
Which Mapping Rule in the Fireworks Algorithm is
Better for Large Scale Optimization

Xuemei Ye†, Junzhi Li∗, Bo Xu† and Ying Tan∗
†Institute of Automation, Chinese Academy of Sciences

∗Key Laboratory of Machine Perception (Ministry of Education), Department of Machine Intelligence,

School of Electronics Engineering and Computer Science, Peking University

Abstract—Fireworks algorithm(FWA), which is proposed for
global optimization of complex function, becomes a hot spot
in optimization field recently, caused by its competitive perfor-
mance. Boundary handling for FWA, which maps the out-of-
bound sparks into feasible space, is critical for its convergence
efficiency. However, random mapping rule, which is widely used
for boundary handling, always caused computing resource waste,
especially for high-dimensional optimization. In this paper, we
propose three novel mapping rules to speed up large scale opti-
mization of FWA. Meanwhile, to evaluate the effectiveness of the
new rules, we compare them by representative nine benchmark
functions on different dimensionality scale. Experimental results
indicate that the mirror rule which we proposed, achieve superior
performance for most optimization functions.

I. INTRODUCTION

The fireworks algorithm (FWA) [1] is a swarm intelligence

algorithm inspired by the phenomenon of the fireworks explo-

sion in the night sky. It has attracted much research interest

since it was proposed in 2010.

The FWA is composed of two essential operators. In the

explosion operator, numerous explosion sparks are generated

around the fireworks within certain explosion amplitudes. In

the selection operator, the fireworks of a new generation are

selected from these sparks. There is also an optional mutation

operator, in which the locations of the fireworks are mutated

to generate mutation operators.

Besides the three operators, there is also a mapping rule in

the fireworks algorithm. If the optimization problem is con-

strained, the mapping rule maps the out-of-bound sparks back

into the feasible space. The mapping rule is very important

when the FWA is applied in real-world problems.

The FWA has proven serviceable in many real-world appli-

cations [2]–[7]. The FWA with a random mutation operator has

some global convergence properties [8], while the explosive

search manner is typically locally convergent [9]. Variants of

the FWA has also been successfully implemented on parallel

platforms such as CUDA [10], [11] and MapReduce [12].

With the era of big data coming, more and more large

scale (high dimensional) optimization problems spring up

in both science and industry. Large scale optimization has

brought great challenges to meta-heuristic algorithms because

it is featured by many special difficulties, such as the curse

of dimensionality. Therefore, large scale optimization has

attracted more and more interest in this field. However, most

of the previous research on the FWA is based on low or middle

dimensional objective functions [13]–[18].

In this paper, we investigate the performances of different

mapping rules in the FWA when facing large scale optimiza-

tion problems. A previous empirical study [19] has implied

that mapping to the boundary and mapping to a limited

stochastic region are the best mapping rules on middle scale

optimization problems. We extend that work for the following

reasons.

1) That work was based on the conventional FWA [1],

which is known for several drawbacks [13]. One of them

is the performance of the conventional FWA may suffer

dramatically when the optimal point of the objective

function is shifted from the origin. These drawbacks may

interfere the discussion on mapping rules.

2) The discussion of that work is based on the experimental

results on middle dimensional test functions (up to 200

dimensions). While in this paper, we test these mapping

rules on high dimensional test functions (up to 1000

dimensions). As we will see, the properties of high

dimensional test functions are quite special.

3) Mapping to a limited stochastic region requires an extra

preset parameter to control the limited region, which

is not preferred because in real-world applications the

actual search ranges vary greatly. In this paper, we

investigate a natural and intuitive mirror mapping rule

instead.

For the convenience of discussion, the following minimiza-

tion problem is considered in this paper:

minx∈[lb,ub]f(x), (1)

where x is a vector within the Euclidean space, ub and lb
represent the upper bound and the lower bound vectors of the

search space respectively.

The rest of this paper is organized as follows. In Section

II we provide a brief introduction of bare bones fireworks

algorithm. In Section III we introduce five kinds of mapping

rules, experiments results are present in Section IV. The

analysis and discussion of experiments results are presented

in Section V. Finally Section VI concludes this paper.

