vectors, which has been used to generate prototypes
from the training set. Xie et al. [7] quantized the training
data for each class and applied the KNN rule to the resulting
alphabets.

Self-organizing map (SOM) is an effective vector quantiza-
tion algorithm [2]. SOM maps each instance in the training set
to a neuron which represents a prototype. During the learning
phase of SOM, different neurons compete with each other, and
the winner neuron together with its neighboring neurons will
update their weights. After the learning phase, the weights
of each neuron are regarded as the vector of a prototype.
Li et al. [8] used SOMs to get the initial prototypes and then
fine-tuned these prototypes iteratively.

Lozano et al. [4] obtained the prototypes from the Gaussian
mixture model. For each class, they estimated the probability
density of the training data through the mixture of Gaussians.
The mean vector of each Gaussian distribution is regarded as
a prototype.

Most data condensation-based prototype generation algo-
rithms just regard prototype generation as a general data
condensation problem and do not take the characteristics of
NN classification into consideration. These algorithms usu-
ally perform more poorly than other prototype generation
algorithms which introduce some strategies to improve the
performance of NN classification.

The prototype tuning approach obtains the prototypes by
merging, moving, deleting, or relabeling the training instances.
This tuning process usually involves certain heuristic mecha-
nisms to guarantee the classification performance according to
the characteristics of the NN rule.

Chang [9] continuously merged the closest training
instances of the same class until the accuracy of the NN
classifier decreases.

Hamamoto et al. [3] adopted the bootstrap technique to
merge the training instances. They first selected a training
instance and then found several NNs of it. The linear combi-
nation of the instance and its neighbors with random weights,
or the mean vector of the instance and its neighbors, can be
regarded as a prototype. They repeated this progress to obtain
multiple prototypes.

Geva and Sitte [10] first selected some training instances
from the training set as the initial prototypes and then adjusted
their positions to improve the accuracy. When a training
instance is misclassified, its nearest prototype will be moved
away from it, and its nearest prototype of the same class will
be moved toward it.

Koplowitz and Brown [11] used an editing scheme to
improve the performance of NN classification. The train-
ing instances can be deleted or relabeled according to their
consistencies with neighbors.

Decaestecker [12] regarded prototype generation as an opti-
mization problem by defining a cost function whose arguments
are the positions of prototypes and then optimizing the cost
function. The cost function is based on the difference between
the observed and the desired probabilities. Gradient descent
and simulated annealing were used to optimize the cost
function.

It can be seen that prototype tuning approach generally
introduces some human-defined rules to improve the classifi-
cation performance when tuning the prototypes. For example,
Geva and Sitte [10] defined the rule to move the prototype
away from the misclassified training instances and toward the
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correctly classified ones. They expected this rule would bene-
fit the NN classification. Even though the human-defined rules
have a certain correlation with the final classification perfor-
mance, it is difficult to establish a clear relationship between
the rules and the final performance. The rules cannot directly
guarantee that the classification performance is optimal.

Evolution-based prototype generation is a kind of
performance-driven approach. It directly regards the clas-
sification performance as the objective function and uses
evolutionary computation to optimize it on the training set.

Fernández and Isasi [13] proposed an evolutionary approach
to search for the best prototypes. They encoded the positions
and classes of all the prototypes as a single vector which repre-
sents an individual of the evolutionary algorithm. The mutation
operator, reproduction operator, fight operator (i.e., using infor-
mation from other prototypes), move operator, and die operator
are designed to evolve an optimal set of prototypes.

Cervantes et al. [14], [15] encoded each prototype as a
particle of PSO, and an NN classifier consists of a set of parti-
cles. To obtain a good combination of prototypes, this method
allows inserting new particles into the swarm and deleting
particles from the swarm. Each particle has a local fitness
function which is related to the distances between the particle
and instances in the training set.

Nanni and Lumini [16] used a single particle to represent a
set of prototypes. They regarded the error rate on the training
set as the fitness function. Multiple NN classifiers are gen-
erated by repeatedly running PSO and a vote rule is used to
combine these classifiers, in order to obtain better classification
performance.

Triguero et al. [17] proposed a hybrid model which com-
bines the prototype selection method and the position adjust-
ment method. At first, the prototype selection method selects
a set of prototypes from the training set. Then the posi-
tion adjustment method (e.g., differential evolution and PSO)
uses this set to initialize its population, while the conven-
tional position adjustment method initializes its population
randomly. This initialization strategy reduces the search space
to a local region where a potential optimal solution may
lie, and therefore it is more probable to obtain an excellent
solution.

For big data applications, Triguero et al. [18] used
MapReduce to accelerate prototype generation. The large data
set is partitioned into a number of subsets, and each subset
is processed by a computing unit. The computing unit will
reduce the subset to a small prototype set by a prototype gen-
eration algorithm. Finally, the prototype sets from all of the
computing units are concatenated to a single set and some
similar prototypes may be merged.

Rosales-Pérez et al. [6] and Escalante et al. [19] adopted
the MO evolutionary algorithm to generate prototypes. Their
algorithm has two objective functions to minimize the error
rate on the training set and the number of prototypes. They
also combined prototype generation with feature selection in
another paper [20], by adding a third objective function: the
number of selected features.

