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Highlights

• Target-oriented Aspect-based Sentiment Analysis (TABSA) is an impor-

tant research topic in NLP field, which requires fine-grained reasoning.

Most of the existing works focus on model design for supervised learning.

• This paper aims to improve the performance from the semi-supervised

learning perspective. To best of our knowledge, it is the first time that a

deep generative model is used for semi-supervised TABSA task.

• To be suitable for TABSA, special structures are presented and investi-

gated in our method.

• Both quantitative and qualitative experiments are conducted. Experiment

results indicate that our method is effective. When combing with a pow-

erful classifier, state-of-the-art results on the standard SemEval 2014 task

4 benchmark can be obtained.

• This work is a fundamental research which can shed light on other fine-

grained semisupervised classification tasks.
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Abstract

Target-oriented aspect-based sentiment analysis (TABSA) is a sentiment clas-

sification task that requires performing fine-grained semantical reasoning about

a given aspect. The amount of labeled data is usually insufficient for super-

vised learning because the manual annotation w.r.t. the aspects is both time-

consuming and laborious. In this paper, we propose a novel semi-supervised

method to derive and utilize the underlying sentiment of unlabeled samples

via a deep generative model. This method assumes that when given the as-

pect, the sentence is generated by two stochastic variables, i.e., the context

variable and the sentiment variable. By explicitly disentangling the represen-

tation into the context and sentiment, the meaning of sentiment variable can

be kept clean during the training phase. An additional advantage is that the

proposed method uses a standalone classifier, and as such, our system is able

to integrate with various supervised models. In terms of the implementation,

since capturing the conditional input is non-trivial for a sequential model, spe-

cial structures are put forward and investigated. We conducted experiments

on SemEval 2014 task 4 and the results indicate that our method effectively

handles five kinds of advanced classifiers. The proposed method outperforms

two general semi-supervised methods and achieves state-of-the-art performance

on this benchmark.

∗Corresponding author
Email address: wead_hsu@pku.edu.cn, ytan@pku.edu.cn (Weidi Xu, Ying Tan)

Preprint submitted to Journal of Neurocomputing January 30, 2019



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Keywords: Semi-supervised Learning, Generative Model, Sentiment Analysis,

Variational Inference

1. Introduction

Target-oriented aspect-based sentiment analysis (TABSA) aims to predict

the sentiment category of a certain aspect within a sentence. For instance,

a review about a restaurant is “the [food]aspect is the best in San Francisco,

however, the [service]aspect is unsatisfactory.”. In this sentence, the sentiment

categories for the “food” and “service” are different. With respect to the “food”,

the review implies a positive connotation, while for the “service”, the predic-

tion should be negative. Contrary to traditional sentiment analysis task, which

focuses on extracting global semantical features, the TABSA task requires the

model to extract the local context that relates to the aspect, and then derive

the appropriate sentiment prediction.

The TABSA task is of great significance as it can obtain more specific in-

formation about what we are interested in. Also, since fine-grained analysis is

the subject of intense interest in the NLP field, the investigation into TABSA

may help to enlighten us to the benefit of other related tasks. Recently, many

effective supervised TABSA models have been proposed [1, 2, 3, 4, 5, 6]. They

focus on inducing patterns between the aspect and the context.

Despite the success of supervised TABSA models, their performance ulti-

mately depends on the available amount of labeled data. However, annotating

TABSA samples is both laborious and time-consuming. To annotate an unla-

beled sample, one has to first find all of the relevant aspects mentioned in the

text, perform sophisticated reasoning and then give the predictions for these

aspects. The TABSA datasets [7, 8] that have been recently made available are

usually too small to fully exploit the ability of deep models. On the other hand,

unlike the scarcity of labeled data, unlabeled data is in abundance and can be

easily accessed from web-sites. Utilizing unlabeled data to improve the clas-

sification performance may bring forth a positive and significant contribution
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to the research on the TABSA task. Previous related semi-supervised works

primarily focus on the task of aspect term extraction, as the terms with the

same category have a word-level clustering property [9, 10, 11, 12]. But for the

TABSA task, the aspect-based sentimental similarity between different samples

is beyond the word-level semantics, which results in more difficulties.

To achieve semi-supervised TABSA, the proposed method captures the target-

oriented sentiment similarity by means of a generative model. Specifically, the

data is represented by two stochastic variables. The first one is the context

variable, which captures the lexical information of the given sentence, and the

second one is the category variable, which represents the sentiment category

related to the aspect. By explicitly disentangling the latent representation, the

variables are forced to have their own specific meanings. This prevents the sen-

timent information from being vanished when learning the representation for

the unlabeled data. And it is also possible to condition the sentence genera-

tion on the sentiment and context variables w.r.t. the aspect. To maximize

the generative probability, we resort to variational inference and the model is

implemented via neural networks [13, 14, 15]. It consists of three main compo-

nents: a classifier, an encoder, and a decoder. 1) The classifier is responsible for

extracting the sentiment category when given the sentence and the concerned

aspect. 2) The role of the encoder is to compress the sentence into a continuous

vector, which captures the lexical information but excludes the sentiment. The

meanings conveyed by the outputs of the classifier and encoder are enforced

by the labeled data. 3) The decoder takes the outputs of both classifier and

encoder as the input to reconstruct the original sentence. An additional advan-

tage of separating the representation is that the classifier becomes independent,

which endows the method with the ability to exploit various kinds of advanced

classifiers. For simplicity, the combination of the encoder and the decoder is

referred to as auto-encoder in the following.

