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Abstract. Fireworks algorithm (FWA) is effective to solve optimization
problems as a swarm intelligence algorithm. In this paper, the elite-leading
fireworks algorithm (ELFWA) is proposed based on dynamic search in fire-
works algorithm (dynFWA), which is an important improvement of FWA. In
dynFWA firework is separated to two group: core-firework (CF) and non-core
fireworks (non-CFs). This paper takes some beneficial information from
non-CFs to reinforce the local search effect of CF. Random reinitialization and
elite-leading operator are used to maintain the diversity of the non-CFs, which
play an important role in global search. Based on the CEC2015 benchmark
functions suite, ELFWA has a very competitive performance when comparing
with state-of-the-art fireworks algorithms, such as dynFWA, dynFWACM and
eddynFWA.
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1 Introduction

Both in the academic field and in the industrial world, many problems can be simplified
as optimization problems. In order to solve those problems many swarm intelligence
(SI) algorithms were proposed in recent years. Fireworks algorithm (FWA) [1], pro-
posed by Tan and Zhu in 2010, is one of SI algorithms based on simulating the
fireworks explosion process. The performance of twelve evolutionary algorithms are
tested and compared by Bureerat in 2011 [2], in which FWA ranks at the sixth, which
verifies that FWA works effectively on some optimization problems.

Due to its bloom developing, FWA has many improved variants to enrich its
research field. The Enhanced Fireworks Algorithm (EFWA) [3], proposed by Zheng
et al. in 2013, is an important improvement of the FWA. Five main operators of the
FWA have been improved or corrected in the EFWA, which are the methods of
calculating explosion amplitude, generating new explosion sparks, generating Gaussian
sparks, selecting the population for the next iteration and the new mapping strategy for
sparks which are out of the search space. Hence, some algorithms, like dynFWA, are

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): ICSI 2017, Part I, LNCS 10385, pp. 493–500, 2017.
DOI: 10.1007/978-3-319-61824-1_54



applied to the EFWA rather than FWA. Based on the EFWA, Zheng et al. [4] proposed
Dynamic Search in Fireworks Algorithm (dynFWA) in 2014. In dynFWA, fireworks
are separated into two groups. The first group consists of the firework with best fitness
named core firework (CF), while the second group consists of all other fireworks
named non-core fireworks (non-CFs). Compared with non-CFs, the explosion ampli-
tude of CF is smaller, hence CF is good at local search. Non-CFs have larger explosion
amplitudes which are fitter for global search. Moreover, the biggest difference between
two groups is that the CF has very high probability to generate the best candidate which
will be selected to the next iteration as firework.

Based on the dynFWA Yu et al. [5] proposed the dynamic fireworks algorithm with
covariance mutation (dynFWACM) in 2015. It introduced the mutation operator into
dynFWA, which calculates the mean value and covariance matrix of the better sparks
and produces sparks according to Gaussian distribution. Zheng et al. [6] proposed an
exponentially decreased dimension number strategy based dynamic search fireworks
algorithm (eddynFWA) in 2015. Yu et al. [7] put forward a new FWA with differential
mutation (FWA-DM) by using differential operator in 2014. Li et al. [8] proposed an
adaptive fireworks algorithm (AFWA) in 2014. Zhang et al. [9] proposed an improving
enhanced fireworks algorithm (IEFWA) with new Gaussian explosion and population
selection strategies.

Moreover, many developments for multi-objective optimization have also been
proposed. Zheng et al. [10] proposed a multi-objective fireworks optimization for
variable-rate fertilization in oil crop production. Tan [11] proposed an S-metric based
multi-objective fireworks algorithm in 2015. FWA has also been applied to many
practical fields and problems. FWA has been used for digital filters design [12], pattern
recognition [13] and so on.

2 dynFWA

In dynFWA [4] firework is separated into two groups. One group is named as Core
Firework (CF) and the other is non-core fireworks (non-CFs). In each iteration, CF
means the firework with the currently best fitness and non-CFs mean all the rest
fireworks. The main operations of dynFWA are listed as follows.

2.1 Calculate the Numbers of Explosion Sparks

In order to take full advantage of all the fireworks, different fireworks have different
numbers of sparks in dynFWA, which depends its fitness as Eq. (1).

