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Abstract—Fireworks algorithm (FWA) is a newly proposed
swarm intelligence optimization method. It simulates the fire-
works explosion process to search for the best location of sparks
and has demonstrated good performance in many continuous
optimization problems. In this paper, we apply FWA to the
travel salesman problem (TSP), a classical discrete optimization
problem. We propose a discrete fireworks algorithm for TSP by
combining the general framework of FWA and current ideas for
solving the TSP. We call it DFWA-TSP. In DFWA-TSP, 2-opt
and 3-opt edge exchange heuristic are implemented as the basic
explosion operation in FWA. An adaptive strategy is designed to
decide the explosion amplitude. A particular mutation method
based on insertion is also used to cover the shortage of edge
exchange and a new selection method based on the quality
of fireworks is adopted to pick up good fireworks efficiently.
Various experiments on both TSPLIB and synthetic data have
been made to compare the performance of our algorithm with
current heuristic methods for TSP, such as genetic algorithm and
ant colony system algorithm. We conclude that our algorithm
out-performs these algorithms, especially on large-scale cases.

Index Terms—Discrete Fireworks Algorithm, Travel Salesman
Problem, K-opt Heuristic

I. INTRODUCTION

FWA is a newly proposed swarm intelligence algorithm [1]–

[4]. It has shown good performance in many optimization

problems [5]–[8]. FWA simulates the fireworks explosion

process to search for the optimum point. At the beginning

the algorithm, a certain number of fireworks are generated

at pre-given locations, each of which stands for a possible

solution. Then for each firework, explosion strength and am-

plitude is calculated; it explodes and generates sparks. In the

FWA, explosion process is the key step that new possible

solutions, the sparks, are generated based on the original

fireworks. The strength pre-calculated stands for how many

sparks each firework can generate and the amplitude stands

for the maximal level the sparks can vary from the firework.

After the explosion, certain selection strategy will be applied.

Locations of fireworks for next iteration are picked up from

locations of current fireworks and sparks. Finally, algorithm

goes into a new explosion process. The iteration will continue

until the given termination criterion is satisfied. Besides, some

particular mutation methods may also be inserted after the

Fig. 1. Flow graph of FWA

explosion so as to generate certain kind of sparks from each

firework. This method can be used to enhance the diversity of

sparks.

TSP is a classical problem in combinatorial optimization. It

aims to find the minimal length of the tour that visits every

city exactly once. It can be defined mathematically as follows:

Definition 1: Given a complete graph Kn(n ≥ 3) and edge

length: E(Kn) → R+, find a Hamiltonian circle T such that∑
e∈E(T ) c(e) is minimal.

TSP is of great importance on both theory and application

[9]. It is also always in hot research and has been viewed as

a touchstone for discrete swarm intelligence algorithm.

In this paper, we apply FWA to TSP and propose a discrete

fireworks algorithm DFWA-TSP for TSP. A character of TSP

(and many other discrete optimization problems) is that it lacks

good continuity, which means a small change of solution (the

order of cities in the TSP) may have a huge influence of

the result (the total tour length in the TSP). As a result, it

forces us to consider how to make use of the character of

the optimization problem apart from just applying the general

framework of FWA. Considering the outstanding performance

of edges exchange for TSP, we exploit 2-opt and 3-opt as
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the basic operation for generating sparks in the fireworks

explosion. Besides, a particular mutation method based on

insertion method is also used to generate a different kind of

sparks from the explosion. We also use the adaptive strategy

to control the explosion amplitude, which will be decided by

the previous progress of best tour length rather than simple

calculation based on the current quality and locations of

fireworks. Special selection method based on the quality of

fireworks(sparks) is used because of the huge feasible region

of TSP. We show the numerical experiment results of DFWA-

TSP, genetic algorithm and any colony system algorithm on

various data.

The rest of the paper is organized as follows. In section II,

we introduce related works of algorithms for TSP and current

discrete fireworks algorithms. In section III, we describe our

algorithm DFWA-TSP in detail. In section IV, we demonstrate

the experiment results and our corresponding discussion. In

section V, we give our conclusions.

II. RELATED WORK

General TSP is known to be NP-hard and even its spe-

cial case, Euclidean TSP, in which all the cities are points

in Rn and edge length is the Euclidean distance, is NP-

hard too [10]. Therefore, algorithms that can find suboptimal

solutions in rational time have always been investigated. A

large number of algorithms have been developed [11]. We list

several important and typical ones here. The greedy algorithm

starts from a random city and goes the nearest unvisited

city each time. Christofides’ algorithm [12] makes use of the

minimal spanning tree and minimum-weight perfect matching

to gain approximate solution. Lin-Kernighan heuristics [13]

exploits k-opt heuristic method first. It tries to exchange

several edges in the tour to gain a better solution. We use this

operation in our explosion process. In [14], a polynomial time

approximation scheme for Euclidean TSP in fixed dimensions

is proposed. Swarm intelligence algorithm, which models the

behaviour of real animals or human, have also been applied to

solve TSP. There have been some good results, such as genetic

algorithm [15]–[17], ant colony system [18], [19].