By directly pursuing the classification performance,
evolution-based prototype generation is able to result in

Algorithm 1 Particle Swarm Optimization
1: Generate a swarm of particles with positions and velocities

initialized at random.
2: Evaluate the fitness functions of all the particles.
3: while maximal number of iterations not reached do
4: for all particle in the swarm do
5: Update the velocity of the particle.
6: Update the position of the particle.
7: Evaluate the fitness function of the particle.
8: Update the particle’s best position if needed.
9: Update the swarm’s best position if needed.

10: end for
11: end while
12: return the best solution found in the iteration process.

better accuracy. The experiment section of this paper presents
the accuracies of many prototype generation algorithms. Most
of the top algorithms are based on evolutionary computation.

However, evolution-based approach may suffer from over-
fitting. The fitness function of evolution-based prototype gen-
eration is the classification performance on the training set.
After the optimization of evolutionary algorithm, the result-
ing NN classifier may overfitting the training data and cannot
generalize well on the unseen test set. In this paper, we will
introduce two novel strategies to enhance the generation ability
and weaken the effect of overfitting.

III. PARTICLE SWARM OPTIMIZATION AND ITS

APPLICATION TO PROTOTYPE GENERATION

This section first introduces the framework of PSO and the
basic concept of MO PSO and then demonstrates how to use
PSO for prototype generation.

A. Framework of PSO

PSO simulates the social behavior of the flying bird flock
to search for the optimal solution of a specific problem in
multidimensional solution space. In other words, PSO aims
at finding the minimal or maximal value of a multivariable
function.

PSO maintains a swarm of particles where each particle rep-
resents a candidate solution of the problem and particles are
able to communicate information with each other to behavior
cooperatively. Each particle is associated with a position vec-
tor which represents its coordinate in the solution space, and a
velocity vector is used to update the position vector. PSO con-
ducts the optimization process through an iterative approach
as Algorithm 1.

PSO first generates a swarm of particles randomly. At
each iteration, each particle updates its velocity and position
according to the following formulas:

v = wv + c1r1(b − x) + c2r2
(
bg − x

)
(1)

x = x + v (2)

where x and v represent the current position and velocity of
the particle, b and bg represent the best solution found by the
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particle and the global swarm so far respectively, w, c1, and c2
are hyper-parameters of PSO, and r1 and r2 are random num-
bers between 0 and 1. After updating the particle’s position,
the fitness function need to be recalculated. If the new posi-
tion is better than the particle’s best solution b, b needs to be
updated, and so does the global best solution bg.

Formula (1) plays a key role in PSO. Under the influence
of the last two items in (1), the particle will move toward the
optimal solutions found so far with a certain probability, which
is beneficial to the local search of PSO. The last item enables
the particles in the whole swarm to move toward the global
best solution bg with a certain probability, making the swarm
to behave socially and collaboratively. The random numbers
in (1) gives the particle a certain probability to explore the
global solution space. Due to such local, global, and collabo-
ration mechanisms, PSO exhibits strong ability to search the
multidimensional solution space, and usually it is able to find
a satisfying solution for complex problems.

B. Multiobjective PSO

Single-objective (SO) PSO uses a single fitness function
to evaluate a particle. In many applications, there are more
than one metric to evaluate a particle and people want to
find a particle which is excellent over all of the metrics.
For example, a feature selection algorithm usually tries to
improve the classification performance and reduce the size
of the selected feature set simultaneously. When evaluating
a particle, Xue et al. [21] defined two metrics to minimize:
1) the number of selected features and 2) the error rate on
the training set, while Nag and Pal [22] used three metrics:
1) false positive; 2) false negative; and 3) the size of the
selected feature set. Under many circumstances, different met-
rics may conflict with each other. In the feature selection
example if the feature set size is overly reduced, the error
rate usually increases.

Multiobjective PSO is developed to deal with the case of
multiple metrics. Each metric is called an objective function
and the goal of MO PSO is to minimize1 all the objective
functions, as

minimize f (x) = <f1(x), f2(x), . . . , fn(x)> (3)

where n represents the number of objective functions and fi(x)

is the ith objective function of particle x, i = 1, 2, . . . , n.
Given two particles x1 and x2, if the objective function val-

ues of x1 are all not larger than those of x2 and there is at
least one objective function under which x1 has a smaller value
than x2, we say that x1 dominates x2. Different objective func-
tions usually conflict with each other; decreasing one objective
function usually leads to an increment in another objective
function. Therefore, there usually does not exist a single par-
ticle which is optimal simultaneously over all of the objective
functions. The solution of MO optimization is a set of par-
ticles called Pareto-optimal set. This set is nondominated;

1An optimization problem may refer to minimizing or maximizing the
objective function(s). In this paper, we only take minimization as an example.

Fig. 1. PSO for prototype generation.

no particle in this set dominates another one. Besides, no par-
ticle in the whole solution space can dominate any particle in
this set.

Multiobjective PSO tries to find the Pareto optimal set as
exactly as possible. Many approaches have been proposed to
implement MO PSO [23]. An external archive is usually used
to store the nondominated solutions during the iterative process
of PSO. Different researchers have defined different strategies
to maintain the archive. These strategies specify when to add
a particle in the swarm to the archive, when to remove bad
particles from the archive, and how to keep the diversity of
the archive.

C. PSO for Prototype Generation

The flowchart of applying PSO to generate prototypes is
shown in Fig. 1.