II. BARE BONE FIREWORKS ALGORITHM

In order to avoid the interference of other operators, the

simplest bare bones fireworks algorithm (BBFWA) [9] is used

978-1-5090-6017-7/18/$31.00 ©2018 IEEE

as a baseline throughout this paper. In the BBFWA, only

one firework is adopted and only the essential explosion and

selection operators are used. The pseudo code of the BBFWA

is shown in Algo. 1.

Algorithm 1 Bare Bones Fireworks Algorithm

1: sample x ∼ U(lb,ub)
2: evaluate f(x)
3: A← ub− lb
4: repeat
5: for i = 1 to n do
6: sample si ∼ U(x−A,x+A)
7: evaluate f(si)
8: end for
9: if min(f(si)) < f(x) then

10: x← argmin f(si)
11: A← CaA
12: else
13: A← CrA
14: end if
15: until termination criterion is met.

16: return x.

lb and ub are the lower and upper boundaries of the search

space. x is the location of the firework, n is the number of

generated sparks, si are the locations of explosion sparks and

A is the explosion amplitude.

In each generation, n sparks are generated uniformly within

a hyperrectangle bounded by x − A and x + A. After that,

if the best spark is a better solution than the firework, it will

take the place of the firework and the explosion amplitude

will be multiplied by an amplification coefficient Ca > 1.

Otherwise, the explosion amplitude will be multiplied by a

reduction coefficient Cr < 1 and the current firework will

be kept. Note that in step 7, if a spark is located outside the

boundaries, it can be replaced by a new spark in the feasible

space according to a certain mapping rule.

The way the explosion amplitude is controlled in the

BBFWA (lines 11 and 13 in Alg. 1) is called dynamic

explosion amplitude. The core idea of this dynamic explosion

amplitude is described as follows: if in one generation no

better solution is found, that means the explosion amplitude is

too long (aggressive) and thus needs to be reduced to increase

the probability of finding a better solution, and otherwise it

may be too short (conservative) to make the largest progress

and thus needs to be amplified. With the dynamic control, the

algorithm can keep the amplitude appropriate for the search.

That is, the dynamic explosion amplitude is long in the early

phases to perform exploration, and is short in late phases to

perform exploitation.

III. MAPPING RULES

In this section, we present the mapping rules investigated

in this paper. Figure 1 presents the distinction of five mapping

rules, the red and green points represent the firework and

explosion sparks respectively, the frame represents the search

boundaries. From the figure, we can see the distinction of five

kinds of mapping rules. In the Section V we will analyze these

mapping rules in detail.

A. Deletion
The simplest way to deal with out-of-bound sparks is to

delete them. If in a certain generation, no sparks is located in

the feasible search space, then this generation will be passed.

This is not likely a good mapping rule because computational

resources are wasted.

B. Modularization
The modular mapping rule was introduced in the conven-

tional fireworks algorithm [1]. It has been later considered

as one of the several reasons why the conventional fireworks

algorithm performs abnormally well when the optimal point of

the objective function is located near the origin [13], because

the result of the modular arithmetic here is typically small

(close to zero).
Formally, in the modular mapping rule, for every dimension

k = 1, 2, ..., d,

xk = lbk + |xk| mod (ubk − lbk) if xk < lbk or xk > ubk.
(2)

C. Randomization
The random mapping rule was firstly introduced in the

enhanced fireworks algorithm [13] to fix the drawback of the

modular mapping rule. If a dimension of a spark is located

outside the boundaries, it will be replaced with an uniformly

randomly chosen number in the feasible space.
Some experiments on low dimensional or middle dimen-

sional test functions indicate that the performance of the

random mapping rule will not suffer dramatically when the

origin is shifted from the origin [13].
Formally, in the random mapping rule, for every dimension

k = 1, 2, ..., d,

xk ∼ U(lbk, ubk) if xk < lbk or xk > ubk. (3)