While FWA is originally raised for the continuous opti-

mization problem, there has been already several successful

attempts of applying FWA to discrete optimization problems.

In [20], FWA is applied as an efficient method to solve

network reconfiguration problem, which is formulated as a

complex combinatorial optimization problem. In [21], discrete

fireworks algorithm for single machine scheduling problem

is proposed. In [22], a discrete modified fireworks algorithm

is raised for community detection in complex systems. In

[23], a binary enhanced fireworks algorithm for maximum

satisfiability problem is designed. For the tourist trip design

problem, [24] applies the FWA by selecting the definition of

distance. For the multi-resource range scheduling problem,

[25] propose a modified fireworks algorithm.

In [26], a discrete fireworks algorithm is proposed for

aircraft mission planning. It should be noted that in this

paper aircraft mission planning is converted into TSP. FWA is

applied, by designing a particular distance between two routes

and using the reverse operator. In [27], DFWA is proposed for

TSP. It first combines the k-opt heuristic with FWA and raises

mutation method based on insertion operation. Its performance

in small and medium cases is quite good, however, it can not

compete with other swarm intelligence algorithms in large-

scale cases. The DFWA-TSP in this paper can be viewed as an

improvement of DFWA. We modify how to combines the k-opt

heuristic. Besides, new initial location selection and improved

adaptive strategy also promote its performance, especially in

large-scale cases.

III. DISCRETE FIREWORKS ALGORITHM

Our DFWA-TSP follows the general principle of FWA. It

also simulates fireworks explosion to search the best tour of

TSP. Generally, it consists of 4 key parts:

1) Fireworks Initialization In this step, we choose the

initial locations of the fireworks, which means that we

pick up a certain number of tours that visit each city

exactly once.

2) Explosion In this step, fireworks explode and generate

explosion sparks. In the explosion, two parameters need

to be decided first: strength and amplitude. Strength

stands for the number of sparks this firework generates.

The larger the strength is, the more fireworks it gen-

erates. Amplitude stands for the possible distance (dif-

ference) between a firework and the sparks it generates.

The larger the amplitude is, the bigger the difference can

be and the broader it is to investigate the feasible region.

After the calculation of these two parameters, explosion

begins. 2-opt and 3-opt heuristic method are applied

to generate sparks(new solutions). Different from the

traditional k-opt, there is a probability that we will

accept a worse solution.

3) Mutation In this step, we make use of the insertion

method to generate more sparks, as a supplement to

edge exchange. For every firework, it will generate given

number of mutation sparks.

4) Selection In this step, we decide the locations of fire-

works in the next iteration by picking up them from

current fireworks and sparks. All fireworks and sparks

will be taken into consideration. The optimal one (which

has the shortest tour length in this iteration) will always

be kept. Then, the probability of picking up others

will be calculated. The algorithm randomly chooses

from them according to this probability. After selection,

termination criterion is checked whether satisfied or not.

If yes, the algorithm terminates and returns the optimal

tour. Otherwise, the fireworks and sparks selected in this

step will form the fireworks in the next iteration and

algorithm will go to step 2 Explosion.

Below is the detail description of each part.

A. Fireworks Initialization

Suppose that N fireworks are needed in the iteration, we

initialize each of the fireworks as follows. For every firework,
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Algorithm 1 DFWA-TSP(N,Ce, Cm,m,M)

1: Note: N is the number of fireworks. Ce is the parameter

of explosion, Cm is the parameter of mutation. m,M are

the parameter of explosion amplitude.

2: FireworksInitialization(N )

3: for k = 1 to maxIteration do
4: calculate explosion strength and amplitude

5: for i = 1 to N do
6: Explosion(i,Ce)

7: end for
8: for i = 1 to N do
9: Mutation(i,Cm)

10: end for
11: Selection(N )

12: end for

we pick up a random city as the starting point. Then, the

greedy algorithm is applied, which continues visiting the

nearest unvisited city until a Hamiltonian circle is established.

Generally, the greedy algorithm can efficiently generate much

better initial tours than random permutation and therefore

saves lots of time.

B. Explosion

Explosion is the core part of DFWA-TSP, mainly in which

new solutions are generated. In this part, three things will

be done: calculation of explosion strength, calculation of

explosion amplitude, explosion(sparks generation).

1) Calculation of Explosion Strength: As in the other FWA,

good fireworks(those with short tour length) will generally

generate more sparks, while bad fireworks(those with long tour

length) will generate fewer sparks. This method guarantees

that we put the main computing resource in exploring the

promising part of the feasible region. In DFWA-TSP, the

sparks number of each firework will be calculated as follows.

Suppose the tour length of firework i is Li, the longest tour

length of all the fireworks is Lw, the sparks number of firework

i will be

Ni = round(Ce × Lw − Li∑
i(Lw − Li) + ε

) (1)

where Ce is the parameter to control the total number of

explosion sparks, ε is a const small number that avoids the

denominator to be 0 and round is the function mapping every

number to the nearest integer.