In this paper, we adopt a fixed reduction strategy for
prototype generation; we should determine the number of pro-
totypes at first. Given a training set with N instances and
C classes, let an instance have D attributes, and the cth class
have Nc training instances, c = 1, 2, . . . , C. For a prespecified
reduction rate γ , (1−γ )∗N prototypes will be generated based
on the training set. We keep the proportion of the prototype
quantities among different classes the same as the propor-
tion of the training instance quantities among different classes.
Therefore, the number of prototypes in class c is

Pc = max{1, (1 − γ ) ∗ Nc}. (4)

We ensure that there is at least one prototype in each class
in (4).

Then the structure of a particle should be defined. Assuming
the prototypes in the cth class are pc;1, pc;2, . . . , pc;Pc

, pc;j
is a D-dimensional vector where each dimension represents
an input attribute, j = 1, 2, . . . , Pc. We merge these vectors
from the cth class into a single one which is denoted as pc.
The particle of PSO is represented as <p1, p2, . . . , pC>; each
particle is a classifier consisting of the prototypes from all the
C classes.

Next we need to select a fitness function to evaluate the
particle. The prototypes represented by the particle are used
to classify the training set according to the NN rule, and the
performance metric such as error rate and error rank proposed
in this paper is regarded as the fitness function.
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After defining the structure of a particle and the fitness
function, PSO is able to optimize the prototype generation
problem and will produce an optimal particle. At last, the opti-
mal particle is decoded according to its structure to obtain the
final prototypes.

In this paper, we use 1NN rule to classify an instance, since
the generated prototype set is generally quite small, and 1NN
rule is used by most other prototype generation papers.

IV. ERROR RANK

This section proposes a fitness function named error rank to
overcome the shortcoming of the widely used fitness function
error rate.

A. Motivation of Error Rank

The error rate on the training set is the commonly
used fitness function in evolution-based prototype generation.
Minimizing the error rate on the training set is identical to
maximizing the accuracy on the training set.

Error rate (i.e., the number of misclassified instances divided
by the total number of instances) only considers whether an
instance is correctly classified or not, disregarding its likeli-
hood of belonging to a specific class. Assuming that there
are two prototypes with classes c1 and c2, respectively, and a
training instance with class c1, the distances from the training
instance to the two prototypes are dis1 and dis2. If dis1 > dis2,
the training instance will be misclassified by 1NN rule. Let
ε = dis1−dis2, then ε > 0. Even through 1NN cannot classify
the instance correctly, the smaller ε is, the better generaliza-
tion ability the classifier has due to the potential pattern hidden
in the data. However, error rate cannot reflect this potential
information since it only uses the sign of ε and discards its
numerical value. If two particles have the same error rate, PSO
cannot tell which particle is better in terms of generalization
ability.

We propose error rank to overcome the above shortcoming
of error rate by taking full advantage of the potential informa-
tion. Error rank is defined to measure the classification loss
of binary classification (i.e., classification between just two
classes). Therefore, if the data set contains more than two
classes we have to convert multiclass classification to binary
classification. The one-against-one method [24] is used to per-
form multiclass classification. The classes of the data set are
organized into pairs and for a C-class problem there will be
C(C − 1)/2 pairs of classes. A binary NN classifier is trained
for each pair of classes by just using the data from the two
corresponding classes, and there will be C(C − 1)/2 binary
NN classifiers. Each binary classifier votes for a specific class
when classifying an instance. The class with the most votes is
regarded as the predicted class of the instance.

In binary classification, the classifier need to classify data
between classes c1 and c2. Given a training instance yi, its
nearest prototype in class c1 is denoted as p1;j1 , and its near-
est prototype in class c2 is denoted as p2;j2 . We introduce a
discriminant value di for the instance to evaluate the difference
between its distances from the two nearest prototypes

di = distance
(
yi, p1;j1

) − distance
(
yi, p2;j2

)
. (5)

Algorithm 2 Calculation of Error Rank
Input: N labeled training instances and their discriminant

values d0, d1, . . . , dN−1.
Output: the fitness function value er of error rank.

1: Sort all the instances by their discriminant values, let d0 ≤
d1 ≤ ... ≤ dN−1.

2: Get the index of the first non-negative value in the ordered
sequence, denote it as z.

3: for i = 0 → N − 1 do

4: ri =
{

(i − z)/z, i < z
(i − z)/(N − z), i ≥ z

.

5: ri = sigmoid(ri).
6: end for
7: return er = ∑

i∈misclassified instances
abs(ri).

In this paper, we use the Euclidean distance to measure the
distance between an instance and a prototype since it is the
most used distance metric in prototype generation literatures.

The discriminant value di can be used to determine the
class of yi according to 1NN rule. If di < 0, yi belongs to
class c1, and the smaller di is, the more confidently yi belongs
to class c1. If di ≥ 0, yi belongs to class c2, and the larger
di is, the more confidently yi belongs to class c2. The abso-
lute value of the discriminant value indicates the confidence
of belonging to a specific class. Minimizing the sum of abso-
lute discriminant values of misclassified instances will result
in a better classifier than just minimizing the proportion of
misclassified instances, as discriminant values contain more
detailed information.

The discriminant values of different instances may differ
greatly. In such case, some extremely large discriminant val-
ues will dominate the sum of absolute discriminant values of
misclassified instances. To eliminate the effect of the uneven
distribution of discriminant values, the ranks of discriminant
values are used to rescale the discriminant values. The ranks
are evenly distributed values and no extreme discriminant
values could dominate the sum of misclassified instances.

B. Definition of Error Rank

The proposed error rank minimizes the ranks of misclassi-
fied instances to improve the generalization ability, as shown
in Algorithm 2.

