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Abstract—Although learning-based methods such as reinforce-
ment learning have been applied to multi-agent systems design
successfully, it is still difficult to learn efficient coordinated
policies for agents in partially observed environment settings.
Centralized learners contain much more information, but add
more complexity, while independent learners suffer from partial
observation. To address these problems, we propose a directed
multi-agent actor-critic algorithm to directly learn the coordi-
nated policy from experience. The directed critic model can
obtain all information including global information and actions,
which provides effective learning signals for distributed learning
actors. We take Multi-Agent Catching Game as the test scenario,
where the task is to coordinate multiple moving paddles to
catch balls dropping from the top of the screen. We perform
several experimental evaluations and show that our method leads
to superior results in learning performance, coordination effect
and scalability, compared with both centralized and independent
learning approach.

I. INTRODUCTION

Real world applications often require multiple agents to
work in a collaborative fashion in order to maximize the
overall profits. For example, a group of robots collectively
transport an item from its source to the nest [1], [2]. Biological
swarms can act in collaboration that exceed the capability of
an individual [3], [4]. Human beings also have the ability
to promote cooperation in the complex social environment
settings, and the emergence of “reciprocity” has been sig-
nificant for the success of human societies [5]. However,
how to design collaborative behaviours for artificial learning
agents is still a challenging problem, because the complexity
arise from the increase of agent number. Manual design of
collaborative rules is a tedious work. It must be carefully tuned
for achieving satisfactory performance, limiting its potential
use in real applications. Thus, learning-based methods, such
as reinforcement learning (RL) gathers more importance.

Recent work on integrating reinforcement learning and deep
neural network, namely, deep reinforcement learning (DRL),
has shown convincing results on solving complicated prob-
lems, including video games [6], Go [7], robotics locomotion
[8] and so on. There are also a plethora of works on multi-
agent reinforcement learning (MARL). In MARL, two main
approaches are centralized RL and independent RL. However,
the former approach suffers from the curse of dimensionality
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with the exponential growth of state and action space. While in
the latter approach, each agent learns its own policy function in
parallel, with no explicit mode for learning coordinated effect.

In this paper, we address the intractability of these problems
by proposing a directed multi-agent actor-critic method. We
extend the conventional actor-critic model with a directed
centralized critic to evaluate the global board state, which takes
global information and integrated actions as inputs. While
each distributed actor calculates an advantage of the individual
action by keeping other agents’ actions invariant and updates
by policy gradient. We leverage a game, Multi-Agent Catching
Game, to be the benchmark, that need coordination of multiple
agents. This task has following properties: (i) homogeneous
agents, (ii) local observation, (iii) fully cooperative, (iv) no
explicit communication.

We also formulate several baselines for this task and perfor-
m experimental evaluations to analyse how these algorithms
learn or fail to learn coordinated policy. We illustrate that our
method leads to superior results compared with both central-
ized and independent learning approach. We also demonstrate
that our proposed method successfully scales to large space,
showing strong scalability.

To summarize, our contribution is threefold. First, we pro-
pose a directed multi-agent actor-critic algorithm for learning
distributed coordinated policy, which extends the conventional
actor-critic model to multi-agent settings. Second, we pro-
pose a new design framework using centralized training and
distributed execution for the scalability of multi-agent rein-
forcement learning in large space and many agents. Third, we
present a new benchmark, Multi-Agent-Catching, for testing
the coordinated effect of multiple learning agents.

This paper is organized as follows. We start by discuss
related works in section II. We describe our problem domain
in section III. In section IV, we show in detail about the
proposed method for learning distributed coordinated policy.
We evaluate our method with multiple baselines in section V.
Finally, we conclude in section VI.

II. RELATED WORKS

Research on multi-agent reinforcement learning (MARL)
has a long history and it is always active. In this section,
we only review those methods on fully cooperative settings.
Littman [9] introduced a Team-Q algorithm and proved its

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

978-1-7281-2009-6/$31.00 ©2019 IEEE

Personal use is permitted, but republication/distribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

paper N-19070.pdf



convergence to Nash Equilibrium. Lauer [10] proposed a
model-free distributed Q-Learning algorithm for cooperative
multi-agent decision process. This algorithm considers its
teammates’ behaviors and finds an optimal policy in deter-
ministic environment. Other similar works can be found in
[11]. We notice that although the research interests in MARL
has an early start, the majority of the work focuses on value-
based methods and tabular cases. Nevertheless, as the environ-
ment complexity increases, these traditional approaches are no
longer work well.