In TABSA, in addition to the text sequence, the aspect is also provided

as the input to the auto-decoder. It is desirable to integrate the connections

between the aspect and the contextual words when encoding and decoding the
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sentence. However, it is non-trivial for a sequential model to adequately capture

the conditional input [16, 17, 18]. This work introduces and evaluates novel auto-

encoders that emphasize the content and the position of the given aspect. The

encoder uses two recurrent neural networks (RNN) to encode the parts that are

before and after the aspect terms. The position tag technique is also employed

in the input to enhance the location information. The decoder is the inverse of

the encoder. And it is equipped with an extension of Long Short-Term Memory

(LSTM) [19]. This module is able to model the relationship between the aspect

and its context, and carry the label information during the decoding.

We apply our method on SemEval 2014 task 4 [7]. The experimental results

indicate that our method is effective with five typical classifiers. The method

consistently outperforms the pure-supervised classifier, as well as two general

semi-supervised learning methods, i.e., in-domain word embedding pretraining

and self-training. The qualitative results are also provided to analyze the learned

latent space. Finally, we show that the results achieved by the best classifier in

our experiments can obtain state-of-the-art results on this benchmark. The code

has been made publicly available from https://github.com/wead-hsu/tssgm.

2. Related Work

Sentiment analysis is a long-standing research problem in the NLP commu-

nity [20, 21]. Recently, with the release of several online datasets, abundant

supervised models were put forward to tackle the TABSA problem. Tang et

al. [1] made use of a model to encode the sentence from start and end to the

aspect words. This model verifies that the neural network is able to achieve

competitive performance. Tang et al. [2] then presented a model based on the

memory network, which reasons over the sentence in multiple hops. Zhang et

al. [22] proposed a model that treats the input sentence as three parts, i.e.,

words before the aspect, the aspect itself and the words that follow the aspect.

These three parts are combined using a gating module. Besides these works,

there is also a great deal of extant research into the TABSA task [3, 4, 5, 6]. The
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dominant principle of these supervised models is to better capture and utilize

the connection between the context and the aspect.

Semi-supervised learning in text classification is another related topic. A

popular one, which is almost a standard practice, is to initialize the parameters

with pre-trained models, e.g., word embedding [23]. Several recently proposed

methods extend the scope of the pre-trained parameters from the embedding

layer to more layers [24, 25, 26]. They can be used as a foundational compo-

nent to provide the contextual embedding for other supervised models. These

methods require extensive additional computational resources and are comple-

mentary with our method because our classifier is independent. Combining with

our method may yield better performance than either technique alone, but this

is a subject work that is beyond the scope of this paper.

Our method is founded on the basis of the generative model. The generative

model has been successfully applied in many semi-supervised NLP tasks, e.g.,

text classification [18], relation extraction [27], sequence tagging [28], and se-

mantic parsing [29]. By regarding the sentiment polarity of the unlabeled data

as a latent variable, the approach implicitly induces the sentiment orientation

when maximizing the data log-likelihood. For TABSA, the main problem lies

in that the information of conditional aspect should be carefully modeled. Re-

call that different from the vanilla text classification problem where sentiment-

related information corresponds to the entire sentence, TABSA solely focuses

on the aspect-related content. To circumvent this problem, our method uses

two explicitly disentangled variables and novel neural network structures.

3. Method Description

This section first clarifies the definition of the problem and then presents

our method.

3.1. Problem Definition

In TABSA, the goal is to predict the sentiment polarity y, when given the

input sentence x = {x1, ..., xT } and the aspect a = {a1, ..., am}, where a is a
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subsequence of x. Typically, the sentiment polarity is {P,O,N}, where P,O,N

denote “positive”, “neutral” and “negative” respectively. This paper considers

the following semi-supervised scenario. The dataset consists of both labeled data

and unlabeled data, where the labeled data is Sl = {(x(i)
l ,a

(i)
l , y

(i)
l )}Nli=1 and the

unlabeled data is Su = {(x(i)
u ,a

(i)
u }Nli=1. In the unlabeled data, the sentence and

the aspect are provided, but the label is absent. The semi-supervised TABSA

aims to improve the predictive accuracy by using the unlabeled data.

3.2. The Model

A generative model is proposed for the semi-supervised TABSA. It includes

two stochastic variables. The sentiment variable y is used to capture the senti-

ment polarity of the sentence about the aspect a. And the context variable z is

used to capture the lexical information. Then the sentence x can be generated

conditioned on these two representations as well as the aspect.