N training instances are first sorted by their discriminant val-
ues in ascending order. Then all the instances in the sequence
are numbered from 0 to N−1, as shown in Fig. 2. The class of
an instance is determined by whether its discriminant value is
negative or non-negative, and therefore the first non-negative
value in the ordered sequence separates these instances. The
index of the first non-negative value is denoted as z. The
algorithm calculates a rank value ri for each instance which
indicates its distance from the first non-negative instance. The
return value of Algorithm 2 is the sum of absolute rank val-
ues of all the misclassified instances, which is regarded as the
fitness function value.

1) Rank Distance Normalization: Step 4 of Algorithm 2
uses (i−z) to measure the distance between the ith instance and
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Fig. 2. Ordered sequence of instances.

Fig. 3. Sigmoid function to enlarge the input value. p1 has a larger magnitude
of enlargement than p2 since the absolute value of the input of p1 is smaller.

the first non-negative instance, i = 0, 1, . . . , N−1. We call this
distance the rank distance. If the distribution of instances over
the two classes is unbalanced (e.g., in Fig. 2, there are much
more non-negative instances than negative instances according
to the discriminant values), the average absolute value of rank
distances of the minority class is much smaller than that of
the majority class. Thus PSO will pay more attention to the
majority class and may ignore the minority class. To eliminate
the problem caused by imbalance, the rank distance (i − z) is
divided by the number of instances in the corresponding class
predicted by the discriminant value (i.e., z or N − z).

2) Emphasizing Instances With Small Rank Distances:
PSO tunes the positions of prototypes to fit the misclassified
instances by minimizing their absolute values of rank dis-
tances. Generally speaking, fitting the instances with small
absolute values of rank distances is more imperative than fit-
ting the instances with large absolute values. A small absolute
value of a misclassified instance is not far from zero, and
therefore a small reduction will bring it to zero or very near
to zero. Instances in the neighborhood of this instance are
more likely to be correctly classified. While the same reduc-
tion in a large absolute value will not generate a small absolute
value, and therefore the performance of the classifier will not
improve that much. To fit an instance with a large absolute
value, a large reduction is required, while the same reduction
would fit more instances with small absolute values. For exam-
ple decreasing one instance from 1.0 to 0 requires the same
reduction as decreasing ten instances from 0.1 to 0. Fitting
more misclassified instances will improve the performance on
a wider region in the vector space and therefore it will bring
a better generalization ability. This is why fitting the instances
with small absolute values is more imperative.

PSO minimizes the sum of the rank distances’ absolute
values of the misclassified instances, but it should pay more
attention to the instances with small absolute values. In step 5
of Algorithm 2, a special case of sigmoid function illustrated
in Fig. 3 is used to emphasize these instances.

The sigmoid function performs a nonlinear mapping from
the input to the output. When we divide the output value of the

Fig. 4. Actual performance and the performance on the training set of a
classifier over the solution space.

sigmoid function by its input value, we get the input’s magni-
tude of enlargement. From the curve in Fig. 3, we can see that
an input with a small absolute value has a large magnitude of
enlargement, while an input with a large absolute value has a
small magnitude of enlargement. For example, the magnitude
of enlargement of p1 (i.e., the slope of p0p1) is larger than that
of p2 (i.e., the slope of p0p2), as the input’s absolute value of
p1 is smaller than that of p2. In other words, a large weight
is assigned to any misclassified instance with a small absolute
value when calculating the fitness function, and therefore PSO
is able to pay more attention to instances with small absolute
values.

Compared with error rate, error rank takes the likelihood
of misclassification into consideration by introducing the dis-
criminant values and rescaling them, rather than just judges
whether the training instances are misclassified. Under the
condition of same error rate, smaller error rank means bet-
ter generalization ability for a particle (i.e., an NN classifier).
In this way, PSO is able to factor the generalization ability
into its optimization objective.

V. MULTIOBJECTIVE OPTIMIZATION STRATEGY

FOR LEARNING

A common problem faced by classification is overfitting.
A classifier (i.e., a set of prototypes) trained on a fixed train-
ing set may perform well on the training set but show a poor
performance on the test set if it learns too much about the
variation of the training set and misses the training data’s
underlying nature. Fig. 4 illustrates the difference between the
actual performance and the performance on the training set.
The horizontal axis represents the parameters of a classifier
which constitute the solution space of PSO, i.e., the positions
of all the prototypes. The multidimensional parameters are
visualized as a 1-D horizontal axis in the figure. The vertical
axis represents the performance metric of a classifier such as
error rate and error rank, and smaller vertical value means bet-
ter performance. The parameters under which the training set
achieves the optimal performance have a certain distance from
the parameters which generate the optimal actual performance.

This section proposes a novel method to deal with overfit-
ting. The whole training set is divided into several subsets and
the performance metric is calculated on each subset. This pro-
cess results in several fitness functions for a single particle.
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Fig. 5. Actual performance and the performance on three subsets. The Pareto-
optimal solutions lie in the horizontal range labeled by the bold line.

Multiobjective PSO is used to optimize these fitness func-
tions simultaneously by regarding each fitness function as an
objective function. The MO optimization tries to search for
solutions which are excellent on multiple subsets and therefore
the classifier will have better generalization ability to weaken
the effect of overfitting.

The MO optimization usually finds a set of Pareto-optimal
solutions which are nondominated, as shown in Fig. 5. The
performance curves of three subsets are around the actual per-
formance curve and the Pareto-optimal solutions lie around
the actual optimal solution.

