
Generative Adversarial Optimization

Ying Tan(B) and Bo Shi

Key Laboratory of Machine Perception (Ministry of Education), School of Electronics
Engineering and Computer Science, Peking University, Beijing 100871, China

{ytan,pkushibo}@pku.edu.cn

Abstract. Inspired by the adversarial learning in generative adversarial
network, a novel optimization framework named Generative Adversarial
Optimization (GAO) is proposed in this paper. This GAO framework
sets up generative models to generate candidate solutions via an adver-
sarial process, in which two models are trained alternatively and simul-
taneously, i.e., a generative model for generating candidate solutions and
a discriminative model for estimating the probability that a generated
solution is better than a current solution. The training procedure of the
generative model is to maximize the probability of the discriminative
model. Specifically, the generative model and the discriminative model
are in this paper implemented by multi-layer perceptrons that can be
trained by the back-propagation approach. As of an implementation of
the proposed GAO, for the purpose of increasing the diversity of gener-
ated solutions, a guiding vector ever introduced in guided fireworks algo-
rithm (GFWA) has been employed here to help constructing generated
solutions for the generative model. Experiments on CEC2013 benchmark
suite show that the proposed GAO framework achieves better than the
state-of-art performance on multi-modal functions.

Keywords: Generative Adversarial Optimization (GAO) ·
Adversarial Learning · Generative adversarial network (GAN) ·
Guiding vector · Multi-modal functions

1 Introduction

Continuously-valued function optimization problem [20] has long been an impor-
tant problem in mathematics and computer science. With the development of
deep learning in recent years, continuously-valued function optimization prob-
lem has become more and more important [23,37]. For continuously-valued func-
tion optimization problems, gradient-based methods are commonly used, such as
stochastic gradient descent (SGD), Newton’s method, conjugate gradient (CG),
BFGS and so on [33]. However, for more complex functions and multi-modal
functions, gradient-based methods can only find local optimal solutions. For
these problems, the algorithm needs to be able to better deal with the balance
between exploration and exploitation [4].

c© Springer Nature Switzerland AG 2019
Y. Tan et al. (Eds.): ICSI 2019, LNCS 11655, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-26369-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26369-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-26369-0_1


4 Y. Tan and B. Shi

In order to solve the problem, more and more meta-heuristic algorithms have
been proposed. Meta-heuristic algorithms are usually inspired by biological or
human behaviors. By designing a sophisticated mechanism to guide algorithms
to find solutions, so as to avoid local optimal solutions and find global optimal
solutions. The most critical component for meta-heuristic algorithms is gener-
ating solutions and retaining solutions. For the part of generating solutions, the
algorithm should generate better solutions as many as possible, but at the same
time, it is also hoped that the generated solutions have a rich diversity and will
not cluster in local optimal spaces. For the part of retaining solutions, the algo-
rithm should retain better solutions, but it is also hoped that potential solutions
which are not so good currently can be retained, because solutions which is bet-
ter than the current optimal solution may be found in the local searches around
them later.

In the early meta-heuristic algorithms, various methods to generate solutions
were proposed. Particle swarm optimization (PSO) [19] mimics migration and
clustering in the foraging of birds to generate solution. The genetic algorithm
(GA) [8] targets all individuals in a group and uses randomization techniques to
efficiently search a coded parameter space. The fireworks algorithm (FWA) [40]
employs the fitness value of each firework to dynamically calculate the explosion
radius and the number of sparks in an explosion as local search. In recent years,
research on methods to generate solutions tends to be more refined. Guided
firework algorithm (GFWA) [26] employs the fitness value information obtained
by the explosion sparks to construct the guiding vector (GV) with promising
direction and adaptive length, and an elite solution called guiding spark (GS) is
generated by adding the guiding vector to the corresponding firework position.

In recent years, generative adversarial network (GAN) [13] has been proposed
as a new generating model, with its outstanding performance proving its pow-
erful ability in generative tasks. Different from the previous generative model,
GAN guides a generator to automatically learn how to generate by setting a
loss function. In GAN, a discriminator and a generator are alternatively trained,
where the discriminator is used to discriminate between the generated sample
and the real sample, the generator is used to generate samples as real as possible,
so as to deceive the discriminator. GAN has been widely used in the fields of
image generation [10,12,32], video synthesis [41,42], text generation [3,21,44],
music generation [14], semi-supervised learning [5,9], medical image [7] and infor-
mation security [16,35].

Inspired by the adversarial learning in GAN, a feasible optimization frame-
work, so-called Generative Adversarial Optimization (GAO), is proposed in this
paper. The framework sets up generative models to generate candidate solutions
via an adversarial process, in which two models are trained alternatively and
simultaneously, i.e., a generative model G to generate candidate solutions, and a
discriminative model D to estimates the probability that a generated solution is
better than a current solution. The training procedure for G is to maximize the
probability of D. In our case, G and D are defined by multi-layer perceptrons,
which can be trained with back-propagation. To improve the quality of generated



Generative Adversarial Optimization 5

solutions, the guiding vectors introduced in GFWA are employed to help con-
structing generated solutions. Experiments on CEC2013 benchmark suite show
that the proposed framework achieves impressive performance on multi-modal
functions.

The main contributions of this paper are as follows:

1. Inspired by adversarial learning and GAN, a novel optimization framework
so-called Generative Adversarial Optimization, GAO, for short, is proposed.

2. The guiding vectors introduced in GFWA [26] are employed to help construct-
ing generated solutions, which improves the training stability and generative
diversity of G.