Specifically, to generate a sentence x with the given aspect a:

1. Draw a sentiment variable (discrete scalar) y ∼ p(y), where p(y) is the

category distribution in the dataset.

2. Draw a context variable (continuous vector) 1 z ∼ N (0,1).

3. Draw the sentence x ∼ p(x|a, y, z).

This generation procedure assumes that the text is represented by three parts

(a, y and z). Our method implements this generative model using variational

inference. In the following, we refer to it as Target-oriented Semi-supervised

Sequential Generative Model (TSSGM). The dependency of the variables is

given in Fig. 1, and the framework is depicted in Fig. 2.

1We choose the Gaussian distribution for more flexibility in the sequence prediction prob-

lem, as well as the advantage realized during the inference.
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note variational approximation qφ(y|x,a)qφ(z|x,a, y). Right: Solid lines are used to denote

generative model pθ(x|y,a, z).

3.3. Model Inference

In the semi-supervised learning setting, the objective functions differ for the

labeled and unlabeled data. For the labeled data, our method aims to maximize

p(x, y|a), where z is marginalized. For the unlabeled data, the objective is to

maximize p(x|a), where y is also marginalized. Direct optimization of these two

objectives is intractable so we use variational inference for approximating the

marginal probability.

Similar to [15], we construct the variational objective of p(x, y|a) for the

labeled data, also referred to as the variational evidence lower bound (ELBO),

as follows:

log pθ(x, y|a) ≥ Eqφ(z|x,a,y)[log pθ(x|y,a, z)] + log pθ(y)

−KL(qφ(z|x,a, y)||pθ(z)) = L(x,a, y) ,
(1)

where KL is the Kullback-Leibler divergence.

In dealing with the unlabeled data, the ELBO of log p(x|a) can be extended

from Eq. 1 following the variable dependency:

log pθ(x|a) ≥ Eqφ(y|x,a)L(x,a, y) +H(qφ(y|x,a))

= U(x,a) ,
(2)

where H is the entropy function.

We also include the additional classification loss for qφ(y|x,a) with the la-

beled data. Combining the above objectives, the overall objective function to
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Figure 2: This is the sketch of our model. Classifier: When using unlabeled data, the distri-

bution of y ∼ qφ(y|x,a) is provided by the classifier. Encoder: The sequence is encoded by

the encoder. The encoding and the label y are used to parameterize the posterior distribution

qφ(z|x,a, y). Decoder: The context variable z (sampled from qφ(z|x,a, y)) and the label y

are passed to the generative network to estimate the probability pθ(x|y,a, z).

minimize for the entire data set is:

G =
∑

(x,a,y)∈Sl
−L(x,a, y) +

∑

(x,a)∈Su
−U(x,a) + γ

∑

(x,a,y)∈Sl
− log qφ(y|x,a) ,

(3)

where γ is a hyper-parameter which controls the weight of the additional clas-

sification loss.

This objective function includes three learnable terms, i.e., qφ(y|x,a), qφ(z|x,a, y)

and pθ(x|y,a, z) and they are modeled by three independent neural networks

respectively. In the following, we refer to them as the classifier, the encoder, and

the decoder. The role of the classifier is to predict the sentiment polarity when

given an aspect and the corresponding sentence. Because it is a stand-alone

module in our method, it can be implemented using various supervised TABSA

models. The encoder extracts the lexical feature from the data. The meanings

of y and z are guaranteed through learning from the labeled data. With y and

z obtained, the decoder can reconstruct the input sentence for a given aspect.

Since the choice the classifier is optional, the description of this component

will be brief. Rather, this paper focuses on the implementation of the auto-

encoder. Specifically, two auto-encoder structures and two kinds of decoder
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RNNs are investigated.

3.4. Classifier

Many choices of the classifier are currently available and integrable with our

system. For labeled data, the classifier is trained using the cross-entropy loss

between the prediction and the target label. When the labels are unknown, the

label predictive distribution qφ(y|x,a) is tuned through maximizing the ELBO

of the log p(x|a). In this work, we experiment with five canonical classifiers from

the recent literature.

3.5. Encoder

The encoder models the term qφ(z|x,a, y), which obtains the context variable

from the sentence when supplied with the aspect and sentiment. The extracted

context variable is independent of the label y. Here two kinds of structures are

investigated.