Si ¼ Me � ymax � f ðXiÞþ ePN
j¼1 ðymax � f ðXjÞÞþ e

ð1Þ

In this equation, Si represents the number of sparks for the firework i, Me controls
the number of sparks. ymax ¼ max f Xið Þð Þ, f Xið Þ denotes the fitness value of the fire-
work i. N is the number of fireworks.
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2.2 Calculate the Explosion Amplitude

Fireworks with better fitness should have smaller explosion amplitudes to bias the local
search. On the contrary, fireworks with worse fitness should have larger explosion
amplitudes to bias the global search. So dynFWA uses Eq. (2) to calculate the
explosion amplitude for non-CF.

Ai ¼ Â � f ðXiÞ � ymin þ ePN
j¼1 ðf ðXjÞ � yminÞþ e

ð2Þ

In this equation, Ai represents the explosion amplitude of the firework i, Â controls
the explosion amplitude of sparks. ymin ¼ min f Xið Þð Þ, f Xið Þ denotes the fitness value of
the firework i. N is the number of fireworks.

But for CF, the explosion amplitude is generated with Eq. (3). Parameters Ca and
Cr are used to control the amplification and reduction ratio of the exploitation
amplitudes.

ACFðtÞ ¼ Ca � ACFðt� 1Þ if f(XCFðt)) \ f(XCFðt� 1ÞÞ;
Cr � ACFðt� 1Þ otherwise:

�
ð3Þ

2.3 Generate the Explosion Sparks

After getting the information of explosion sparks and explosion amplitude, each fire-
work explodes and creates explosion sparks with Eq. (4).

Xk
i ¼ Xk

i þAi � randð�1; 1Þ if firework is non-CF
Xk
CF þACF � randð�1; 1Þ if firework is CF

�
ð4Þ

Xk
i is the i-th firework and Ai is the explosion amplitude, rand (−1,1) represents a

random number between −1 and 1.
The location of a new spark will be mapped within the search space with Eq. (5) if

it exceeds the search range in dimension k.

Xk
i ¼ Xk

min þ rand � ðXk
max � Xk

minÞ ð5Þ

3 Elite-Leading Fireworks Algorithm (ELFWA)

Before proposing the Elite-leading Fireworks Algorithm (ELFWA), the difference
between CF and non-CFs in the dynFWA should be introduced. The biggest difference
is that CF has more chance to generate a better spark and then be selected into the next
iteration. The main role of non-CFs is to keep population diversity and perform global
search. But the global search is possible to be more effective if other more effective
operations were used and the CF’s effect is possible to be more obvious if more sparks
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were given. Based on this motivation, a new improvement of dynFWA, Elite-leading
Fireworks Algorithm (ELFWA) is proposed. When comparing to dynFWA, the CF in
ELFWA have more sparks and the non-CFs will generate none sparks. As a com-
pensation, non-CFs will run another operation to evolve constantly for global search.

3.1 CF Operations

Some operations of CF in ELFWA will be introduced. (1) In ELFWA, CF denotes the
global best solution which is the optimal solution found until now. (2) Different from
dynFWA, the number of sparks in ELFWA is not alterable. In this paper the number of
CF sparks is a constant which is equal to the number of non-CFs. (3) The method of
calculating explosion amplitude of CF is not changed and Eq. (3) is also used. (4) The
way of CF generating sparks is the same as dynFWA doing in Eq. (4). (5) CF will be
updated with the best solution from non-CFs or sparks of CF at the current iteration or
the global best solution in the previous iteration, depending on the fitness as Eq. (6)
illustrates.

CFðtÞ ¼ argmin f ðnonCFðtÞÞ; f ðSparksOfCFðtÞÞ; f ðCFðt � 1ÞÞf g ð6Þ

3.2 Non-CFs Operations

A new strategy is proposed and utilized to the non-CFs which includes two operations,
i.e., random reset operation and Elite-leading operation. Random reset operation
decides whether to reset the non-CFs with a probability. If a random number r1 is less
than the given probability, non-CFs will be reinitialized with Eq. (7).