D. Mirror
In the mirror mapping rule, if a dimension of a spark is

located outside the boundaries, it will be replaced with one

which is symmetric to it about the boundary.
Formally, in the mirror mapping rule, for every dimension

k = 1, 2, ..., d,

xk =

{
lbk + (lbk − xk) if xk < lbk

ubk − (xk − ubk) if xk > ubk
(4)

E. Boundary
In the boundary mapping rule, if a dimension of a spark is

located outside the boundaries, it will be replaced with one

located on the boundary.
Formally, in the boundary mapping rule, for every dimen-

sion k = 1, 2, ..., d,

xk =

{
lbk if xk < lbk

ubk if xk > ubk
(5)

2018 IEEE Congress on Evolutionary Computation (CEC)

(a) Before Boundary Handling (b) Delete Mapping Rule (c) Modular Mapping Rule

(d) Random Mapping Rule (e) Mirror Mapping Rule (f) Boundary Mapping Rule

Fig. 1: Spark Position in Five Kinds of Mapping Rules

IV. EXPERIMENTS

Which mapping rule presented previously is better for large

scale optimization? For investigating this question, several

groups of experiments are designed. Experimental setup is first

introduced, followed by the experimental results.

A. Experimental Setup

To compare five kinds of mapping rules present previously,

we designed 9 groups experiments on the selected 9 bench-

mark functions, the dimensions of each experiment is 100,

400, 700, 1000 respectively. The mathematical form of the

functions are given in Table I.

The mapping rules only affect the convergence speed and

do not affect the convergence result, as the convergence result

is determined by the algorithm itself. Our goal is to investigate

the performance of mapping rules, so the experiment iteration

number is set to 1000, which should be enough to show the

convergence speed of different mapping rules. Beside that,

computing resources are limited in real-world, so this can

be consider as a simulation of real-world problems. Faster

convergence rate will spend less resources. When handle big

data problem, convergence rate sometimes play a decisive role,

that’s why we do the research to find whether have a better

mapping rule.

In order to make the experimental results more credible, in

the experiment, each dimension of each function is repeated

50 times. In real-world problems, we do not know where the

optimal point is. In order to simulate real-world problems,

we shift the optimal point of the objective function randomly

each time. The parameters of each run time: n = 30, Cr =

0.9, Ca = 1.2, Evaluation times: 30000. The environment of

experiments is python 2.7; Win 10; Intel(R) Core(TM) i7-7700

CPU; 3.60GHz; 16GB RAM.

B. Experimental Results

36 groups of experiments were conducted. In order to better

see convergence speed of different mapping rules, we take the

logarithm of the function value, which are shown in figures

2 to 10. Each line in the figure is the mean of 50 runs, the

range of each line presents the confidence interval, which is to

make sure that the experimental results reliable and obtained

by adding and subtracting the standard deviation from the

mean. As mentioned in the mapping rule section, Figure 1

presents the distinction of five mapping rules.

In order to make the conclusion more believable, we

performed 36 significant tests on four dimensions and nine

functions. The mean of 50 runs consists of the 1000 iterations

of the data, and it does not meet the normal distribution and

cannot be represented by a few parameters. Therefore, only

nonparametric tests can be used. We need to test the difference

of the five rules, the sample size is 1000, so we choose the

Kruskal-Wallis test by ranks instead of Friedmans test. The p-

value of Kruskal-Wallis test by ranks given in Table II. There

are five mapping rules, so df = 4. All 36 p-values were lower

than 0.005, indicating a very significant difference in the five

mapping rules.