The revival of deep neural network in the last decade
brings new power to RL [6], [7]. In deep RL, the deep
network serves as the function approximators for the policy.
Deep RL has a stronger ability to learn high-level features
automatically from raw input and environment rewards end to
end with back-propagation. For multi-agent settings, there are
also new advances towards Deep MARL. Recently, centralized
training and decentralized execution has been adopted by many
researchers in Deep MARL [12]–[15], and our work also
stands in this view. [12] presented an independent learner,
differentiable inter-agent learning (DIAL), that learned com-
munication protocol among multiple agents. CommNet [13]
designed a joint action learners (centralized approach) for
sharing internal information inside the model. Peng et al.
[14] used a bidirectional RNN to model a group of agents,
and trained the model with off-policy deterministic actor-
critic algorithms. Sunehag et al. [15] introduced a learned
additive value-decomposition approach over individual agents.
This model aims to decompose the team reward signal to
each agent’s utility. These methods show good performance in
their domains, but they all restrict the problem with specified
agent numbers. The identity becomes a feature of the state,
which limits its potential values for large scale real world
applications.

From the perspective of learning distributed coordinated
policy with deep MARL, the closest method to ours is the
work of Foerster [16]. This work aims to tackle the problem of
credit assignment. It constructs a counterfactual baseline that
marginalises out a single agent’s action using a centralized
critic. The critic is designed to receive all other agents’ states
and actions, and output each q-values for itself. However,
this also requires agents with fixed identities and asymmetry
functions. However, we consider all agents to be identical,
aiming to learn a distributed coordinated policy with high
scalable property.

III. PROBLEM FORMULATION: MULTI-AGENT CATCHING
GAME

Multi-Agent Catching Game is inspired by the game
“Catch” introduced in [17]. This game is played on a screen
of binary pixels, and the goal is to move a paddle to catch
balls that are dropped from the top of the screen. If a ball
is successfully catched by the paddle, a reward of 1 will be
given, and -1 otherwise. We extend this game to the multi-
agent settings, as figure 1a shows. Multiple paddles need to
coordinate with each other to catch as many balls as possible.

(a) An example: three paddles are try-
ing to collect balls.

(b) An illustration of coordination ef-
fect.

Fig. 1: Test Bed: Multi-Agent Catching Game

For each time step, all balls move down one unit. The available
actions for each paddle are {left, no−op, right}. We assume
the game generates random amount of balls from the top of the
screen, but no more than the number of agents. An illustration
of coordination effect between multiple paddles is illustrated
in figure 1b. If the left paddle agent observes two targets in
each side of its view and also another agent on its right side,
it will choose to move left, allowing its neighbor to catch its
only target. Only in this plan, the overall reward is optimal.

We consider this game as a cooperative extension of
stochastic game G, which is defined by a tuple <
S,U, P, r, Z,O,N, γ >. N is the set of agents (|N | = n).
s ∈ S is the global state of the environment. At each time
step, all agents simultaneously take discrete actions from
finite action set yielding a joint action u ∈ U . P (s′|s, u) :
S × U × S → [0, 1] is the state transition probability
function. All agents in the system share a reward function
r(s, u) : S × U → R. γ is the discount factor. All agents
take the goal of maximizing the discounted reward of rt.
We consider partial observability for all agents. In each time
step, agents can only draw observations z ∈ Z from local
viewpoints, which is determined by O(s, a) : S × A → Z.
Each agent conditions a stochastic policy on its observations
πi(ai|oi) : Oi × Ui → [0, 1].

As for a scalable and flexible solution of this problem,
we consider all agents to be identical, namely they share an
identical policy model. This is beneficial because any number
of well-trained agents can be deployed in a large scenarios
straightforwardly, regardless of any accidental failure.

IV. METHODS

In this section, we first introduce the advantage actor-critic
method and the difficulties when directly applied to multi-
agent settings. Then we elaborate the proposed directed multi-
agent actor-critic model that incorporates a centralized directed
critic module, evaluating the global board state and providing
learning signals for distributed actors.