Uni-directional Encoder. The first is an uni-directional encoder. It uses a single

LSTM to encode the input sequence x and integrate y using a transformation

layer. Denote that the LSTM network maps xt to the hidden state het . The

hidden state of the last time-step heT is used to derive the distribution of variable

z. Then heT and y is concatenated into a vector, which is then used to compute

the mean and variance of z 2:

z ∼ N (µ(x, y), diag(σ2(x, y))) , (4)

µ(x, y) = tanh(Wµ[heT : y] + bµ) , (5)

log σ(x, y) = tanh(Wσ[heT : y] + bσ) . (6)

In this way, the aspect a is excluded from the computation and the encoder is

unaware of its existence. To capture the aspect a in the uni-directional encoder,

we employ the approach of adding position tags to the input sequence. The

2To propagate through z, the reparameterization technique [13, 14, 15] is used.
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position tag is widely used in other NLP tasks, e.g., relation extraction [30, 31,

32] and machine translation [33], to indicate the position of tokens. Here the

position tag d = {d0, d1, ..., dT } is used to denote the relative distance from the

current word to the aspect. Each dt is clipped by [−10, 10]. They are mapped

to vectors ∈ Rdp using a transformation matrix, which is initialized as in [33].

Then the vectors are concatenated with input embedding of x. In the presented

models, the position tag is used by default for both encoder and decoder. And

for the purpose of clarity, the mention of the position tag will be omitted in the

following.

Bi-directional Encoder. We also study another way to implement qφ(z|x,a, y).

Instead of encoding the sentence from left to right, it is desirable to capture

the location of the aspect and emphasize its content. To accomplish this, we

use two LSTMs to encode the sentence (cf. Fig. 3). They process the sentence

from left and right sides to the aspect respectively. To clarify, the words to the

left and the words to the right of the aspect are treated as two distinct parts.

Denote that x is composed of three parts (xl,a,xr). A forward LSTM
−−−−→
LSTM

is used to obtain the representation vector of [xl : a], where : means vector

concatenation. The sequence [a : xr] is processed by another backward LSTM
←−−−−
LSTM . Then the stochastic variable z can be derived as:

z ∼ N (µ(x,a, y), diag(σ2(x,a, y))) ,

g = tanh(Wg[gl : gr] + bg)

µ(x,a, y) = tanh(Wµ[g : y] + bµ) ,

log σ(x,a, y) = tanh(Wσ[g : y] + bσ) ,

where gl (gr) corresponds to the output of last step of
−−−−→
LSTM([xl : a]) (

←−−−−
LSTM([a :

xr])). By splitting the sequence into two parts, the position and the content of

the aspect term a can be better recognized and aggregated by the encoder.

3.6. Decoder

The decoder models the term pθ(x|y,a, z). Conditional sequence generation

is well-known to be semantically complex [16, 17, 18]. It is non-trivial for an

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: Bi-directional Encoder: This figure considers a sentence x with 5 tokens

(x0, x1, x2, x3, x4), where x2 is the aspect. It is split into two parts and each part is pro-

cessed by an LSTM network. The last states of these two LSTMs, as well as the label, are

used for computing the distribution of z. The position tags is included in the input.

RNN to capture the conditional input. Therefore, the main question here is

how to implement the model to estimate the generative probability pθ(x|y,a, z)

without neglecting the aspect a and sentiment variable y. To capture a, we

investigate two decoder structures similar to the encoder. And to capture y,

two plausible RNNs are presented and verified.

Uni-directional Decoder. An RNN fd is adopted here, which takes z as the

initial state and y at each time-step. When given a sequence x, conditional

input y and z, the decoding process can be presented as:

hd0 = tanh(Wd([y : z])) , (7)

hdt = fd(xt,y,h
d
t−1), t = 1, ..., T , (8)

p(xt+1) = softmax(Wp(h
d
t )) , (9)

log pθ(x|y,a, z) =
∑

xt

log p(xt), xt ∈ x ∧ xt 6∈ a , (10)

where the bold y is the one-hot encoded vector. The formulation of decoder

RNN fd will be illustrated in the following.

In this implementation, 1) the reconstruction loss of aspect terms is omitted,

given that the aspect is a conditional input. 2) The conditional label y is fed

into the sequential model at each time-step because doing so will prevent the

decoder from neglecting y [18, 34]. Otherwise, the classifier is unable to obtain

the valid gradient from the decoder in Eq. 2.
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Bi-directional Decoder. Another way to implement pθ(x|y,a, z) is to reverse the

process of the bi-directional encoder (sketched in Fig. 4). That is, two RNNs

are adopted and each perceives the concatenation of y and z as the initial state.

And the sentence is generated as follows:

←−
h
d

0 =
−→
h
d

0 = tanh(Wd[y : z] + bd) ,

←−
h d
t =
←−
fd(xt,y,

←−
h d
t−1), xt ∈

←−−−−
[xl : a]

p(xt+1|·) = softmax(Wp
←−
h d
t + bp) ,

log pθ(xl|a, y, z) =
∑

xt

log p(xt|·), xt ∈ xl ,

−→
h d
t =
−→
fd(xt,y,

−→
h d
t−1), xt ∈

−−−−→
[a : xr]

p(xt+1|·) = softmax(Wp
−→
h d
t + bp) ,

log pθ(xr|a, y, z) =
∑

xt

log p(xt|·), xt ∈ xr .

It is equivalent to generating the left and right part using two different uni-

directional decoders. As the aspect appears prior to other tokens, the decoder

is able to carry its information when processing the context.