nonCFk
i ¼ Xk

min þ rand � ðXk
max � Xk

minÞ ð7Þ

nonCFk
i represents the k-th dimension of the i-th non-CF.Xk

max and Xk
min represent

the upper bound and lower bound of the k-th dimension.
After non-CFs are reinitialized, all solutions will be redistributed in the search

space again and usually become worse. So in order to scan more a little more beneficial
areas ELFWA uses Elite-leading operation to improve the quality of non-CFs at the
successive iteration with Eq. (8).

nonCFiðtÞ ¼ nonCFiðt � 1Þþ randð0; 1Þ � ðgBSðt�1Þ � lBSðt�1ÞÞ ð8Þ

In Eq. (8), gBS(t-1) indicates the global best solution and lBS(t-1) indicates the best
solution in the non-CFs of the previous iteration. It will be changed when the non-CFs
are reinitialized. rand(0,1) is a random number between 0 and 1. It will be found that all
the non-CFs have the same directions, which is decided by gBS and lBS. This process
can be regarded as the best solution of the current non-CFs leading all the non-CFs to
the best one of them. Additionally, gBS is equal to the CF, so gBS is very crucial for
the algorithm. That is why this research is named as Elite-leading Fireworks Algorithm.
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The mapping operator of the ELFWA is changed into Eq (9).

Xk
i ¼ min( Xk

max; 2 � Xk
max � Xk

i ÞÞ if Xk
i [Xk

max
max(Xk

min; 2 � Xk
min � Xk

i ÞÞ if Xk
i \Xk

min

�
ð9Þ

After mapping operation, ELFWA evaluates the quality of the explosion sparks and
non-CFs. So, the framework of Elite-leading Fireworks Algorithm (ELFWA) is pre-
sented as follows.

4 Experiment and Analysis

15 benchmark functions of CEC 2015 [14] competition are used to verify the effec-
tiveness of ELFWA. Following four state-of-the-art algorithms are compare toELFWA,
EFWA [3], dynFWA [4], dynFWACM [5] and eddynFWA [6].

4.1 Experimental Setup

Several parameters in ELFWA are set as follows. The dimension of benchmark
function is 30. Parameters Ca and Cr in Eq. (3) are empirically set to 0.9 and 1.1. In
order to make full use of the ability of global search of CF, ACF is set to the size of the
space in the beginning. Both the number of non-CFs and the number of sparks are 50 in
ELFWA. All the algorithms are performed 30 runs on each benchmark functions; the
final mean results are recorded with 300 000 function evaluations.
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4.2 Experimental Results and Analysis

The online performance comparison of five FWA algorithms is shown as Fig. 1, which
clearly shows that ELFWA is effective. Especially, ELFWA is very effective for f1, f2,
f6, f8, f10 and f12. For functions f3 and f5, all algorithms nearly find the same results.
For the rest functions, although ELFWA does not perform best, it can find a com-
petitive solution in short time with the less benchmark functions evaluations.

0 0.5 1 1.5 2 2.5 3

x 10
5

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f1 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
2

10
4

10
6

10
8

10
10

10
12

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es
Comparison among algorithms on f2 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
2.506

10
2.507

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f3 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
2

10
3

10
4

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f4 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3

10
4

10
5

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f5 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f6 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
2

10
3

10
4

10
5

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f7 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f8 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3.1

10
3.2

10
3.3

10
3.4

10
3.5

10
3.6

10
3.7

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f9 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f10 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3

10
4

10
5

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f11 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3.12

10
3.14

10
3.16

10
3.18

10
3.2

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f12 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3

10
4

10
5

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f13 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
4

10
5

10
6

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f14 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