3. Experiments show that for GAO, multiple rounds of updates are necessary
to obtain better generative capabilities.

4. Compared with current famous optimization algorithms, GAO achieves better
than state-of-the-art performance on multi-modal functions.

The remainder of this paper is organized as follows. Section 2 presents related
works of meta-heuristic algorithms and GAN. Section 3 describes the detail of
GAO, a novel optimization framework proposed for continuously-valued function
optimization. Experimental settings and results are presented and discussed in
Sect. 4. Conclusions are given in Sect. 5.

2 Related Works

2.1 Meta-heuristic Algorithms

Inspired by biological and human behaviors, meta-heuristic algorithms are a kind
of algorithms that can be used to better solve continuous optimization problems
by simulating agents’ behaviors in order to balance “exploration” and “exploita-
tion” [4]. In recent years, researches on meta-heuristic algorithms for optimiza-
tion problem have developed rapidly, more and more meta-heuristic algorithms
have been proposed. According to the mechanism of the agents’ behaviour, meta-
heuristic algorithms can be divided into swarm intelligence algorithms [18] and
evolutionary computation algorithms.

Swarm intelligence algorithms are usually inspired by the behavior of biolog-
ical groups in natural world to seek the optimum in search space by employing
programs to simulate the interaction among biological individuals. Swarm intel-
ligence algorithms mainly focus on biological groups such as ant colony [11],
bird flock [19], fish school [29], etc. In addition, some non-biological group sys-
tems also belong to the scope of the researches on swarm intelligence, such as
multi-robot systems, fireworks [40] and other unnatural phenomena. there are
many famous swarm intelligence algorithms such as particle swarm optimization
(PSO) [19], ant colony optimization (ACO) [11], fireworks algorithm (FWA)
[24–26,39,40,45–47], etc. Specially, GFWA [26] proposed the guiding vector to
help constructing solutions for the first time.

Evolutionary computation algorithms are primarily inspired by biological
evolution, which solves the global optimal solution by simulating the evolution



6 Y. Tan and B. Shi

of organisms. Specific algorithms include genetic algorithm (GA) [8], evolution
strategy (ES) [38], genetic programming, evolutionary programming, differential
evolution (DE) [31], etc.

2.2 Generative Adversarial Networks

Generative adversarial network (GAN), which was first proposed by Goodfellow
in 2014 [13], provides a new method of learning deep representations based on
extensively unlabeled data. The basic idea of GAN is derived from the minimax
two-player game in game theory, consisting of a generator G and a discriminator
D. GAN is trained by means of adversarial learning, with the goal of estimating
the potential distribution of the data samples and generating new data sam-
ples. The discriminator D of the original GAN can be regarded as a function
D : D(x) → (0, 1), which maps the sample to the discriminant probability that
whether the sample is from the real data distribution or the generator distribu-
tion. The generator G is trained to reduce the discriminator’s accuracy. If the
generator distribution is sufficient to perfectly match the real data distribution,
then the discriminator will be most confused and give a probability value of 0.5
to all inputs.

Since GAN was proposed, it has quickly become a hot research issue. A large
number of researches based on GAN have sprung up, mainly focusing on opti-
mizing GAN’s structure [10,32,43] and loss function [1,28,30], proposing some
tricks to assist the training of GAN [15,32,34], and using GAN to solve specific
problems. GAN is widely used in many fields, and there are many impressive
works on different tasks. For image Synthesis, there are LapGAN [10], DCGAN
[32] and etc. For image-to-image translation, there are pix2pix [17], cycleGAN
[48], etc. For super-resolution, there are SRGAN [22]. For text generation and
NLP, there are seqGAN [44], maliGAN [3], Gumbel-softmax GAN [21], etc. For
information security, there is MalGAN [16].

3 GAO: Generative Adversarial Optimization

GAO and its detailed implementation are presented in this section. First, the
model architectures are described in Sect. 3.1, then the training procedure of
GAO is discussed in details in Sect. 3.2.

3.1 Model Architectures

Different from the existing meta-heuristic algorithms which mainly adopt ran-
dom sampling to generate elite solutions or guiding vectors [26], in GAO, we
adopt a generative network G to generate effective guiding vectors for current
solutions to move towards. Simultaneously, a discriminative network D is trained
to evaluate whether the generated solution is better than a current one. The
generative network G is trained by computing gradients from the feedback of
D, which means that G learns how to generate better guiding vectors under the
guidance of D.



Generative Adversarial Optimization 7

Fig. 1. Architecture of GAO

Given a objective function f , an optimization problem seeks to find the global
minimum x∗ ∈ A which satisfies:

f(x∗) ≤ f(x), ∀x ∈ A (1)

where A is the searching space.
As illustrated in Fig. 1, G gets the input, which includes a current solution

xc, a noise z and a step size l, and outputs a guiding vector g. This procedure
can be expressed in Eq. 2:

g = G(xc, z, l) (2)

Then the guiding vector g is added to the current solution xc to get the generated
solution xg, as shown in Eq. 3:

xg = xc + g (3)

D receives a current solution xc and a generated solution xg, then outputs a
prediction p that whether the generated solution xg is better than the current
solution xc as shown in Eq. 4. If the generated solution xg is better than the
current solution xc, let p = 1, otherwise p = 0.

p = D(xc, xg) =
{

1, xg is better than xc

0, else
(4)



8 Y. Tan and B. Shi

In order to train D, labels yi for tuples of current solution and generated
solution {xi

c, x
i
g} are required. The objective function f is employed to label the

two-tuple set {xi
c, x

i
g} as expressed in Eq. 5. The training of D will be detailedly

discussed in Sect. 3.2.

yi =
{

1, if f(xi
g) < f(xi

c)
0, else

(5)