If MO PSO gets more than one Pareto-optimal solution, we
just choose the best one to classify a test instance. The Pareto-
optimal solution with the minimum average objective function
value is regarded as the best one.

Another advantage of the MO optimization strategy is its
intrinsic parallelism. Fitness function evaluation is the most
time-consuming component of the whole algorithm, especially
when the training set is extremely large. However, the cal-
culations of the fitness functions on the multiple subsets are
independent. Therefore, such calculations can be distributed to
different computing units, in order to accelerate the prototype
generation algorithm. The parallel implementation will be very
useful when people are dealing with large-scale problems.

VI. EXPERIMENTS

We ran the proposed algorithm and 16 existing prototype
generation algorithms on 31 UCI data sets. This section will
make a detailed experimental analysis based on these results.
Besides, we give the proposed algorithm’s experimental results
on the 59 data sets used by Triguero et al. [1] at the end of this
section, and compare our results with the published results of
28 existing prototype generation algorithms.

A. Experimental Setup

We have used 31 common data sets from the UCI Machine
Learning Repository [25] to test the performance of the pro-
posed algorithm. The number of attributes, the number of
classes, and the number of instances of each data set are listed
in Table I. Some data sets contain missing values. For symbolic
attributes, we used the most common values to replace miss-
ing values, and for numerical attributes we used the average
values [26].

TABLE I
DETAILED INFORMATION OF THE 31 DATA SETS. #AT REPRESENTS THE

NUMBER OF ATTRIBUTES, #CL REPRESENTS THE NUMBER OF CLASSES,
AND #IN REPRESENTS THE NUMBER OF INSTANCES

Tenfold cross validation has been used to obtain the accu-
racies of the proposed method and the comparison algorithms.
Since many prototype generation algorithms are stochastic, we
ran such algorithms ten times and took the average accuracies.

The parameters of the proposed algorithm and MO PSO
are tuned by experimental study. The 31 data sets cannot be
used to tune the parameters because such tuning will result
in overfitting. We chose another ten data sets to perform the
tuning, and the average size of the ten chosen data sets is
similar to that of the 31 UCI data sets.

After the parameter tuning process, the number of subsets
was set to two, and therefore there are two objective func-
tions for the MO optimization. The reduction rate was set
to 0.99. The MO PSO algorithm OMOPSO [27] implemented
in the Java package jMetal [28], [29] was adopted as the MO
optimizer. The swarm size and the archive size were both set
to 100, and the number of iterations was set to 250. All the
input attributes were normalized to the interval [0, 1] before
training the NN classifier.

B. Comparison Algorithms

To evaluate the effectiveness of error rank and the MO opti-
mization strategy, the presence and absence of them were
both tested. Different configurations of these methods are
summarized as follows.

1) MO/Rank: Error rank + MO optimization.
2) MO/Rate: Error rate + MO optimization.
3) SO/Rank: Error rank + SO PSO.
4) SO/Rate: Error rate + SO PSO.
MO/rank uses error rank as the fitness function and adopts

the MO optimization strategy. MO/rate uses error rate and the
MO optimization strategy. These two comparison algorithms
are used to evaluate the improvement of error rank. SO/rank
and SO/rate calculate the fitness function on the whole training
set and just use SO PSO to optimize the classifier. These two
comparison algorithms will show the effectiveness of the MO
optimization strategy.

We also compared the proposed algorithm with 16 existing
prototype generation algorithms. The comparison prototype
generation algorithms are AMPSO [14], [15], BTS3 [3],
DSM [10], GENN [11], HYB [30], IPLDE [31], LVQPRU [8],
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MixtGauss [4], MSE [12], PNN [9], PSCSA [32], PSO [16],
RSP3 [33], SGP [34], SSMASFLSDE [17], and VQ [7]. The
introduction of these algorithms can be found in Section II.

A java software named KEEL [35], [36] has implemented
these prototype generation algorithms. Thus this paper used
KEEL to get the performance of these algorithms. For each
algorithm, we adopted the parameters used by its original
authors. For the parameters that the original authors did not
provide, we used the default parameters offered by KEEL,
since KEEL’s default parameters were carefully tuned [37].

The parameters we choose for different algorithms are listed
below. Some algorithms need too many parameters and we just
give the important parameters here. The algorithms without
key parameters are not listed.

1) AMPSO: Swarm size = 5, MaxIter = 300, C1 = 1.0,
C2 = 1.0, C3 = 0.5, VMax = 1, Winertia = 0.1,
Xfactor = 0.1, ProbR = 0.1, and ProbD = 0.1.

2) IPLDE: MaxIter = 1000, iterSFGSS = 8,
iterSFHC = 20, ScalingFactor = 0.5,
CrossOverRate = 0.9, tau3 = 0.03, and tau4 = 0.07.

3) DSM: Iterations = 100, percentage respect training
size = 10, and alpha 0 = 0.1.

4) HYB: Iterations of search = 200, iterations of optimal
search = 1000, percentage prototypes generated = 10,
alpha 0 = 0.1, percent of set in training partition = 80,
type of initial selection = SVM, and CNN parameter
K = 1.

5) LVQPRU: Number of iterations = 100, percentage of
prototypes per class = 10, percentage respect training
size = 10, iterations of lvq2_1 = 100, alpha_0 = 0.1,
windowWidth = 0.2, and number of neighbors = 2.

6) MSE: Number of neighbors = 3, number of initial
centroid = 10, gradient step = 0.5, and initial tempera-
ture = 100.