0 0.5 1 1.5 2 2.5 3

x 10
5

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Function Evaluations

Av
er

ag
e 

Fu
nc

tio
n 

Va
lu

es

Comparison among algorithms on f15 with 30 runs

EFWA
dynFWA
dynFWACM
eddynFWA
ELFWA

Fig. 1. Online performance comparison among algorithms

498 X. Zhao et al.



Table 1 shows that three improvements of dynFWA are better than dynFWA and all
of four dynFWAs outperform EFWA. Among them, ELFWA is the slightly best one both
in mean value and in the best solution, a little better than, or performs comparably with
dynFWACM and eddynFWA. According to the general ranks of several FWA variants,
eddynFWA, dynFWACM and ELFWA have similar ranks, however, ELFWA has the
best rank. When comparing with dynFWA, ELFWA outperforms dynFWA on 10 from
15 benchmarks and performs equally on 2 functions. dynFWA slightly outperforms,
however, comparably with ELFWA on other 3 functions. The value of std. also shows
that the result of ELFWA is relatively stable and robust. In order to compare the difference
between the existing algorithms and ELFWA, the value of student test is given. If the
mean value of ELFWA is smaller than the mean value of existing algorithms and the
Wilcoxon’s rank-sum test under 5% significance level is true, then it is believed that the
results of ELFWA are significant better than existing algorithms. In Table 1, an algorithm
which is significant better than ELFWA is marked with ‘+’, no performance significant
difference is marked with ‘�’, significant worse than ELFWA is marked with ‘−’. In
Table 1, ELFWA is significant better than those four algorithms at 13, 10, 8, 7 functions.
The performance of ELFWA at other functions is competition with those four algorithms.

5 Conclusion and Future Work

An improved variant of dynFWA is proposed based on the information borrowing and
elite leading strategies in this paper. In order to explore whether strengthen the search
ability of elites is effective. Based on the two groups of dynFWA, this paper uses some
beneficial information of non-CFs to reinforce the effect of CF. Another strategy is used
to maintain the diversity of the non-CFs and to make them play an important role in

Table 1. The result of the experiment

dynFWA dynFWACM eddynFWA ELFWA

Mean Std Mean Std Mean Std Mean Std

f1 1.03E+06 3.23E+05 – 7.71E+05 4.53E+05 – 9.52E+05 6.34E+05 – 2.67E+05 1.37E+05

f2 4.24E+03 3.93E+03 – 3.78E+03 4.02E+03 – 3.54E+03 4.06E+03 – 2.92E+03 3.15E+03
f3 3.20E+02 5.87E−06 � 3.20E+02 1.51E−05 � 3.20E+02 1.88E−06 � 3.20E+02 2.64E−03

f4 5.26E+02 3.35E+01 � 5.23E+02 3.51E+01 � 3.20E+02 3.34E+01 � 5.30E+02 3.32E+01
f5 4.10E+03 7.01E+02 � 3.95E+03 6.85E+02 � 3.46E+03 6.60E+02 � 4.28E+03 8.64E+02

f6 4.96E+04 3.62E+04 – 2.72E+04 2.07E+04 – 1.01E+05 6.12E+04 – 1.63E+04 1.02E+04

f7 7.18E+02 1.37E+01 – 7.15E+02 4.73E+00 � 7.17E+02 1.51E+01 � 7.18E+02 1.27E+01

f8 4.85E+04 1.95E+04 – 2.87E+04 1.34E+04 – 1.59E+05 1.03E+05 – 1.92E+04 1.10E+04

f9 1.02E+03 6.15E+01 – 1.01E+03 3.58E+01 � 1.01E+03 3.34E+01 � 1.01E+03 3.97E+01
f10 4.91E+04 1.66E+04 – 3.45E+04 1.36E+04 – 1.10E+05 6.88E+04 – 2.48E+04 1.22E+04

f11 1.71E+03 2.60E+02 � 1.66E+03 2.44E+02 � 1.68E+03 2.10E+02 � 1.93E+03 2.15E+02

f12 1.31E+03 1.94E+00 – 1.31E+03 1.98E+00 – 1.31E+03 1.95E+00 – 1.31E+03 1.71E+00
f13 1.43E+03 5.79E+00 – 1.43E+03 6.91E+00 – 1.41E+03 7.68E+00 � 1.43E+03 7.44E+00

f14 3.50E+04 1.75E+03 – 3.55E+04 1.86E+03 – 3.47E+04 1.43E+03 � 3.49E+04 1.42E+03
f15 1.60E+03 8.76E−12 – 1.60E+03 8.52E−13 � 1.60E+03 4.53E−13 – 1.60E+03 9.23E−13

Rank 3.13 2.26 2.2 2.13
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global research. The experiments show that this inspiring motivation works well. The
proposed ELFWA algorithm significantly outperforms dynFWA and performs a little
better than, and comparably with two recently enhanced dynFWAs, i.e., dynFWACM
and eddynFWA. In the future, more useful global research operators will be considered
to improve FWA algorithm and other SI algorithms.
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