Fig. 2. Architecture of G Fig. 3. Architecture of D

The architecture of G is illustrated in Fig. 2. First, G concatenate the current
solution xc and noise z included in the input, then feed the concatenated vector
to a fully-connected layer (denoted as FC). Finally G dot the concatenated vector
with step size l and get the guiding vector g as G’s output. This procedure can
be expressed in Eq. 6.

g = G(xc, z, l) = FC([xT
c , zT ]T ) · l (6)

The architecture of D is illustrated in Fig. 3. First, D feed two solutions xc,
xg to the same fully-connected layer denoted as FC1, then subtract the output
of xc with the output of xg. Finally, D feed the subtracted vector to a fully-
connected layer denoted as FC2 and get the prediction p as D’s output. This
procedure can be expressed in Eq. 7. The activation function for the final layer
of FC2 should be sigmoid function to regularize the prediction.

p = D(xc, xg) = FC2(FC1(xc) − FC1(xg)) (7)



Generative Adversarial Optimization 9

3.2 Training of GAO

The complete training procedure of GAO is shown in Algorithm1. At the begin-
ning, μ solutions are randomly sampled in searching space to make up the solu-
tion set C = {xi

c, i = 1, 2, ..., μ}, calculate each solution’s fitness value f(xi
c)

and initialize the step size l. Then we repeatedly do adversarial training of D
and G, select solutions to be retained and reduce step size l as the iteration
progresses. When the termination criterion is met, the algorithm exit the loop.
Since the time allowed to evaluate the solution using fitness function is limited as
MaxFES = 10000∗D, in which D is the evaluation dimension of fitness function
[27], the termination criterion always refers to whether the limited evaluation
time is used up. Details of training D and G, selecting solutions and reducing
step size are discussed below.

Algorithm 1. Training procedure of GAO
Require: μ: number of current solutions
Require: β: number of solutions generated at each iteration
Require: linit: initial value of step size l
1: randomly sample μ solutions in searching space A as set C = {xi

c}
2: calculate fitness value f(xi

c) for each solution xi
c in C

3: initialize the step size l = linit

4: while termination criterion is not met do
5: generate β solutions and train D
6: train G with fitted D
7: select μ solutions for next iteration from μ current solutions and β generated

solutions
8: reduce step size l
9: end while

Training of D. D is trained to evaluate whether the generated solution xg will
be better than the current solution xc. Train D requires employing G to generate
solutions first. In this paper, the number of solutions to be generated totally at
each iteration is denoted as β. Since D receives two solutions as input and output
a prediction, training D requires triplets composed of two solutions xi

c and xi
g

and a label yi, in which yi can be calculated with Eq. 5. For a triplet {xi
c, x

i
g, y

i},
the loss function of D can be calculated with Eq. 8:

max
D

lossD = yi log(D(xi
c, x

i
g)) + (1 − yi) log(1 − D(xi

c, x
i
g)) (8)

When training with batches, the loss of a batch is the average loss for each triplet
in batch.

Training of G. As mentioned above, G learns how to generate better guiding
vectors under the guidance of D, which means that G is trained by computing



10 Y. Tan and B. Shi

gradients from the feedback of D. G is trained to generate elite guiding vectors
for current solutions, so it’s hoped that the generated solutions perform better
than current solutions. For a current solution xi

c, the loss function of G can be
calculated with Eq. 9:

max
G

lossG = log(D(xi
c, x

i
c + G(xi

c, z, l))) (9)

In which, z is a random Gaussian noise, l is the step size. When training with
batches, the loss of a batch is the average loss for each triplet in the batch.

Selecting Solutions. In general, solutions with better fitness values should be
retained, so we calculate the probability to be selected for each solution xi in
Eq. 10 and select solutions using the calculated probability:

pr(xi) =
γ−α

f(xi)∑n
i=1 γ−α

f(xi)

(10)

where γf(xi) means the rank of fitness value for xi among all solutions, n is
the total number of candidate solutions, α is a hyper-parameter to control the
shape of the distribution. The larger α is, the probability of solutions with better
fitness values is larger as well.

Reducing Step Size. In GAO, the guiding vector introduced in GFWA [26] is
employed to control the searching radius at each iteration. In a general searching
process, searching radius should be larger at the beginning and gradually reduced
to a smaller value, which coincides with keeping the balance between exploration
and exploitation. At the beginning, the algorithm needs to explore the searching
space to avoid missing any local optimal region where the global optimum may
exist. As the algorithm goes on, it has accumulated some information about
the searching space and tends to exploit more in existing local optimal regions.
Thus several different schemes to adjust step size are designed, for which the
basic principle is to gradually decrease the step size as the algorithm goes on.
The detailed introduction and experiments will be discussed in Sect. 4.

4 Experiments

In this section, principles on how to set parameters and construct D and G are
given. In more detail, we first introduce the model architecture specifically and
give principles for setting parameters. Secondly, the benchmark the experiment
taken on is introduced. Finally, we compare GAO with other famous optimization
algorithms.

In our experiment, the architecture of D and G are mainly fully-connected
layers. In this section, we denote the number of hidden layers as L, the sizes of
each hidden layer as H, the sizes of output layer as O ,the activation functions
of each hidden layer as AH and the activation functions of output layer as AO.



Generative Adversarial Optimization 11

each of them is introduced respectively as follows. For FC in G, we set L = 1,
H = [64], O = dimension of objective function, AH = [relu], AO = tanh. For
FC1 in D, we set L = 2, H = [64, 64], O = 10, AH = [relu, relu], AO = relu.
For FC2 in D, we set L = 1, H = [10], O = 1, AH = [relu], AO = sigmoid.