7) PSCSA: Number of neighbors k = 1, hyperMutation
rate = 2, clonal rate = 10, mutation rate = 0.008,
stimulation threshold = 0.89, and alpha = 0.4.

8) PSO: Number of neighbors = 1, swarm size = 20,
particle size = 5, MaxIter = 250, C1 = 3, C2 = 1,
VMax = 0.1, Wstart = 2.5, and Wend = 1.

9) RSP3: Number of subsets = 0 and Subset choice =
diameter.

10) SGP: Method = 1 and Rmin = 5.
11) SSMASFLSDE: Population size = 30, number of

SSMA evaluations = 10 000, cross probability per
bit = 0.5, mutation probability per bit = 0.001, pop-
ulation size2 = 40, MaxIter = 500, iterSFGSS = 8,
iterSFHC = 20, Fl = 0.1, and Fu = 0.9.

12) VQ: Iterations = 100, percentage of prototypes gener-
ated = 10, alpha 0 = 0.1, and size of neighborhood
KNN = 1.

What is more, we used the 1NN without prototype reduction
implemented in KEEL as a baseline algorithm.

C. Hypothesis Test

The hypothesis test technique has been used to further
analyze the superiority of the proposed algorithm. Since the

TABLE II
AVERAGE ACCURACY (IN PERCENTAGE, ALONG WITH THE STANDARD

DEVIATION IN THE BRACKETS), FA RANKING, HOLM APV, REDUCTION

RATE (IN PERCENTAGE), AND TRAINING TIME (IN SECONDS)
OF DIFFERENT ALGORITHMS

accuracies of different data sets generally do not follow a
parametric distribution, we used the nonparametric test here.
The FA ranks test is a popular nonparametric hypothesis
test method to compare multiple algorithms, and the Holm’s
test performs 1 × N comparisons as a post-hoc procedure
of the FA ranks test, which gives the adjusted p-values
(Holm APVs) [38]. The ranking calculated by FA test reflects
the relative performance of a classifier among all the classi-
fiers. We ran each algorithm ten times over the 31 data sets,
and therefore the hypothesis test was conducted over 310 sam-
ples. We performed the hypothesis test on the accuracies of
the classifiers. The Holm’s test was conducted with a level
of significance of α = 0.05 and took MO/rank as the control
method.

D. Experimental Results

Table II gives each algorithm’s average accuracy, FA
Ranking, Holm APV, reduction rate, and the average train-
ing time over each fold of data set. Since many algorithms
involve randomness, executing them repeatedly on the same
data set will result in different accuracies. Therefore for each
data set we calculated, the standard deviation of the accuracy
over the ten times of repeated execution. The standard devi-
ation in Table II is the average standard deviation over the
31 data sets. The algorithms without involving randomness
such as 1NN have zero standard deviation.

The algorithms in this table are sorted by FA Ranking in
ascending order. The smaller FA Ranking is, the better overall
performance the corresponding algorithm has.

We can see that the proposed algorithm MO/rank achieves
the best performance. Holm APVs show that MO/rank sig-
nificantly outperforms all of the other prototype generation
algorithms.

We will analyze the results in detail in the following
sections.

1) Experimental Analysis of Error Rank: In this section,
we analyze the difference between error rank and error rate.
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Fig. 6. Accuracy of MO/rank versus MO/rate over each data set.

When using the MO optimization strategy, the average accu-
racy is 83.39% for error rank, while error rate only achieves
81.95%. Error rank and error rate have the average accuracies
of 81.11% and 80.35% under the SO PSO (i.e., SO/rank and
SO/rate). These results indicate that error rank exhibits bet-
ter classification performance than error rate under different
circumstances.

We plot the accuracy of MO/rank and MO/rate over each
data set in Fig. 6. The vertical axis represents the accuracy
of MO/rank, while the horizontal axis represents the accu-
racy of MO/rate. Each dot in the figure represents one of
the 31 data sets used in this paper. A diagonal from (0, 0)
to (1, 1) is plotted in the figure. If a dot falls above the
diagonal, MO/rank gets higher accuracy than MO/rate over
the corresponding data set, and vice versa.

Most of the dots in Fig. 6 fall above the diagonal, while
the other dots fall near the diagonal. No dots fall far below
the diagonal. We have checked the numerical values for the
31 data sets. On 23 data sets does error rank achieve better
accuracies than error rate. For the “splice” data set, the accu-
racy of error rank exceeds error rate by 10%. There are five
data sets whose accuracies of error rank exceed error rate by
at least 3%. In the worst case for error rank, its accuracy falls
behind error rate by 2.9% on the data set “lymph.” On three
other data sets, it falls behinds error rate by about 1%.

There is a point near (0.4, 0.4) which stays far away from
other points. This data set is “primary tumor,” which has
22 classes and 339 instances. Due to the small size and the
large number of classes, both algorithms cannot achieve high
accuracies.

Fig. 7 gives the comparison between error rank and error
rate under the SO optimization strategy. Most of the data sets
get better results when using error rank. Just a few data sets get
worse results, but the gaps between error rank and error rate
are very small (i.e., at most 2%) on these data sets. Compared
with Fig. 6, the superiority of error rank under the MO opti-
mization strategy is more remarkable than that under the SO
optimization strategy.

From the above analysis, we can conclude that using error
rank as the fitness function shows better overall performance
than using error rate.

Fig. 7. Accuracy of SO/rank versus SO/rate over each data set.