V. DISCUSSION

In this section, we first introduce the influence of dimension

on the mapping rules, then divide them into two groups

according to the characteristics and the performance of the

mapping rules. The randomization and the modularization,

2018 IEEE Congress on Evolutionary Computation (CEC)

Attributes Name Expressions Opt.f(x)

Unimodal

Sphere f(x) =
∑d

i=0 x
2
i 0.0

Cigar f(x) = x2
0 + 106

∑d
i=1 x

2
i 0.0

Discus f(x) = 106x2
0 +

∑d
i=1 x

2
i 0.0

Ellipse f(x) =
∑d

i=1(10
4(i−1)
(d−1))x2

i 0.0

Multi-modal
Step f(x) =

∑d
i=0(�xi + 0.5�)2 0.0

Tablet f(x) = 104x2
0 +

∑d
i=1 x

2
i 0.0

Rosenbrock f(x) =
∑d

i=0(1− xi)
2 + 100(xi+1 − x2

i)
2 0.0

Griewank f(x) = 1
4000

∑d
i=1 x

2
i −

∏d
i=1 cos(

xi√
i
) + 1 0.0

Bohachevsky f(x) =
∑d

i=0(x
2
i + 2x2

i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7) 0.0

TABLE I: Benchmark Functions used for Evaluation

Dim
Function

Sphere Cigar Discus Ellipse Rosenbrock Bohachevsky Griewank Step Tablet

100 5.2004e-10 2.0166e-08 0.0000 0.0000 3.8942e-25 1.9833e-07 2.0837e-31 3.9468e-18 1.5920e-83
400 6.8662e-56 1.6982e-55 0.0000 0.0000 2.1203e-50 5.7326e-58 2.0651e-298 2.3427e-59 0.0000
700 3.3005e-104 2.0809e-96 0.0000 0.0000 3.7699e-88 2.7724e-101 0.0000 4.7617e-99 0.0000
1000 4.5715e-142 3.0167e-142 0.0000 0.0000 2.1687e-123 7.5289e-145 0.0000 1.0750e-143 0.0000

TABLE II: P-value of Kruskal-Wallis Test by Ranks

(a) dimensionality = 100 (b) dimensionality = 400 (c) dimensionality = 700 (d) dimensionality = 1000

Fig. 2: Sphere Function

(a) dimensionality = 100 (b) dimensionality = 400 (c) dimensionality = 700 (d) dimensionality = 1000

Fig. 3: Cigar Function

(a) dimensionality = 100 (b) dimensionality = 400 (c) dimensionality = 700 (d) dimensionality = 1000

Fig. 4: Discus Function

2018 IEEE Congress on Evolutionary Computation (CEC)

(a) dimensionality = 100 (b) dimensionality = 400 (c) dimensionality = 700 (d) dimensionality = 1000

Fig. 5: Ellipse Function

(a) dimensionality = 100 (b) dimensionality = 400 (c) dimensionality = 700 (d) dimensionality = 1000

Fig. 6: Rosenbrock Function

(a) dimensionality = 100 (b) dimensionality = 400 (c) dimensionality = 700 (d) dimensionality = 1000

Fig. 7: Bohachevsky Function

(a) dimensionality = 100 (b) dimensionality = 400 (c) dimensionality = 700 (d) dimensionality = 1000

Fig. 8: Griewank Function

(a) dimensionality = 100 (b) dimensionality = 400 (c) dimensionality = 700 (d) dimensionality = 1000

Fig. 9: Step Function

2018 IEEE Congress on Evolutionary Computation (CEC)

(a) dimensionality = 100 (b) dimensionality = 400 (c) dimensionality = 700 (d) dimensionality = 1000

Fig. 10: Tablet Function

the boundary rule and the mirror rule, they are respectively

compared and analyzed. Finally, we analyze and discuss the

performance of the five mapping rules in the entire iteration

process.

A. Dimension

From figures 2 to 10, we can see that as the dimension

increases, the influence of the mapping rules on the con-

vergence speed increases. When the dimension is 100, the

confidence intervals of the lines cover each other, and when the

dimension is 1000, the distance between the lines increases.

So in large-scale optimization problems, the effect of mapping

rules on algorithm efficiency is great, which can be explained

mathematically. The probability of sparks falling near the

border is:

P = 1− (1− 2ε)d

d indicates the dimension, ε indicates boundary range,

and P increases as d increases. When d rises to a certain

value, P tends to 1. The closer the optimal point is to a

certain boundary, the more points are out-of-bound. It is more

important to handle the out-of-bound point. A good rule can

utilize this high-dimensional mathematical property to improve

the convergence rate.