The number of solutions retained at each iteration is denoted as μ, which
mainly keeps the balance between “exploration” and “exploitation” [4]. Since
the time allowed to evaluate is limited to MaxFES = 10000 ∗ D, where D
is the dimension of the objective function, smaller μ allows more solutions to
be generated from one solution, which focuses on “exploitation”, while larger μ
allows generating solutions from more locations in search space, which focuses
on “exploration”. In this paper, we follow the suggestion in [40] and set μ = 5.

To train D, we need to label the tuple of {xi
c, x

i
g} with yi, which requires

using objective function to evaluate the fitness value of xi
g, since fitness value

of xi
c have been calculated at the former iteration. To make D learn how to

generate solutions better, we not only generate xi
g from G, but also generate xi

g

from local search and global search at each iteration. When generating solution,
xi

g calculated from Eq. 3 have to be clipped to the boundary once it exceeds the
search space. In this paper, we denote the number of solutions to be generated
totally at each iteration as β. On account of the limit of MaxFES, the iteration
number MaxIter = MaxFES

β . In this paper, we set β = 30.

Fig. 4. How step size changes with different monotone functions

As discussed in Sect. 3.2, when selecting solutions, we calculate a probability
to be selected for each solution xi as expressed in Eq. 10 and select solutions in
accordance with that probability. We denote the parameter controlling the shape
of the distribution as α. The larger α is, the probability of solutions with better
fitness values is larger as well. In this paper, we set α = 2 as suggested in [24].



12 Y. Tan and B. Shi

In our experiment, step size l have to be set as linit at the beginning of the
algorithm. In general, we set linit = 1

2 · radius of search space. Specifically for
CEC2013 [27] in this paper, we set linit = 50. To gradually reduce the step size as
the algorithm goes on, we map the iteration count to [ε, linit] with a monotone
function F , here ε is a small positive number set to 10−20 in this paper. In
practice, we compare exponential function and power function with different
power. Figure 4 illustrates how step size changes with iteration count increases
when using different functions. It shows that using exponential function make
the step size drop rapidly. And when using power function, the step size drop
faster as the power increases.

We compare different monotone functions on CEC2013 benchmark suite and
the average ranks (ARs) are shown in Figs. 5 and 6, in which AR-uni, AR-multi
and AR-all indicate average ranks for uni-modal, multi-modal and all functions,
respectively. It shows that using power function performs better than exponential
function and using 4.5 as power is comprehensively best. In this paper, we use
power function and set power to 4.5.

Fig. 5. Average ranks for different mono-
tone functions

Fig. 6. Average ranks for power function
with different power

We choose CEC2013 single objective optimization benchmark suite [27] as
the test suite for the following experiments. CEC2013 single objective optimiza-
tion benchmark suite includes 5 uni-modal functions and 23 multi-modal func-
tions, whose optimal values range from −1400 to 1400 and searching range is
[−100, 100]. According to the requirements of the benchmark suite, all the algo-
rithms should run 51 times for each function to calculate average and variance.
The maximal number of function evaluations in each run, which is denoted as
MaxFES, is set as 10000∗D, where D is the dimension of the objective function.
The benchmark suite supports 10, 30 and 50 as the dimension of the objective
function.



Generative Adversarial Optimization 13

T
a
b
le

1
.
M

ea
n

er
ro

r,
st

a
n
d
a
rd

va
ri

a
n
ce

a
n
d

av
er

a
g
e

ra
n
k
s

o
f
th

e
ch

o
se

n
a
lg

o
ri

th
m

s
o
n

C
E

C
2
0
1
3

b
en

ch
m

a
rk

su
it

e

A
B
C

S
P
S
O

2
0
1
1

IP
O

P
-C

M
A
E
S

D
E

L
o
T
-F

W
A

G
A
O

C
E
C
2
0
1
3

M
e
a
n

S
td

.
M

e
a
n

S
td

.
M

e
a
n

S
td

.
M

e
a
n

S
td

.
M

e
a
n

S
td

.
M

e
a
n

S
td

.