Fig. 8. Accuracy of MO/rank versus SO/rank over each data set.

2) Experimental Analysis of Multiobjective Optimization
Strategy: Table II shows that when using error rank as the
fitness function, the average accuracy of the MO optimiza-
tion strategy (i.e., MO/rank) achieves 83.39%, while the SO
optimization strategy (i.e., SO/rank) only reaches 81.11%. In
respect of error rate, MO/rate obtains an average accuracy of
81.95%, and SO/rate’s average accuracy is 80.35%. Therefore,
the MO optimization strategy has higher average accuracy than
the SO optimization strategy under both fitness functions.

The accuracy of the MO optimization strategy and the SO
optimization strategy over each data set when using error rank
as the fitness function is shown in Fig. 8. The MO optimization
strategy outperforms the SO optimization strategy over most
of the 31 data sets. For the data sets splice and “kr-vs-kp,” the
MO optimization strategy’s accuracies exceed the SO one by
15.6% and 11.2%, respectively. Over no data sets does the MO
optimization strategy fall behind the SO optimization strategy.

Fig. 9 illustrates the 91 Pareto-optimal solutions obtained by
MO/rank for the “sick” data set in a particular fold of the ten-
fold cross validation. The Pareto-optimal solutions distribute
along a line with a negative slope, which implies the conflic-
tion of the two objective functions; decreasing error rank on
one subset will cause an increment in the other one.
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Fig. 9. Pareto-optimal solutions obtained by MO/rank for the sick data set.
The star represents the solution with the minimum average error rank over
the two subsets.

Fig. 10. Accuracy of MO/rate versus SO/rate over each data set.

The star in Fig. 9 is the solution with the minimum average
error rank over the two subsets, which is chosen as the final
solution to classify test instances in this paper. This solution
lies in the middle of the line and is not biased toward a partic-
ular subset. Such characteristic is very beneficial to the final
classification.

Fig. 10 gives the comparison under the fitness function error
rate. Once again, the MO optimization strategy works better
on most of the data sets.

We can see that in most cases, the MO optimization strat-
egy outperforms the SO optimization strategy, which means
pursuing the performance on several subsets is better than just
on the whole training set. The MO optimization strategy is a
useful way to reduce the effect of overfitting.

3) Experimental Comparison With Existing Prototype
Generation Algorithms: This section compares the proposed
algorithm with 16 existing prototype generation algorithms.

Table II gives the average accuracy of each algorithm
and the results of hypothesis test. The average accuracy
of MO/rank is 83.39%, while the highest average accu-
racy among the 16 existing prototype generation algorithms
is 81.41%, which is achieved by SSMASFLSDE. MO/rank has

Fig. 11. Accuracy of MO/rank versus SSMASFLSDE over each data set.

Fig. 12. Accuracy of MO/rank versus GENN over each data set.

the smallest FA ranking, and the Holm APVs of the 16 existing
prototype generation algorithms are all not larger than 0.05.
This means MO/rank significantly outperforms these algo-
rithms with a level of significance of α = 0.05. The standard
deviation of MO/rank is relatively low among all of these
algorithms, which means it is a relatively stable algorithm.

The best two algorithms among the 16 existing proto-
type generation algorithms are SSMASFLSDE and GENN.
Figs. 11 and 12 compare MO/rank with these two algorithms
over each data set, respectively.

The two figures give similar results. When compared with
both SSMASFLSDE and GENN, MO/rank gets higher accu-
racies on most of the data sets, while on just a few data sets
does it get a little lower accuracies. There are 23 and 21 data
sets on which MO/rank functions better than SSMASFLSDE
and GENN, respectively.

In Fig. 11, there is a data set on which MO/rank func-
tions much better than SSMASFLSDE. The data set is “labor,”
which only contains 57 instances. On this data set, the average
accuracies of SSMASFLSDE and MO/rank over the ten runs
are 66.7% and 89.8%, respectively. Such poor performance
of SSMASFLSDE is caused by overfitting, since this data set
is quite small. On the training set, SSMASFLSDE’s average
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accuracy over the ten runs is 99.7%, and MO/rank has an aver-
age accuracy of 98.8% on the training set. The optimization
objective of SSMASFLSDE is to directly improve the accuracy
on the training set, while MO/rank uses the fitness function
error rank and the MO optimization strategy to improve the
generalization ability and weaken the effect of overfitting.
MO/rank does not perform as well as SSMASFLSDE on the
training set, but it significantly outperforms SSMASFLSDE
on the test set.

It can be seen that the combination of error rank and the
MO optimization strategy yields an excellent prototype gen-
eration algorithm which exhibits great potential in real-world
applications.

4) Training Time Consumption: The last column of Table II
gives each algorithm’s average training time over each fold of
data set.

Evolutionary algorithm-based approaches such as our
methods and SSMASFLSDE consume much more time
than nonevolutionary approaches such as GENN and MSE.
Evolutionary algorithm needs tens of thousands of fitness func-
tion evaluations. That is, the calculation over the training set
will be made for tens of thousands of times, resulting in the
low-time efficiency.

However, the huge time consumption of evolutionary pro-
totype generation algorithms will pay off. Many evolutionary
prototype generation algorithms work better than nonevolu-
tionary ones. The top four algorithms in Table II are all based
on evolutionary algorithms.

Among evolutionary prototype generation algorithms,
MO/Rank has moderate time consumption. SSMASFLSDE
which takes second place in Table II costs a bit more time
than MO/Rank.