B. Modularization vs. Randomization

Modular mapping rule were first proposed in conventional

fireworks algorithm [1]. According to the formula (2): As-

suming that the search range is uniform distributed as [-

100,100], a dimension k of a newly generated spark x out-

of-bounds, xk = 101. It will be mapped to the location xk =
−100 + 101%200, xk will eventually be mapped to xk = 1,

This is very close to the origin. According to the BBFWA

algorithm, the closer the firework is to the optimal point, the

smaller the fireworks explosion amplitude. The sparks outside

the boundary are also closer to the boundary. According to

formula(2), modularization with a modulo operation, so that

many of these sparks are mapped near the origin. With uniform

sampling in the search space (lbk ≡ ubk), the modularization

will have many sparks around the origin. As shown in Figure

1.

In high-dimensional cases, the probability of the optimal

point falling on the boundary is far greater than the probability

of falling on the original point. Therefore, this is a waste of

computing resources. Obviously, this is not the most desirable

rule. Even in low-dimensional cases, the modularization may

makes the sparks away from the optimal point. So the en-

hanced fireworks algorithm [13] proposed a random mapping

rule to fix the drawback of the modularization, in which

sparks are uniformly mapped to the search space. Therefore,

the randomization’s global search capability is better than the

modularization and its convergence speed will be higher. In

low-dimensional cases, the randomization is the best mapping

rule currently known, which is also widely used in the current

fireworks algorithm.

Both of the two rules map sparks over the feasible area

without using high-dimensional mathematical characteristics,

moving many of the sparks away from the optimal point which

is usually near the border. Unless some special functions need

more search, (Such as the discus function, from the Table I,

we can see its first dimension accounted for much larger than

other dimensions. So it needs to explore between multiple

dimensions to find out which the dimension is the best.)

otherwise it is very inefficient undesirable.

The difference between the two rules is that the modular-

ization maps some points near the origin so that reducing the

search capability, which further weakens the competitiveness

of the modularization. When some functions need to be

explored more thoroughly, or when multi-modal functions

have multiple local optima, the randomization will be useful.

C. Boundary vs. Mirror

The boundary mapping rule maps the spark to the boundary.

If spark explosion happens on the boundary, half of the points

outside the boundary and will be mapped on the boundary after

the mapping. This reduces the sparks’ diversity and exploration

capability while wasting computing resources.

The mirror mapping rule makes the location of the spark a

certain distance from the boundary, which increases diversity

of the sparks.

Both of the two rules take advantage of the mathematical

properties of high-dimensional cases, mapping sparks to the

vicinity of the boundary. The two rules increase the search

intensity near the boundary. At the expense of the global

search capability, they achieve the local search capability near

the boundary. This increases the probability of finding the

2018 IEEE Congress on Evolutionary Computation (CEC)

best point in high-dimensional cases. When it comes to low-

dimensional situations, the optimal point is not necessarily

located near the boundaries. In this situation, the mapped

sparks may be far away from the optimal point. So both rules

can be thought as tailor-made rule for large scale optimization.

D. Overall Analysis and Comparison

The behavior of the deletion is most undesirable. Because

it does not use the high-dimensional math features, and does

not increase search capacity. Removing sparks directly reduces

the number and diversity of sparks, reducing the scope of

the next generation of choices and requiring more time to

find the optimum. It does not make full use of computing

resources. Even in the case of low-dimensional, the deletion

is not desirable.

Let us take a look at the other four rules. In the first 200

iterations, the randomization and the modularization outper-

formed the mirror rule and the boundary rule. That’s because

in the early phases, we don’t have enough information about

the optimal point, so global exploration capabilities are more

important than local search capabilities. Global exploration

capabilities ensured that the sparks landed throughout the

feasible space.

When iteration increases to a certain value, less than 200

generally speaking, the mirror rule and the boundary rule

outperforms the randomization and the modularization. At

this time, the firework approaches the optimal point, which

is known from the mathematical characteristics, close to the

boundary. The boundary rule and the mirror rule increase the

detection intensity at the boundary, accelerating the conver-

gence process.