1
0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

1
.8

8
E
−

1
3

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

1
.8

9
E
−

0
3

4
.6

5
E
−

0
4

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

2
6
.2

0
E
+

0
6

1
.6

2
E
+

0
6

3
.3

8
E
+

0
5

1
.6

7
E
+

0
5

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

5
.5

2
E
+

0
4

2
.7

0
E
+

0
4

1
.1

9
E
+

0
6

4
.2

7
E
+

0
5

1
.0

2
E
+

0
6

6
.8

9
E
+

0
5

3
5
.7

4
E
+

0
8

3
.8

9
E
+

0
8

2
.8

8
E
+

0
8

5
.2

4
E
+

0
8

1
.7

3
E
+

0
0

9
.3

0
E
+

0
0

2
.1

6
E
+

0
6

5
.1

9
E
+

0
6

2
.2

3
E
+

0
7

1
.9

1
E
+

0
7

7
.9

8
E
+

0
6

1
.0

1
E
+

0
7

4
8
.7

5
E
+

0
4

1
.1

7
E
+

0
4

3
.8

6
E
+

0
4

6
.7

0
E
+

0
3

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

1
.3

2
E
−

0
1

1
.0

2
E
−

0
1

2
.1

3
E
+

0
3

8
.1

1
E
+

0
2

3
.1

7
E
+

0
3

1
.4

9
E
+

0
3

5
0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

5
.4

2
E
−

0
4

4
.9

1
E
−

0
5

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

2
.4

8
E
−

0
3

8
.1

6
E
−

0
4

3
.5

5
E
−

0
3

5
.0

1
E
−

0
4

2
.9

5
E
−

0
3

4
.7

0
E
−

0
4

A
R
.
u
n
i

4
3
.4

1
3
.2

3
.8

3
.4

6
1
.4

6
E
+

0
1

4
.3

9
E
+

0
0

3
.7

9
E
+

0
1

2
.8

3
E
+

0
1

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

7
.8

2
E
+

0
0

1
.6

5
E
+

0
1

1
.4

5
E
+

0
1

6
.8

4
E
+

0
0

1
.7

3
E
+

0
1

1
.5

3
E
+

0
1

7
1
.2

5
E
+

0
2

1
.1

5
E
+

0
1

8
.7

9
E
+

0
1

2
.1

1
E
+

0
1

1
.6

8
E
+

0
1

1
.9

6
E
+

0
1

4
.8

9
E
+

0
1

2
.3

7
E
+

0
1

5
.0

5
E
+

0
1

9
.6

9
E
+

0
0

1
.0

8
E
+

0
1

8
.1

5
E
+

0
0

8
2
.0

9
E
+

0
1

4
.9

7
E
−

0
2

2
.0

9
E
+

0
1

5
.8

9
E
−

0
2

2
.0

9
E
+

0
1

5
.9

0
E
−

0
2

2
.0

9
E
+

0
1

5
.6

5
E
−

0
2

2
.0

9
E
+

0
1

6
.1

4
E
−

0
2

2
.0

9
E
+

0
1

6
.9

6
E
−

0
2

9
3
.0

1
E
+

0
1

2
.0

2
E
+

0
0

2
.8

8
E
+

0
1

4
.4

3
E
+

0
0

2
.4

5
E
+

0
1

1
.6

1
E
+

0
1

1
.5

9
E
+

0
1

2
.6

9
E
+

0
0

1
.4

5
E
+

0
1

2
.0

7
E
+

0
0

1
.0

9
E
+

0
1

2
.1

0
E
+

0
0

1
0

2
.2

7
E
−

0
1

6
.7

5
E
−

0
2

3
.4

0
E
−

0
1

1
.4

8
E
−

0
1

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

3
.2

4
E
−

0
2

1
.9

7
E
−

0
2

4
.5

2
E
−

0
2

2
.4

7
E
−

0
2

1
.0

9
E
−

0
2

1
.0

5
E
−

0
2

1
1

0
.0

0
E
+

0
0

0
.0

0
E
+

0
0

1
.0

5
E
+

0
2

2
.7

4
E
+

0
1

2
.2

9
E
+

0
0

1
.4

5
E
+

0
0

7
.8

8
E
+

0
1

2
.5

1
E
+

0
1

6
.3

9
E
+

0
1

1
.0

4
E
+

0
1

5
.8

4
E
+

0
1

1
.8

4
E
+

0
1

1
2

3
.1

9
E
+

0
2

5
.2

3
E
+

0
1

1
.0

4
E
+

0
2

3
.5

4
E
+

0
1

1
.8

5
E
+

0
0

1
.1

6
E
+

0
0

8
.1

4
E
+

0
1

3
.0

0
E
+

0
1

6
.8

2
E
+

0
1

1
.4

5
E
+

0
1

5
.6

0
E
+

0
1

1
.2

6
E
+

0
1

1
3

3
.2

9
E
+

0
2

3
.9

1
E
+

0
1

1
.9

4
E
+

0
2

3
.8

6
E
+

0
1

2
.4

1
E
+

0
0

2
.2

7
E
+

0
0

1
.6

1
E
+

0
2

3
.5

0
E
+

0
1

1
.3

6
E
+

0
2

2
.3

0
E
+

0
1

1
.0

9
E
+

0
2

2
.6

1
E
+

0
1

1
4

3
.5

8
E
−

0
1

3
.9

1
E
−

0
1

3
.9

9
E
+

0
3

6
.1

9
E
+

0
2

2
.8

7
E
+

0
2

2
.7

2
E
+

0
2

2
.3

8
E
+

0
3

1
.4

2
E
+

0
3

2
.3

8
E
+

0
3

3
.1

3
E
+

0
2

2
.3

8
E
+

0
3

4
.3

9
E
+

0
2

1
5

3
.8

8
E
+

0
3

3
.4

1
E
+

0
2

3
.8

1
E
+

0
3

6
.9

4
E
+

0
2

3
.3

8
E
+

0
2

2
.4

2
E
+

0
2

5
.1

9
E
+

0
3

5
.1

6
E
+

0
2

2
.5

8
E
+

0
3

3
.8

3
E
+

0
2

2
.4

3
E
+

0
3

4
.7

8
E
+

0
2

1
6

1
.0

7
E
+

0
0

1
.9

6
E
−

0
1

1
.3

1
E
+

0
0

3
.5

9
E
−

0
1

2
.5

3
E
+

0
0

2
.7

3
E
−

0
1

1
.9

7
E
+

0
0

2
.5

9
E
−

0
1

5
.7

4
E
−

0
2

2
.1

3
E
−

0
2

7
.7

2
E