The fitness function error rank has higher time consumption
than error rate under both optimization strategies. The fitness
function error rank needs to sort all the instances and do some
mathematical manipulation for each instance, which consumes
certain time.

The MO optimization strategy also consumes a bit more
time than the SO optimization strategy as it needs to randomly
partition the training set, while this procedure requires many
random numbers whose generation process is time-consuming.
Besides, MO PSO spends additional time on maintaining its
external archive.

E. Comparison With 28 Prototype Generation Algorithms on
59 Data Sets Offered by Triguero et al.

Triguero et al. [1] did an experimental study on prototype
generation and gave 25 algorithms’ results on 59 data sets.
Rosales-Pérez et al. [6], [20] and Escalante et al. [19] also
used the 59 data sets to validate their three proposed MO
prototype generation algorithms (i.e., EMOPG, EMOPG+FS,
and MOGP).

Compared with the UCI data sets used above, there are some
larger data sets in the 59 data sets. The 59 data sets are cat-
egorized into two parts by Triguero et al.; data sets with less
than 2000 instances are categorized into the small data sets,

TABLE III
AVERAGE ACCURACY AND REDUCTION RATE (IN PERCENTAGE) OF

DIFFERENT ALGORITHMS ON THE SMALL DATA SETS. THE DATA

EXCEPT MO/RANK ARE CITED FROM [1], [6], [19], AND [20]

and data sets with more than 2000 instances are catego-
rized into the large data sets. The detailed information can be
found in their paper. Some prototype generation algorithms
are extremely time-consuming and they only gave the results
on the small data sets for these algorithms.

The results they gave only come from a single run of the
prototype generation algorithms. Many prototype generation
algorithms involve randomness and different runs of an algo-
rithm on the same data may result in quite different results.
Table II shows that on average a data set’s accuracy has a
standard deviation of about 2%–7% over the ten repeated runs.
Therefore, the accuracy of a data set from a single run is not
stable.

However, we found that the average accuracy over many
data sets remains stable across different runs. Based on the
previous experiments on the 31 UCI data sets, we analyzed
the average accuracy to check its stability. For each algorithm
which involves randomness, we averaged the accuracies of the
31 data sets from each run and obtained ten average accuracies
from the ten times of running. Then the standard deviation of
the ten average accuracies was calculated for the algorithm. It
is found that different algorithms’ standard deviations range
from 0.2% to 0.5%; the standard deviations are quite small.

Therefore, the average accuracy over a number of data sets
is a stable performance metric for single-run experiments, and
it is reliable to use this metric here.

The average size of the small data sets is smaller than that
of the 31 UCI data sets used above, while the average size of
the large data sets is larger than it. Therefore, we empirically
changed the reduction rate to 98.5% and 99.5% for the small
and the large data sets, respectively.

Tables III and IV give the average accuracy and reduction
rate of MO/rank on the small data sets and the large data
sets, respectively, along with the results of 28 other prototype
generation algorithms from [1], [6], [19], and [20].

From the two tables, we can see that MO/rank achieves the
best average accuracy on both the small and the large data sets.
The average accuracy of MO/rank is higher than that of the
second place algorithm by about 2.7% and 2.4% for the two
types of data sets, respectively. These results have validated
the experimental superiority of the proposed algorithm again.
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TABLE IV
AVERAGE ACCURACY AND REDUCTION RATE (IN PERCENTAGE) OF

DIFFERENT ALGORITHMS ON THE LARGE DATA SETS. THE DATA

EXCEPT MO/RANK ARE CITED FROM [1], [6], [19], AND [20]

The three MO prototype generation algorithms EMOPG,
EMOPG+FS, and MOGP perform ordinarily on the small data
sets, but they achieve high average accuracies on the large
data sets. However, they still cannot outperform MO/rank since
they just focus on the tradeoff between accuracy and reduc-
tion rate, while MO/rank pays more attention to improving the
generalization ability and overcoming overfitting.

VII. CONCLUSION

The traditional NN algorithm has a high time and space
complexity in the classification phase, and its performance is
often influenced by noisy training data. Using a small set of
prototypes generated from the large training set will overcome
these shortcomings. Evolutionary computation is a well-known
approach to generate prototypes, and many algorithms adopt-
ing this approach work better than other kinds of prototype
generation algorithms. This paper applies PSO to generate
prototypes and proposes error rank and the MO optimization
strategy to further improve the classification performance.

Error rank utilizes the ranks of misclassified instances to
calculate the fitness function, while the traditional fitness
function error rank just considers the proportion of misclassi-
fied instances. The ranks provide more potential information
about the pattern of the data, which is helpful to improve the
classifier’s generalization ability.

The MO optimization strategy splits the training set into
several subsets, and it optimizes the classification perfor-
mance simultaneously on the multiple subsets. Traditional
evolution-based prototype generation algorithms pursues the
classification performance on the single training set, and this
process may lead to severe overfitting. The MO optimization
strategy is able to weaken the effect of overfitting since it aims
to perform well on multiple sets.

Experiments conducted on 31 UCI data sets have shown the
effectiveness of the proposed algorithm. Error rank functions
better than error rate and the MO optimization strategy outper-
forms the traditional SO optimization strategy. On the whole,
the combination of error rank and the MO optimization strat-
egy outperforms 16 existing prototype generation algorithms.
We also compared the proposed algorithm with 28 algorithms
on 59 additional data sets. The proposed algorithm achieves
higher average accuracy than the other comparison algorithms.
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