A. Advantage Actor-Critic

Advantage actor-critic method (A2C), and also its asyn-
chronous analogue, asynchronous advantage actor-critic (A3C)
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[18], are popular methods in reinforcement learning and have
been applied in multi-agent settings in previous works [16],
[19]. A2C is an on-policy method, combining the merits
of value-based method and policy-based method. The policy
π(a|s) and value function V (s) reinforce each other. The value
function V (s) evaluates a state and constructs an advantage
function A(s, a) that figures out whether an action should be
reinforced. The policy is trained by following the gradient
that depends on the advantage function with policy gradient.
In order to avoid the highly-peaked influence brought by a few
trajectories (usually at the beginning stage of training), it is
critical to add an entropy loss to the policy training [18]. The
update rules of value and policy are as follows:

θπ ← θπ + αA(st, at)∇θπ log π(at|st) + β∇θπH(π(·|st)). (1)

θV ← θV − α∇θV (R− V (st))
2. (2)

Simply applying this method to multi-agent system falls
into two categories: the individual perspective, and the group
perspective, corresponding to independent learning and cen-
tralized learning. The independent learning agent learns based
on observed state. From the view of optimization, this means
identical policies are optimized by the joint reward signal,
which has a speedup mechanism as a parallel collection of
training samples. However, it suffers from the partial observa-
tion and no explicit coordinated behaviors are promoted. While
for centralized learner, it assumes a joint control model for all
agents. The model allows inner information exchange, and it
surely has the ability to capture coordinated strategy between
multiple agents, because it contains all necessary information.
But the major drawback is the curse of dimensionality. If an
agent has |A| actions available for each step, the output space
for the joint policy would be |A|n, where n is the number of
agents. This brings a huge challenge to learning scheme.

B. Directed Multi-Agent Actor-Critic

To address these problems, we propose a directed multi-
agent actor-critic (Directed-MA-A2C) model for learning dis-
tributed coordination policy. This approach captures the good
aspects of the centralized approach and independent approach,
while minimizing the drawbacks of the curse of dimensionality
and partial observation. We use a centralized critic, Q(s, u),
taking the global state and joint actions for all agents as inputs.
This critic is updated based on TD(λ), which is the mixture
of n-step Q-value with discount that substantially reduces the
variance of estimation [20], [21]:

gn(st) =

n∑
l=0

γlrt+l + γnV̂ (st+n). (3)

yλt = (1− λ)
T∑
n=1

λn−1gn(st). (4)

The remaining return evaluation, V̂ (st), is calculated based
on the expectation of each agent’s policy conditioning on the
remaining current observations:

V̂ (st) = E
ai∼πi

[Q(st, ut)] =
∑
ai
k

[
∏
i∈N

πi(a
i
k|oit)]Q̂(st, ut). (5)

We use target network to stabilize the training [6]. It is
intuitively obvious that the centralized directed critic reflects
the long-term reward given the current global state and the
combination of agents’ actions.

However, we take this critic model not only as a state-action
evaluation function, but also a virtual simulator directing each
agent to reason about its advantage function and reinforce a
better policy move itself. The centralized model evaluates the
“big picture” of current situation, and transmits the learning
signals to each distributed actors. When an episode is over,
agents will query the critic with evaluations of each possible
actions, keeping other agents’ actions invariant. Then the
advantage function computes the difference between the exact
Q value of executed actions and the weighted average of Q
values for all actions based on the current policy:

Ai(oi, ai) = Q(s, u)−
∑
ai
k

πi(aik|oi)Q(s, (u−i, aik)). (6)

This idea of marginalization is similar to the difference
reward techniques in RL literature [22]. With advantage func-
tion, all distributed actors can be trained by policy gradient. To
be more concrete, the pseudo code is elaborated in Algorithm
1. A key insight of this method is that the centralized critic
has a global vision. Though actors have only local vision, the
critic has the ability to direct each actor how to coordinate
with neighbors based on their observations, because it can
evaluate a long-term effect with different combinations of
actions. The coordination is implicated in the critic. Also, the
distributed design of actors can address the intractability of
high dimension in part. We also notice that the homogeneous
agents can speedup the training.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the directed multi-agent actor-
critic method on multi-agent catching game. The results are
compared against independent and centralized learning-based
methods and against a heuristic hand-crafted baseline as well
as a random policy baseline. Unless stated otherwise, the
presented results are the average performance across 20 runs
with different random seeds determining the spawning balls
per step in the game, and also the initializations of the model.
The episode length is set to 100 steps. We aim to investigate
the model from three perspective: the learning performance,
coordination effect, and scalability. We first introduce the
state representation for the multi-agent catching game and
the model architecture, then introduce the settings of baseline
algorithms, and finally demonstrate the comparison results.