−

0
2

4
.2

4
E
−

0
2

1
7

3
.0

4
E
+

0
1

5
.1

5
E
−

0
3

1
.1

6
E
+

0
2

2
.0

2
E
+

0
1

3
.4

1
E
+

0
1

1
.3

6
E
+

0
0

9
.2

9
E
+

0
1

1
.5

7
E
+

0
1

6
.2

0
E
+

0
1

9
.4

5
E
+

0
0

9
.4

0
E
+

0
1

1
.8

0
E
+

0
1

1
8

3
.0

4
E
+

0
2

3
.5

2
E
+

0
1

1
.2

1
E
+

0
2

2
.4

6
E
+

0
1

8
.1

7
E
+

0
1

6
.1

3
E
+

0
1

2
.3

4
E
+

0
2

2
.5

6
E
+

0
1

6
.1

2
E
+

0
1

9
.5

6
E
+

0
0

8
.9

2
E
+

0
1

2
.6

4
E
+

0
1

1
9

2
.6

2
E
−

0
1

5
.9

9
E
−

0
2

9
.5

1
E
+

0
0

4
.4

2
E
+

0
0

2
.4

8
E
+

0
0

4
.0

2
E
−

0
1

4
.5

1
E
+

0
0

1
.3

0
E
+

0
0

3
.0

5
E
+

0
0

6
.4

3
E
−

0
1

3
.6

8
E
+

0
0

8
.0

5
E
−

0
1

2
0

1
.4

4
E
+

0
1

4
.6

0
E
−

0
1

1
.3

5
E
+

0
1

1
.1

1
E
+

0
0

1
.4

6
E
+

0
1

3
.4

9
E
−

0
1

1
.4

3
E
+

0
1

1
.1

9
E
+

0
0

1
.3

3
E
+

0
1

1
.0

2
E
+

0
0

1
.1

0
E
+

0
1

6
.9

1
E
−

0
1

2
1

1
.6

5
E
+

0
2

3
.9

7
E
+

0
1

3
.0

9
E
+

0
2

6
.8

0
E
+

0
1

2
.5

5
E
+

0
2

5
.0

3
E
+

0
1

3
.2

0
E
+

0
2

8
.5

5
E
+

0
1

2
.0

0
E
+

0
2

2
.8

0
E
−

0
3

2
.9

4
E
+

0
2

6
.2

9
E
+

0
1

2
2

2
.4

1
E
+

0
1

2
.8

1
E
+

0
1

4
.3

0
E
+

0
3

7
.6

7
E
+

0
2

5
.0

2
E
+

0
2

3
.0

9
E
+

0
2

1
.7

2
E
+

0
3

7
.0

6
E
+

0
2

3
.1

2
E
+

0
3

3
.7

9
E
+

0
2

2
.9

9
E
+

0
3

5
.3

4
E
+

0
2

2
3

4
.9

5
E
+

0
3

5
.1

3
E
+

0
2

4
.8

3
E
+

0
3

8
.2

3
E
+

0
2

5
.7

6
E
+

0
2

3
.5

0
E
+

0
2

5
.2

8
E
+

0
3

6
.1

4
E
+

0
2

3
.1

1
E
+

0
3

5
.1

6
E
+

0
2

2
.6

7
E
+

0
3

6
.2

5
E
+

0
2

2
4

2
.9

0
E
+

0
2

4
.4

2
E
+

0
0

2
.6

7
E
+

0
2

1
.2

5
E
+

0
1

2
.8

6
E
+

0
2

3
.0

2
E
+

0
1

2
.4

7
E
+

0
2

1
.5

4
E
+

0
1

2
.3

7
E
+

0
2

1
.2

0
E
+

0
1

2
.3

9
E
+

0
2

6
.3

2
E
+

0
0

2
5

3
.0

6
E
+

0
2

6
.4

9
E
+

0
0

2
.9

9
E
+

0
2

1
.0

5
E
+

0
1

2
.8

7
E
+

0
2

2
.8

5
E
+

0
1

2
.8

0
E
+

0
2

1
.5

7
E
+

0
1

2
.7

1
E
+

0
2

1
.9

7
E
+

0
1

2
.6

0
E
+

0
2

1
.7

4
E
+

0
1

2
6

2
.0

1
E
+

0
2

1
.9

3
E
−

0
1

2
.8

6
E
+

0
2

8
.2

4
E
+

0
1

3
.1

5
E
+

0
2

8
.1

4
E
+

0
1

2
.5

2
E
+

0
2

6
.8

3
E
+

0
1

2
.0

0
E
+

0
2

1
.7

6
E
−

0
2

2
.0

0
E
+

0
2

4
.3

2
E
−

0
2

2
7

4
.1

6
E
+

0
2

1
.0

7
E
+

0
2

1
.0

0
E
+

0
3

1
.1

2
E
+

0
2

1
.1

4
E
+

0
3

2
.9

0
E
+

0
2

7
.6

4
E
+

0
2

1
.0

0
E
+

0
2

6
.8

4
E
+

0
2

9
.7

7
E
+

0
1

6
.4

5
E
+

0
2

5
.5

8
E
+

0
1

2
8

2
.5

8
E
+

0
2

7
.7

8
E
+

0
1

4
.0

1
E
+

0
2

4
.7

6
E
+

0
2

3
.0

0
E
+

0
2

0
.0

0
E
+

0
0

4
.0

2
E
+

0
2

3
.9

0
E
+

0
2

2
.6

5
E
+

0
2

7
.5

8
E
+

0
1

2
.9

6
E
+

0
2

2
.7

7
E
+

0
1

A
R
.
m

u
lt
i
3
.5

7
4
.8

7
2
.8

7
4
.0

4
2
.6

1
2
.4

8

A
R
.
a
ll

3
.6

4
4
.6

1
2
.5

4
3
.8

9
2
.8

2
2
.6

4



14 Y. Tan and B. Shi

We compared GAO with the famous optimization algorithms including the
artificial bee colony algorithm (ABC), the standard particle swarm optimiza-
tion 2011 (SPSO2011) [6], the restart CMA-ES with increasing population size
(IPOP-CMA-ES) [2], the differential evolution algorithm (DE) [36] and the loser-
out tournament based FWA (LoT-FWA) [24]. The parameters of these algo-
rithms are set as suggested in [2,6,24,36]. All these algorithms are tested under
same conditions with GAO. The mean errors, standard deviations and average
ranks are shown in Table 1. Average ranks are calculated separately for uni-
modal functions and multi-modal functions, denoted as AR.uni and AR.multi,
respectively. Average rank for all functions are denoted as AR.all. The minimal
mean errors for each function are shown in bold.