Figure 4: Bi-directional Decoder: The left and right parts of the sentence are reconstructed by

two RNNs. Each RNN takes a, z and y as input, and estimates the probability of generating

a part of x, excluding a.

3.7. Implementations of fd

Vanilla LSTM is unable to handle the conditional input. Here two extensions

of the LSTM network are presented to implement fd(xt, y,ht−1).
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CLSTM. To perceive y along the decoding, the conditional LSTM (CLSTM)

is used, which receives y as an additional input at each time-step. Specifically,

when the previous state ht−1 is given, CLSTM implements fd(xt, y,ht−1) as:

it = σ(Wixt + Uiht−1 + Viy + bi) ,

ft = σ(Wfxt + Ufht−1 + Vfy + bf ) ,

ĉt = tanh(Wcxt + Ucht−1 + Vcy + bc) ,

ot = σ(Woxt + Uoht−1 + Voy + bo) ,

ct = ftct−1 + itĉt ,

ht = ot · tanh(ct) ,

where Vi,Vf ,Vc,Vo are extra parameters used to incorporate the information

from y.

FcLSTM. The study in [35, 36] demonstrates that the hidden units of the LSTM

are able to represent the complex semantical feature, e.g., sentiment category.

Therefore, it is feasible to append y as an additional part of the LSTM cell. This

kind of implementation is referred to as Fixed-cell LSTM (FcLSTM), which

works as follows:

it = σ(Wixt + Uiht−1 + bi) ,

ft = σ(Wfxt + Ufht−1 + bf ) ,

ĉt = tanh(Wcxt + Ucht−1 + bc) ,

ot = σ(Woxt + Uoht−1 + bo) ,

ct = ftct−1 + itĉt ,

ht = ot · tanh([ct : y]) ,

where the size of ot is dh+dy and the size of it, ft, ĉt is dh. During the decoding,

the value of y can be extracted by opening ot, which is computed by xt and

ht−1.
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4. Experiments

4.1. Datasets and Preparation

The model was evaluated on two datasets from the SemEval 2014 task 4

ABSA Challenge [7]: the Restaurant (REST) dataset and the Laptop (LAPTOP)

dataset. The REST dataset contains comments relevant to the restaurant do-

main, while the LAPTOP dataset contains descriptive comments about laptop

products. The statistics for these datasets are listed in Table 1. For consis-

tency in comparing methods, we follow the same data-preprocessing procedure

as the other work [6]. The data set has some samples labeled as “Conflict”.

These samples are removed. All of the text in the sample is lowercase, and

there is no additional preprocessing, such as deleting stop words, symbols, or

numbers.

The unlabeled data is obtained from other datasets in the same domain. For

the REST dataset, we used the samples from a sentiment classification compe-

tition hosted by Kaggle 3. This dataset is composed of 82K training samples

and each is annotated with a coarse-grained sentiment label. For the LAPTOP

dataset, the “Six Categories of Amazon Product Reviews” 4 dataset is adopted.

Among the six categories of product, we draw 412K laptop-related samples.

The NLTK software [37] is utilized to split the long paragraphs into sen-

tences. These sentences are used to construct the data samples. Two aspect

extractors 5 are trained with the REST and LAPTOP dataset respectively and their

F1 score is 88.42 and 80.12. And then, they are used to label the aspect for the

unlabeled sentences. After the sequence labeling, the samples without aspect

are filtered. In addition, those with a sequence length that is greater than 80

are also removed. The statistics for the final dataset are shown in Table. 2.

3https://inclass.kaggle.com/c/restaurant-reviews
4http://times.cs.uiuc.edu/∼wang296/Data/
5https://github.com/guillaumegenthial/sequence tagging
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# Positive # Negative # Neutral

REST
Train 2159 800 632

Test 730 195 196

LAPTOP
Train 980 858 454

Test 340 128 171

Table 1: The statistics of the datasets.

Avg. Length Std. Length

REST
Labeled 20.06 10.38

Unlabeled 22.70 12.38

LAPTOP
Labeled 21.95 11.80

Unlabeled 29.89 17.33

Table 2: The statistics of the reviews.

4.2. Model Configuration & Classifiers

The system is implemented using Tensorflow [38]. For consistency and ac-

curacy in our evaluation, all experiments share a common set of the hyper-

parameters. The size of the LSTM cell is 100 and the dimension of latent

variable z is 50. As mentioned in [39], the KL weight (denoted as klw) in Eq. 1

should be tuned so that the latent variable will not get stuck in the local opti-

mum where z carries no information. During the experiments, we set the klw

to be 1e-4. The pre-trained embedding, i.e., GloVe [23], is used to initialize the

word embedding matrix where the out-of-vocabulary words are excluded 6. The

hyper-parameter γ is set to be 10 and the dimension of position embedding is 50.

The number of randomly selected unlabeled samples is 10K in our experiments.