Learning Distributed Coordinated Policy in Catching Game with Multi-Agent Reinforcement Learning
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Algorithm 1 Directed Multi-Agent Actor-Critic

1: Initialized θQ, θ̂Q, θπ, λ, γ, T, αQ, απ
2: for each episode e do
3: Randomly initialize the game, get the global state s0

and observation {oit}n
4: Empty buffer φ
5: for t = 0 to T − 1 do
6: for each agent i do
7: Sample action ait from π(at|ot; θπ)
8: end for
9: Get rt, st+1, {oit+1}n from the game

10: φ← φ+ (st, {oit}n, ut, rt, st+1, {oit+1}n)
11: end for
12: Transform this episode to a batch data
13: for t = 0 to T − 1 do
14: Compute yλt using equation (5)(3)(4)
15: Update critic θQ ← θQ − αQ∇θQ(yλt −Q(st, ut))

2

16: Synchronize target network θ̂Q ← θQ
17: end for
18: for t = 0 to T − 1 do
19: for each agent i do
20: Compute advantage A(oi, ai) using equation (6)
21: Update actor:

θπ ← θπ + απA(o
i
t, a

i
t)∇θπ log π(at|ot) +

β∇θπH(π(·|ot))
22: end for
23: end for
24: end for
25:

A. Experimental Setup

State Representation In the multi-agent catching game, we
define a paddle agent can only observe the local state of 5×5
pixels and the position of nearby agents with 5 bits one-hot
vector, from its central view. For the marginal exception case,
we pad the empty space with -1. Each agent samples an action
from the actor policy for each step. While the centralized
critic have the access to the full game state, we simplify the
global state feature with lower half of the screen to reduce
the difficulty of finding more useful features, because agents
should focus on those closer targets which are about to fall
down.
Model Architecture Both of the actor and critic models are
composed of fully connected network. The actor has two
hidden layers consisting of 256 and 64 hidden units with
relu nonlinearities. It outputs a categorical distribution over
multiple actions. While for the critic, the architecture differs
for different agent number settings. We conduct three set of
experiments with 3, 5, 7 agents. The layers architectures are
[256, 128], [512, 128] and [512, 256, 128], respectively, which
we found work best. For all experiments, we use Adam as the
optimizer, with the initialized learning rate of 1 ∗ 10−4 for
actor network, and 1 ∗ 10−3 for critic network. The eligibility
trace parameter λ is set to 0.85, and discount factor γ is set

to 0.99.

B. Baselines

• Random controller Random policy generates a random
action, regardless of the state.

• Heuristic policy The heuristic agent only steps towards
the nearest target. Apparently, as long as two agents
accidentally meet together, they will never be separated,
which is unfavorable for collecting more targets.

• Independent advantage actor-critic (I-A2C) We take the
independent form of A2C as a baseline algorithm, as stat-
ed in section IV-A. For I-A2C, the network architecture
is the same with the actor model of directed multi-agent
A2C.

• Centralized Actor-Critic (C-A2C) The input space of the
centralized model is the concatenation over all agents’
states. The output space is the cartesian product for all
agents’ discrete action set. We take the centralized form
of A2C as another baseline algorithm. For C-A2C, the
model architecture is more complicated as the joint action
of policy output. The layers architectures are [256, 64],
[1024, 1024, 512], [5000, 5000, 3000] for 3, 5, 7 agents
respectively. Both of the two learning baseline approaches
use shared network between actor and critic, except the
last output layer.

C. Learning Effect

We first examine the learning effect on 10×10 multi-agent
catching game described in section III. We plot the learning
curves of directed multi-agent A2C algorithm against other
learning-based approaches, as well as the performance of
heuristic approach in figure 2. Table I shows the comparison
of episode average reward performance.

Compared to the baseline methods, the directed multi-
agent A2C algorithm get the best average reward performance,
especially when more agents get involved. For the independent
A2C, it is more likely a speedup mechanism by parallel
collection of training samples. However, the bottleneck comes
from the partial observation. The independent agents fail to
reason about a coordinated agreement between each other. The
“lazy” agents move greedily for maximizing its own interests.
We will demonstrate in further experiments in section V-D that
this approach doesn’t stem coordinated effects. Meanwhile, for
centralized approach, we notice although the performance is
well in 3-agents game (in figure 2a), it struggles to master
a good performance in 5-agent game and 7-agents game (in
figure 2b and 2c). It even fails to converge to a positive
episode reward in 7-agents game. This is due to the curse of
dimensionality because the model becomes more heavy and is
difficult to train.

It is also noteworthy for directed multi-agent actor-critic
algorithm, that as more agents involved, the architecture of
actor remains unchanged. The critic’s I/O complexity is O(n),
while for centralized approach it is O(|A|n). The distributed
actor can also benefit from the speedup of parallel training,
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Fig. 2: Learning curves for the Multi-agent Catching Game. The curves show the average episode reward for different agents
number settings.