As illustrated in Table 1, on all functions, IPOP-CMA-ES performs best,
followed by GAO and LoT-FWA, while SPSO2011 is the worst one. IPOP-CMA-
ES, ABC, GAO and LoT-FWA achieve 11, 10, 6 and 5 of 28 minimal mean errors
on all functions, respectively. Specifically on uni-modal functions, IPOP-CMA-
ES performs best as well, followed by DE, SPSO2011 and GAO performing
comparable, while ABC is the worst one. IPOP-CMA-ES achieves all minimal
errors on uni-modal functions, while ABC, SPSO2011, LoT-FWA and GAO
achieve 1 of 5 the minimal mean errors.

On multi-modal functions, GAO performs best, followed by LoT-FWA and
IPOP-CMA-ES, while SPSO2011 is the worst one. ABC achieves 8 of 23 minimal
mean errors on multi-modal functions, followed by IPOP-CMA-ES, GAO and
LoT-FWA, achieving 6, 5, 4 of 23 minimal mean errors, respectively. SPSO2011
and DE performs worst, achieving none minimal mean errors on multi-modal
functions. Although ABC achieves 8 minimal mean errors on multi-modal func-
tions, it also achieves 10 maximal mean error, which shows that ABC is not
stable enough. At the same time, GAO achieves none maximal mean errors on
all functions, which shows that GAO is quite stable and can be adapted to
various problems.

It turns out from the experimental results that the proposed GAO framework
performs quite very well on multi-modal functions. This is mainly due to the
adversarial learning procedure, which enables G to learn how to generate elite and
diverse solutions under the supervision of D, rather than to follow an artificially-
designed meta-heuristic rule directly. In our implementation, the guiding vector
introduced in GFWA [26] has been employed to improve the quality and diversity
of generated solutions, which can also certainly be replaced by other feasible
methods. In this paper, the exploration on hyper-parameters is greatly simplified,
with a main focus on presenting the proposed optimization framework.

5 Conclusion

Inspired by the adversarial learning in generative adversarial network, this paper
proposed a novel optimization framework, so-called GAO, for short, which is the
first attempt to employ adversarial learning for continuously-valued function
optimization. In order to improve the quality of generated solutions, a guid-
ing vector appeared in GFWA is employed in this paper to help constructing



Generative Adversarial Optimization 15

generated solutions. Experiments on CEC2013 benchmark suite shew that the
proposed GAO algorithm performs quite well, especially on multi-modal func-
tions, it gave the best performance over some famous optimization approaches.
Meanwhile, the performance of the GAO framework on uni-modal functions
indicates that there is still room for improvement. It is worth noting that the
proposed GAO framework should be further studied since it can be easily embed-
ded into any iterative algorithms as an operator to generate solutions. We hope
this paper can be regarded as a start point to attract more research on solving
various optimization problems using adversarial learning strategy.

Acknowledgement. This work was supported by the Natural Science Foundation
of China (NSFC) under grant no. 61673025 and 61375119 and also Supported by
Beijing Natural Science Foundation (4162029), and partially supported by National
Key Basic Research Development Plan (973 Plan) Project of China under grant
no. 2015CB352302.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint
arXiv:1701.07875 (2017)

2. Auger, A., Hansen, N.: A restart cma evolution strategy with increasing population
size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776.
IEEE (2005)

3. Che, T., et al.: Maximum-likelihood augmented discrete generative adversarial net-
works. arXiv preprint arXiv:1702.07983 (2017)

4. Chen, J., Xin, B., Peng, Z., Dou, L., Zhang, J.: Optimal contraction theorem for
exploration-exploitation tradeoff in search and optimization. IEEE Trans. Syst.
Man Cybern. Part A Syst. Hum. 39(3), 680–691 (2009)

5. Chongxuan, L., Xu, T., Zhu, J., Zhang, B.: Triple generative adversarial nets. In:
Advances in Neural Information Processing Systems, pp. 4088–4098 (2017)

6. Clerc, M.: Standard particle swarm optimisation from 2006 to 2011. Part. Swarm
Cent. 253 (2011)

7. Dai, W., et al.: Scan: structure correcting adversarial network for chest X-rays
organ segmentation. arXiv preprint arXiv:1703.08770 (2017)

8. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
(1991)

9. Denton, E., Gross, S., Fergus, R.: Semi-supervised learning with context-
conditional generative adversarial networks. arXiv preprint arXiv:1611.06430
(2016)

10. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using
a Laplacian pyramid of adversarial networks. In: Advances in Neural Information
Processing Systems, pp. 1486–1494 (2015)

11. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Pro-
ceedings of the 1999 Congress on Evolutionary Computation-CEC 1999 (Cat. No.
99TH8406), vol. 2, pp. 1470–1477. IEEE (1999)

12. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(1), 2096–3030 (2016)

13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1702.07983
http://arxiv.org/abs/1703.08770
http://arxiv.org/abs/1611.06430