From the BBFWA algorithm, we know that when the next

generation of fireworks is not better than itself, the explosion

amplitude will decrease. So when the fireworks are close

to the global or local optimum, the explosion amplitude

becomes very small, sparks generated by the explosion barely

go beyond the borders and the impact of mapping rules

is diminished. Therefore, in the later stage of iteration, the

performance of various mapping rules gradually converge.

In high-dimensional, the probability of random points

falling near the boundary is very high. So why random

mapping rule is less effective than the boundary rule and the

mirror rule? That’s because it is randomly mapped to any

boundary, the mirror rule and the boundary rule map sparks

to the specified boundaries, so their convergence are higher.

Although the randomization and the modularization out-

performed the mirror rule in early iterations, the mirror rule

and the boundary rule quickly catch up with them in a few

iterations. The mirror rule and the boundary rule are more

stable. According to the comparison of the rules, the mirror

rule is better, so in high-dimensional general cases, the mirror

rule is the most preferable rule known so far.

But it can be seen that the curve of the discus function

is special, because the mathematical expression of the discus

function is: f(x) = 106 ∗x2
0+

∑d
i=0 x

2
i , x0 is more important

than other dimensions, it is difficult to optimize the other

(d− 1) dimensions. so the exploration is more important than

exploitation capacity. This fact reminds us, we need to consider

the characteristics of function itself in some cases.

VI. CONCLUSION

In this paper, we investigate whether there is a better

mapping rule for large scale optimization. Experiments on the

selected 9 functions with 4 different dimensions present high-

dimensional cases have special mathematical properties. We

analyze the underlying causes of the different performance

of each mapping rule. The modular mapping rule was first

proposed and was replaced by the random mapping rule. It

gathered sparks to the origin, reduced exploration capabilities,

and did not take advantage of high-dimensional math features.

So it is not desirable in either high or low dimensional

problem. The random mapping rule was proposed in order

to fix the drawbacks of the modularization. It improves the

search ability of the spark. The randomization is very suitable

in the low-dimensional case and undesirable in the high-

dimensional case. The deletion is the worst method, reducing

the number and variety of sparks, and possibly even affecting

the convergence of the algorithm. It is the least recommended

rule. The boundary mapping rule and the mirror mapping

rule both utilize the high-dimensional math features, but the

boundary rule reduces the spark diversity. Yet the mirror rule

is more flexible and good for exploration, so it works better

and more consistently. The mirror mapping rule is the most

desirable rule found so far.

The conclusion of this paper is based on a particular version

of fireworks algorithms (BBFWA). To investigate whether the

research conclusion is suitable for other algorithms, future

work will extend the mapping rules proposed in this paper

to other fireworks algorithms, such as enhanced fireworks

algorithm (EFWA), dynamic fireworks algorithm (DynFWA).

We aim to develop more efficient mapping rule to improve the

performance of the fireworks algorithm.

ACKNOWLEDGMENT

This work was supported by the Natural Science Foundation

of China (NSFC) under grant no. 61673025 and partially

supported by National Key Basic Research Development Plan

(973 Plan) Project of China under grant no. 2015CB352302.

REFERENCES

[1] Y. Tan and Y. Zhu, “Fireworks algorithm for optimization,” Advances
in swarm intelligence, pp. 355–364, 2010.

[2] Y. Fu, J. Ding, H. Wang, and J. Wang, “Two-objective stochastic flow-
shop scheduling with deteriorating and learning effect in industry 4.0-
based manufacturing system,” Applied Soft Computing, 2017.

[3] C. Manickam, G. P. Raman, G. R. Raman, S. I. Ganesan, and N. Chi-
lakapati, “Fireworks enriched p&o algorithm for gmppt and detection of
partial shading in pv systems,” IEEE Transactions on Power Electronics,
vol. 32, no. 6, pp. 4432–4443, 2017.