We have tested the method using larger amounts of unlabeled data and found

that the performance does not improve significantly. The test accuracy w.r.t. γ,

klw and number of unlabeled samples is shown in Fig. 5. An open-source imple-

6http://nlp.stanford.edu/data/glove.840B.300d.zip
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Figure 5: Hyper-parameter tuning of TSSGM.

mentation of our method is available from https://github.com/wead-hsu/tssgm.

Five classical TABSA classifier are tested, i.e., MemNet [2], TC-LSTM [1],

BILSTM-ATT-G [5], IAN [40] and TNet [6].

• TC-LSTM: TC-LSTM makes use of two LSTMs to separately encode the

sentence from each end of the text, left and right, up to the aspect. Then

the concatenation of the LSTM outputs is used to predict the sentiment

polarity.

• MemNet: MemNet utilizes attention mechanism to reason over the input

words in multiple hops, so the model can perform reasoning with respect

to the given aspect. After the multi-hops computation, the vector of the

final round is used as input into a fully-connected layer to predict the

sentiment polarity.

• IAN: IAN also uses two LSTMs to interactively derive the representation

vectors of the context and the aspect terms. They are then concatenated

to form the input of the final prediction layer.

• BILSTM-ATT-G: BILSTM-ATT-G treats the sentence as a combina-

tion of three parts. It adopts two attention-based LSTMs to obtain the left

and right representation vectors. And a contextualized attention module

is used to combine these two vectors. The resulting vector is then supplied

as input to the final transformation layer.
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• TNet-AS: Instead of using an attention module, TNet employs a CNN

layer to extract salient features from the transformed word representations

originated from a bi-directional RNN layer. Among current supervised

models, TNet achieves currently state-of-the-art results on the SemEval

2014 task 4 datasets. Among TNet variants, TNet-AS is adopted in our

experiments.

We re-implemented these classifiers so that they can be integrated into our

Tensorflow code. The hyper-parameters, as well as the training setting, are

guaranteed to be the same as in their original paper. Experiments are conducted

with different classifiers to verify the robustness of the proposed method. The

experimental results show that it can consistently improve the classification

performance for various classifiers.

4.3. Main Results

The main experimental results are shown in Table 3 for the REST and LAPTOP

dataset. We adopted two evaluation metrics here, i.e., the classification accuracy

and the Macro-averaged F1 score. The first one is commonly used in standard

classification problem and the latter is better suitable for the multi-label clas-

sification tasks, especially in cases of imbalanced datasets. In this table, the

full TSSGM model that employs the bi-directional auto-encoder and position

tag is used. We report the mean and the standard deviation after 5 runs for

each experiment. Four comparison experiments are conducted for each classifier.

Denote clf as the classifier being used:

• clf : We perform supervised training for the classifier using only labeled

data. This is performed to demonstrate whether the proposed method

achieves the goal of semi-supervised learning.

• clf (EMB): We also perform the semi-supervised experiments using in-

domain pre-trained word embedding. The CBOW method [41] is used to

pre-train the embedding vectors using both labeled and unlabeled data.
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Models
REST LAPTOP

Accuracy Macro-F1 Accuracy Macro-F1

CNN-ASP 77.82 \ - 72.46 \ -

AE-LSTM 76.60 \ - 68.90 \ -

ATAE-LSTM 77.20 \ - 68.70 \ -

GCAE 77.28 (0.32) \ - 69.14 (0.32) \ -

TC-LSTM 77.97 (0.16) 67.55 (0.32) 68.42 (0.56) 62.42 (1.10)

TC-LSTM (EMB) 77.18 (0.38) 65.97 (0.44) 67.51 (0.72) 60.31 (1.28)

TC-LSTM (ST) 78.19 (0.36) 67.65 (0.43) 68.47 (0.47) 62.54 (0.74)

TC-LSTM (TSSGM) 78.64 (0.28) 68.71 (0.82) 69.08 (0.56) 63.06 (0.51)

MemNet 78.68 (0.23) 68.18 (0.58) 70.28 (0.32) 64.38 (0.86)

MemNet (EMB) 79.47 (0.38) 69.06 (0.21) 72.17 (0.44) 65.06 (0.73)

MemNet (ST) 78.83 (0.20) 68.92 (0.20) 69.52 (0.36) 64.39 (0.67)

MemNet (TSSGM) 80.18 (0.26) 69.46 (0.43) 72.22 (0.58) 65.88 (0.45)

IAN 79.20 (0.19) 68.71 (0.59) 69.48 (0.52) 62.90 (0.99)

IAN (EMB) 79.46 (0.38) 69.45 (0.38) 70.89 (0.48) 65.27 (0.34)

IAN (ST) 79.45 (0.11) 69.36 (0.71) 73.25 (0.81) 68.25 (0.76)

IAN (TSSGM) 80.23 (0.17) 70.32 (1.00) 72.04 (0.39) 65.39 (0.85)

BILSTM-ATT-G 79.74 (0.22) 69.16 (0.53) 74.26 (0.35) 69.54 (0.53)