16 Y. Tan and B. Shi

14. Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-
Guzik, A.: Objective-reinforced generative adversarial networks (organ) for
sequence generation models. arXiv preprint arXiv:1705.10843 (2017)

15. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems, pp. 5767–5777 (2017)

16. Hu, W.W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on GAN (2017)

17. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134 (2017)

18. Kennedy, J.: Swarm intelligence. In: Zomaya, A.Y. (ed.) Handbook of Nature-
Inspired and Innovative Computing, pp. 187–219. Springer, Boston (2006). https://
doi.org/10.1007/0-387-27705-6 6

19. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Ency-
clopedia of Machine Learning, pp. 760–766. Springer, Boston (2010). https://doi.
org/10.1007/978-0-387-30164-8

20. Koziel, S., Yang, X.S.: Computational Optimization, Methods and Algorithms, vol.
356. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20859-1

21. Kusner, M.J., Hernández-Lobato, J.M.: GANs for sequences of discrete elements
with the Gumbel-softmax distribution. arXiv preprint arXiv:1611.04051 (2016)

22. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pp. 4681–4690 (2017)

23. Lehman, J., Chen, J., Clune, J., Stanley, K.O.: Safe mutations for deep and recur-
rent neural networks through output gradients. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 117–124. ACM (2018)

24. Li, J., Tan, Y.: Loser-out tournament-based fireworks algorithm for multimodal
function optimization. IEEE Trans. Evol. Comput. 22(5), 679–691 (2018)

25. Li, J., Zheng, S., Tan, Y.: Adaptive fireworks algorithm. In: 2014 IEEE Congress
on Evolutionary Computation (CEC), pp. 3214–3221. IEEE (2014)

26. Li, J., Zheng, S., Tan, Y.: The effect of information utilization: Introducing a novel
guiding spark in the fireworks algorithm. IEEE Trans. Evol. Comput. 21(1), 153–
166 (2017)

27. Liang, J., Qu, B., Suganthan, P., Hernández-Dı́az, A.G.: Problem definitions and
evaluation criteria for the CEC 2013 special session on real-parameter optimization.
Technical report 201212(34), Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou, China and Nanyang Technological University, Singapore,
pp. 281–295 (2013)

28. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares gen-
erative adversarial networks. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 2794–2802 (2017)

29. Neshat, M., Sepidnam, G., Sargolzaei, M., Toosi, A.N.: Artificial fish swarm algo-
rithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative
applications. Artif. Intell. Rev. 42(4), 965–997 (2014)

30. Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers
using variational divergence minimization. In: Advances in Neural Information
Processing Systems, pp. 271–279 (2016)

31. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput.
13(2), 398–417 (2009)

http://arxiv.org/abs/1705.10843
https://doi.org/10.1007/0-387-27705-6_6
https://doi.org/10.1007/0-387-27705-6_6
https://doi.org/10.1007/978-0-387-30164-8
https://doi.org/10.1007/978-0-387-30164-8
https://doi.org/10.1007/978-3-642-20859-1
http://arxiv.org/abs/1611.04051


Generative Adversarial Optimization 17

32. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

33. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

34. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: Advances in Neural Information Pro-
cessing Systems, pp. 2234–2242 (2016)

35. Shi, H., Dong, J., Wang, W., Qian, Y., Zhang, X.: SSGAN: secure steganography
based on generative adversarial networks. In: Zeng, B., Huang, Q., El Saddik,
A., Li, H., Jiang, S., Fan, X. (eds.) PCM 2017. LNCS, vol. 10735, pp. 534–544.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77380-3 51

36. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

37. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep
neuroevolution: genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017)

38. Tan, K.C., Chiam, S.C., Mamun, A., Goh, C.K.: Balancing exploration and
exploitation with adaptive variation for evolutionary multi-objective optimization.
Eur. J. Oper. Res. 197(2), 701–713 (2009)

39. Tan, Y.: Fireworks Algorithm. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46353-6

40. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan,
K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13495-1 44

41. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and
content for video generation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1526–1535 (2018)

42. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics.
In: Advances In Neural Information Processing Systems, pp. 613–621 (2016)

43. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic
latent space of object shapes via 3D generative-adversarial modeling. In: Advances
in Neural Information Processing Systems, pp. 82–90 (2016)

44. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets
with policy gradient. In: Thirty-First AAAI Conference on Artificial Intelligence
(2017)

45. Zheng, S., Janecek, A., Li, J., Tan, Y.: Dynamic search in fireworks algorithm. In:
2014 IEEE Congress on Evolutionary Computation (CEC), pp. 3222–3229. IEEE
(2014)

46. Zheng, S., Janecek, A., Tan, Y.: Enhanced fireworks algorithm. In: 2013 IEEE
Congress on Evolutionary Computation, pp. 2069–2077. IEEE (2013)

47. Zheng, S., Li, J., Janecek, A., Tan, Y.: A cooperative framework for fireworks
algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 14(1), 27–41
(2017)

48. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: 2017 IEEE International Confer-
ence on Computer Vision (ICCV) (2017)

http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1609.04747
https://doi.org/10.1007/978-3-319-77380-3_51
http://arxiv.org/abs/1712.06567
https://doi.org/10.1007/978-3-662-46353-6
https://doi.org/10.1007/978-3-662-46353-6
https://doi.org/10.1007/978-3-642-13495-1_44

	Generative Adversarial Optimization
	1 Introduction
	2 Related Works
	2.1 Meta-heuristic Algorithms
	2.2 Generative Adversarial Networks

	3 GAO: Generative Adversarial Optimization
	3.1 Model Architectures
	3.2 Training of GAO

	4 Experiments
	5 Conclusion
	References