[4] S. Reddy, L. K. Panwar, B. Panigrahi, and R. Kumar, “Modeling of
carbon capture technology attributes for unit commitment in emission-
constrained environment,” IEEE Transactions on Power Systems, vol. 32,
no. 1, pp. 662–671, 2017.

[5] M. Guendouz, A. Amine, and R. M. Hamou, “A discrete modified
fireworks algorithm for community detection in complex networks,”
Applied Intelligence, vol. 46, no. 2, pp. 373–385, 2017.

2018 IEEE Congress on Evolutionary Computation (CEC)

[6] S. Ye, H. Ma, S. Xu, W. Yang, and M. Fei, “An effective fireworks algo-
rithm for warehouse-scheduling problem,” Transactions of the Institute
of Measurement and Control, vol. 39, no. 1, pp. 75–85, 2017.

[7] E. Tuba, M. Tuba, and E. Dolicanin, “Adjusted fireworks algorithm
applied to retinal image registration,” Studies in Informatics and Control,
vol. 26, no. 1, pp. 33–42, 2017.

[8] J. Liu, S. Zheng, and Y. Tan, “Analysis on global convergence and
time complexity of fireworks algorithm,” in Evolutionary Computation
(CEC), 2014 IEEE Congress on. IEEE, 2014, pp. 3207–3213.

[9] J. Li and Y. Tan, “The bare bones fireworks algorithm: A minimalist
global optimizer,” Applied Soft Computing, vol. 62, pp. 454–462, 2018.

[10] K. Ding, S. Zheng, and Y. Tan, “A gpu-based parallel fireworks algorithm
for optimization,” in Proceedings of the 15th annual conference on
Genetic and evolutionary computation. ACM, 2013, pp. 9–16.

[11] K. Ding and Y. Tan, “Attract-repulse fireworks algorithm and its cuda
implementation using dynamic parallelism,” International Journal of
Swarm Intelligence Research (IJSIR), vol. 6, no. 2, pp. 1–31, 2015.

[12] S. A. Ludwig and D. Dawar, “Parallelization of enhanced firework al-
gorithm using mapreduce,” International Journal of Swarm Intelligence
Research (IJSIR), vol. 6, no. 2, pp. 32–51, 2015.

[13] S. Zheng, A. Janecek, and Y. Tan, “Enhanced fireworks algorithm,” in
Evolutionary Computation (CEC), 2013 IEEE Congress on. IEEE,
2013, pp. 2069–2077.

[14] S. Zheng, A. Janecek, J. Li, and Y. Tan, “Dynamic search in fireworks
algorithm,” in Evolutionary Computation (CEC), 2014 IEEE Congress
on. IEEE, 2014, pp. 3222–3229.

[15] J. Li, S. Zheng, and Y. Tan, “The effect of information utilization:
Introducing a novel guiding spark in the fireworks algorithm,” IEEE
Transactions on Evolutionary Computation, vol. 21, no. 1, pp. 153–166,
2017.

[16] Y. Pei, S. Zheng, Y. Tan, and H. Takagi, “An empirical study on influ-
ence of approximation approaches on enhancing fireworks algorithm,”
in Systems, Man, and Cybernetics (SMC), 2012 IEEE International
Conference on. IEEE, 2012, pp. 1322–1327.

[17] J. Li and Y. Tan, “Loser-out tournament based fireworks algorithm for
multi-modal function optimization,” IEEE Transactions on Evolutionary
Computation, 2017.

[18] J. Li, S. Zheng, and Y. Tan, “Adaptive fireworks algorithm,” in Evolu-
tionary Computation (CEC), 2014 IEEE Congress on. IEEE, 2014, pp.
3214–3221.

[19] S. Cheng, Q. Qin, J. Chen, Y. Shi, and Q. Zhang, “Analytics on fireworks
algorithm solving problems with shifts in the decision space and
objective space,” International Journal of Swarm Intelligence Research
(IJSIR), vol. 6, no. 2, pp. 52–86, 2015.

2018 IEEE Congress on Evolutionary Computation (CEC)

		2018-09-27T09:41:54-0400
	Preflight Ticket Signature