BILSTM-ATT-G (EMB) 80.27 (0.44) 70.33 (0.51) 73.61 (0.30) 68.25 (0.63)

BILSTM-ATT-G (ST) 80.54 (0.23) 71.28 (0.19) 74.70 (0.41) 70.31 (0.60)

BILSTM-ATT-G (TSSGM) 81.10 (0.37) 72.17 (0.26) 75.34 (0.22) 70.80 (0.49)

TNet-AS 80.57 (0.22) 71.17 (0.54) 76.44 (0.47) 71.38 (0.79)

TNet-AS (EMB) 80.92 (0.54) 71.01 (0.98) 76.56 (0.67) 71.51 (0.88)

TNet-AS (ST) 80.76 (0.22) 71.32 (0.67) 76.88 (0.38) 71.74 (0.64)

TNet-AS (TSSGM) 81.76 (0.17) 72.57 (0.32) 77.57 (0.31) 72.31 (0.69)

Table 3: Experimental results (%). For each classifier, we performed three experiments as

follows: the standard supervised classifier, the supervised classifier with pre-trained embedding

using unlabeled data and our model with the classifier. The results are obtained after 5 runs,

and we report both the mean and standard deviation of the test accuracy and the Macro-

averaged F1 score. For clarity, better results are in bold. \ denotes that the results are

extracted from the original paper.
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The resulting vectors are used to initialize the embedding matrix, rather

than the pre-trained GloVe used in the original work.

• clf (ST): The self-training (ST) method is another semi-supervised base-

line. It works by iteratively increasing the labeled data by selecting 1K

samples with the highest confidence from the unlabeled data. Pseudo la-

bels are assigned by the trained classifier. This process continues until all

the unlabeled data is labeled.

• clf (TSSGM): The final set of experiments involves the proposed method

TSSGM that uses clf as the classifier. As aforementioned, the classifier

is an independent module in our method and thus it is easy to integrate

various classifiers. All of the hyper-parameters are the same as those that

were used in the supervised setting.

The table also includes the results of several supervised results of other

models in the first block, i.e., CNN-ASP [6], AE-LSTM [42], ATAE-LSTM [42],

GCAE [43].

Experimental results indicate that our method is able to consistently improve

the performance as compared to the supervised models. For instance, the test

accuracy can be improved from 78.68% to 80.18% (1.5% absolute improvement)

when using the MemNet classifier. Among five classifiers, TNet-AS achieves the

best performance. When TSSGM uses TNet-AS as the classifier, the state-of-

the-art results are obtained on this dataset.

The effectiveness of TSSGM is further seen in the comparison against other

two semi-supervised methods. Specifically, for all of the experiments except

using IAN on the LAPTOP dataset, TSSAVE demonstrates superior performance

than the ST and EMB methods. Regarding IAN, it is observed to be prone to

over-fitting in the early-training phase. However, the auto-encoder in TSSAVE

converges at a slower rate than the classifier and therefore the improvement

afforded by TSSGM is not very significant in this case.

From the table, the usage of in-domain pre-trained word embedding is gen-

erally beneficial compared to GloVe. It is noteworthy that when the EMB and
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Figure 6: The test accuracy with respect to the number of labeled samples from the REST

dataset with the MemNet classifier.

TSSAVE methods are combined together, BILSTM-ATT-G (TSSGM) is able

to achieve the test accuracy of 81.22% with the REST dataset.

4.4. Effect of Labeled Data

Here we study how the performance of TSSGM varies with the number of

labeled samples. Without loss of generality, we use MemNet as the basic clas-

sifier. Different amount of labeled data is sampled from the labeled set and the

results are reported in Fig. 6. As the test curve depicts, the testing accuracy

decreases with fewer labeled samples, but the improvement against supervised

results is more evident. With 500 labeled samples, TSSGM can achieve 3% ac-

curacy improvement, which illustrates the proposed method performs effectively

even with a very small amount of labeled data.

4.5. Share Embedding or Not?

In previous works, the encoder and decoder typically share the word embed-

ding matrix, as well as the classifier, to reduce the demand on the computational

resources. In other words, the embedding vectors are also trained by learning

to reconstruct the input sequence. This leads to a question of whether the im-

provement is a result of multi-task learning, i.e., the classification and the text

reconstruction. In our experiments, the classifier and the auto-encoder possess

their own embedding matrices, which ensures that the improvement comes from

the usage of TSSGM.
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Accuracy Not sharing Sharing

TC-LSTM (TSSGM) 78.64 77.98

MemNet (TSSGM) 80.18 78.66

IAN (TSSGM) 79.88 79.42

BILSTM-ATT-G (TSSGM) 81.10 78.28

TNet-AS (TSSGM) 81.76 79.11

Table 4: Comparison between sharing embedding and not on the REST dataset.

Here, we investigate whether sharing the embedding will benefit the classi-

fier. The results are given in Table 4. From the results, we can see that the joint

training of the word embedding is negative for the final performance in TSSGM.