TABLE I: Comparison between multiple policies on Average Episode Reward

# of agents Random Heuristic C-A2C I-A2C Directed-MA-A2C
3 -26.1 19.1 43.6 36.5 42.9
5 -51.0 49.7 80.9 135.5 157.0
7 -66.9 73.4 -20.1 202.6 231.1

because all agents share a policy model, and receive learning
signals from the directed central critic.

D. Coordinated Performance

We further test the coordinated effect performance in this
task. We quantify two measurements, p1 and p2, to demon-
strate the coordinated ability of our model. One obvious
measurement is the percentage of view range, which is the
ratio between all agents’ observed state and the global state:

p1 =

⋃
i∈N |Oi|
|S| . (7)

As the game randomly generates targets, the agents should
be apart with each other to maximize the coverage, in order
to collect more targets. The other measurement p2, is the ratio
between the average amount of targets collected per agent
(Gi) and the total amount of targets collected (Ggame), in
one episode:

p2 =
Ei∈N [Gi]

Ggame
. (8)

Note that the Ggame is not the simple summation of Gi,
because there’s a possibility that multiple agents collect the
same target. Thus for a better policy, p2 should be minimized.
We also notice the best performance for p2 should be 1

|N | .
However, it cannot be guaranteed that an arbitrary target is
always accessible to an agent.

Table II compares our proposed algorithm against the base-
lines under 3-agents and 5-agents scenarios. We can see that
our method and the centralized approach have a similar effect
on keeping margin between agents and avoiding overlap to
collect more targets. This verifies that the centralized approach
have the ability to find a coordination policy, but it suffers from
the curse of dimensionality as shown in section V-C. While the
independent learning approach has a similar effect with greedy

heuristic policy on these two measurements, which doesn’t
stem a strong coordinated effects.

E. Scalability
We next investigate how well the method scales to large

space and many agents. We extend the game scenario to a
20×20 map. In this experiment, we only investigate the scala-
bility performance against the independent learning approach
and heuristic approach, because it is hard to train a centralized
policy with a larger state-action space. For both independent
approach and directed multi-agent actor-critic approach, we
use well-trained model for 7-agents scenarios in 10×10 game
with random generated targets no more than 15 per step.

Figure 3 shows the scalability performance with increasing
agent number settings, from 3 to 15. We can see for all
approaches, the insertion of new agents increases the episode
reward. Our method outperforms other two approaches with a
higher reward growth of rate. Despite large amount of agents
are present in the environment, they coordinate with each other
to collect more targets, resulting in an intelligent behaviours.
While for independent approach, it is more likely a greedy
policy with similar ascent rate with heuristic approach.

F. Further Discussions
We emphasize some design considerations here for this

algorithm. Although the directed centralized critic succeed in
learning a rational evaluation for the global state, it is sensitive
to the agent number in the learning phase. When the agent
number increases, the critic will also be more complex and
hard to train, inevitably. However, there’s an alternative way
that we can first use appropriate number of agents to co-evolve
the actor model and critic model during learning phases, and
then deploy the distributed actors in large-scale environment.
The effect of this training mode is demonstrated in section
V-E.

Learning Distributed Coordinated Policy in Catching Game with Multi-Agent Reinforcement Learning
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TABLE II: Comparison between multiple policies on coordination measurements

N=3 N=5
π p1 (%) p2 p1 (%) p2

Random 77.7% 0.66 79.2% 0.54
Heuristic 68.1% 0.81 79.4% 0.79
C-A2C 84.1% 0.50 90.9% 0.44
I-A2C 70.8% 0.74 76.2% 0.71

Directed-MA-A2C 83.8% 0.52 93.5% 0.40
Note: p1 and p2 are defined in equation (7) and (8)
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Fig. 3: Scalability Experiment

There’s also another way to solve the partial observation
problem, which use the history information with memory.
Incorporating a recurrent model has been a popular choice
to solve complex tasks with deep reinforcement learning
techniques [23]. This model can also be easily extended to
a recurrent form with recurrent actors. And we’ll leave this
for future work.

VI. CONCLUSION

In this paper, we presents a directed multi-agent actor-critic
model to learn distributed coordinated policy in multi-agent
catching game. The proposed model addresses the intractabil-
ity of the curse of dimensionality and partial observation by
using a directed critic to calculate a marginalised advantage
function for distributed actors. The empirical evaluations have
shown that this algorithm has better performance on both
the learning effect and coordinated ability than other baseline
algorithms. We also show that it scales to large-scale scenarios
with a higher reward growth rate. Future work will concentrate
on more complex tasks including continuous control and real-
world applications. We also aim to integrate a hierarchical
module in reinforcement learning algorithms to learn coordi-
nated policy.
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