This suggests that in this problem the gradients from these two objectives may

collide with each other, which leads to a performance degradation.

4.6. Ablation Study

To investigate the impact of each individual components, such as bi-directional

LSTM and position embedding, we perform a comparison between the full

TSSGM model and its ablations (cf. Table 5). Without loss of generality,

we consider the performance with the BILSTM-ATT-G and TNet-AS classifiers

on the REST dataset. After replacing the bi-directional encoder and decoder

with the uni-directional version, the results become inferior. In particular, it

shows that using the bi-directional auto-encoder is beneficial for TSSGM, which

indicates the effective integration of context information into the aspect term is

crucial for good performance.

In comparing the results between TSSGM and TSSGM w/o position em-

bedding, we observe that performance of TSSGM degrades without position

embedding. The position embedding benefits TSSGM by providing relative dis-

tance between tokens and the aspect terms, which allows TSSGM to better

recognize the expression related to the aspect.

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Accuracy Macro-F1

BILSTM-ATT-G (TSSGM) w/ uni 80.44 71.34

BILSTM-ATT-G (TSSGM) w/o pe 80.35 71.11

BILSTM-ATT-G (TSSGM) 81.10 72.17

TNet-AS (TSSGM) w/ uni 80.77 71.54

TNet-AS (TSSGM) w/o pe 81.05 71.88

TNet-AS (TSSGM) 81.76 72.57

Table 5: Comparison between bi-directional TSSGM and its ablated variants on the REST

dataset. uni denotes that the uni-directional auto-encoder is adopted and pe denotes the use

of position embedding.

Accuracy CLSTM FcLSTM

TC-LSTM (TSSGM) 78.46 78.64

MemNet (TSSGM) 80.18 79.43

IAN (TSSGM) 79.88 79.44

BILSTM-ATT-G (TSSGM) 80.23 81.10

TNet-AS (TSSGM) 81.11 81.76

Table 6: Comparison between CLSTM decoder and FcLSTM decoder on the REST dataset.

4.7. Analysis of Decoder Structures

This work studies two sequential models in the decoder, i.e., CLSTM and

FcLSTM. Table 6 describes the results obtained when using these two decoders.

The performance of the decoder varies with the classifier used in TSSGM. This is

due to the training dynamics inherent to these decoders and classifiers. CLSTM

perceives the information of y more directly, hence it learns to capture the condi-

tional input more quickly. This coordinates with the MemNet and IAN classifier,

as they have fewer parameters and can converge faster as well. In contrast, in

cases of the other classifiers, FcLSTM demonstrates better performance.
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Figure 7: The distribution of the REST dataset in latent space z using t-SNE.

4.8. Analysis of the Latent Space

In TSSGM, the data is represented by two variables, i.e., y and z. They are

disentangled and have different meanings. Recall that y denotes the sentiment

polarity and z captures the lexical information. We plot the scatter diagrams

of z for three different sentiment polarities in Fig. 7. The figure illustrates

that the distributions with different y are the same, indicating that z and y

are successfully disentangled. The latent space consists of two clusters, as the

description of the sentimental context locates in the different position, i.e., the

left or the right to the aspect. When digging into local areas, its interesting to

discover that sentences sharing similar syntactic and lexical structures around

the aspect are learned to cluster together.

TSSGM is also capable of generating data samples that are conditioned on y

and z. We selects several generated sentences in Table 7. When z is given, the

sentences are generated with different sentiments. Table 7 demonstrates that

the sentences generated with the same z share the similar lexical structure but

have completely different sentiment orientations. This verifies that the proposed

method is able to successfully perceive and model the relationship between y

and z.

5. Conclusion and Future Work

A novel method has been proposed for the semi-supervised TABSA task

based on the generative model. The analytical and experimental work has been
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Positive Negative Neutral

... the best food i ’ve ever

had !!! ...

.. the worst food i ’ve ever

had !!! ...

... had the food in the

restaurant ...

... the lox is very tasty ... ... the lox is a bit of bor-

ing ...

... lox with a glass of chilli

sauce ...

... the rice is a great value

...

... the rice is awful ... ... the rice with a couple

of olives salad ...

Table 7: Nice sentences that are generated by controlling the sentiment polarity y using the

decoder trained on the REST dataset.

carried out to demonstrate its effectiveness. We conducted experiments with

five classical classifiers and all of them are valid with TSSGM, which verifies its

universality.

In future work, one question that we seek to answer is whether it is possible

to reconstruct the aspect terms, rather than the entire sentence. Our motivation

for this rests in the fact that it is difficult to generate the sentence condition-

ally. Secondly, it is assumed that information about this aspect is known in

the present work, and there is a problem of error propagation when using a

pre-trained aspect extractor. With this considered, we feel there is value in ex-

ploring whether it is possible to jointly learn the aspect, as well as the sentiment

polarity of unlabeled data. If ultimately we can extract detailed knowledge from

unlabeled data then it will be of great benefit in similar tasks.
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