2) Calculation of Explosion Amplitude: Due to the char-

acteristic of discrete problems, explosion amplitude needs

careful consideration. In essence, it stands for the horizon

of investigating the feasible region from current locations.

Therefore, we take it to be the parameter of controlling the

probability of accepting a worse solution in explosion. It

is adjusted by adaptive strategy. If the shortest tour length

decreases quickly in recent iterations, which means that we

are at a good part of the feasible region, we should focus on

the local area. On the contrary, if the shortest tour length does

Fig. 2. An example of 2-opt heuristic

Fig. 3. An example of 3-opt heuristic(left one:original tour, right two: tours
possibly generated)

not make progress for lots of iterations, which means that we

are at a bad part of the feasible region, we should broaden our

horizon. A variable θ is kept in the algorithm for this purpose.

It is initialized to be θ0 = M+m
2 and will be updated in each

iteration as follows:

θk+1 =

{
max(θk/1.1,m) L�

k ≥ L�
k−1

min(θk × 1.1,M) L�
k < L�

k−1
(2)

where L�
k stands for the shortest tour length among all

fireworks and sparks in iteration k. The effect of θ will be

described in the following explosion step.

3) Explosion: As mentioned in section I, we use 2-opt and

3-opt as the basic operation for explosion.

2-opt select 2 edges each time and tries to re-connect the

adjacent vertexes. It should be noted that there is only one

way to re-connect the vertexes so that the result is still a

Hamiltonian circle and different from the original one.

3-opt select 3 edges each time and tries to re-connect the

adjacent vertexes. There can be several ways to re-connect

them.

In this step, for firework i, Ni sparks will be generated.

When generating each spark of this firework, one of 2-opt

and 3-opt will be tried. More exactly, if θk >
√
M ∗m, 2-opt

method will be used, otherwise, 3-opt method will be used.

When using 2-opt method, one edge is selected randomly

at first. Then all other edges will be given a permutation

randomly. Edges will be picked one by one and be exchanged

with the selected edge. If a better solution is achieved, we

accept this new solution as a spark. Otherwise, we accept it

with a probability

Pr = exp(−Lnew

Lold
× θk) (3)

where Lnew is the length of the new result and Lold is the

length of the old tour, θk is the one parameter described above.
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Fig. 4. A common condition that edge exchange cannot improve efficiently

If rejected, we will continue to pick up the next edge. If

no solution is accepted after the last edge is tried, we will

randomly exchange the edge selected with another edge and

accept this solution whatever. For the 3-opt the only difference

is that two edges will be selected first and every possible re-

connection of three edges will be tried in certain order. It

should be noticed that that larger θk is, the bigger chance we

will accept a worse solution, which means that we keep a

wider horizon to the feasible region.

C. Mutation
In [27], it is found that there is a condition that the 2-opt

and 3-opt cannot improve the quality of solutions efficiently.

It happens when there exists one city next to two other cities

but these three cities are not adjacent in the tour, as shown in

figure 4
In order to overcome this problem, we continue to use the

following mutation method based on insertion. Each firework

will also generate Cm mutations sparks in one iteration, apart

from the explosion sparks. To generate each spark, one city

is chosen randomly, then edges that are not adjacent will be

given a random permutation. The algorithm will continue to

check whether there is an edge that if the city chosen is

inserted between the two cities of this edge, the total length can

decrease. If the total length does decrease, this new solution

will be accepted as a mutation spark. If not, different from

[27], we have the probability to accept a worse solution and

the probability is exactly the same as the one in explosion step.

The algorithm will continue to try to insert the city selected

into the next edge. If no solution is accepted finally, we will

randomly pick up an edge that is not adjacent, insert this city

and accept it as a mutation spark whatever.

D. Selection
Different from the traditional FWA on continuous problems,

where selection strategy is mainly based on the distance

between each firework and the optimal firework, we directly

calculate the probability according to the length of the tour.

All the fireworks and sparks are taken into consideration. The

best firework(spark) will always be kept. This guarantees that

the best tour length won’t increase after new iterations. The

probability of other fireworks(sparks) is calculated as follows.

For firework(spark) i

Pi =
1

C ′ ×
1

(Li − L�)2 + ε
(4)

where C
′
=

∑
i

1
(li−l�)2+ε , and Li and L� stands for the total

length of firework(spark) i and the best firework(spark) sepa-

rately, ε is a const small number that avoids the denominator

to be 0. We choose this method mainly because the feasible

region for TSP is huge, and this method can pick up good

solutions quickly.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, we demonstrate the experiments details and

results.

We compare the performance of DFWA-TSP with genetic

algorithm [15] and ant colony system algorithm [18]. The

genetic algorithm is also initialed by greedy solutions too

in our experiment. We also list the results given by greedy

algorithm as a reference. The greedy algorithm we use here

will try to begin from every city and build a greedy solution

and finally return the shortest one among all these solutions.

We implement algorithms mentioned above in Matlab. In

the following test, N,Ce, Cm,m,M is set to be 5,8,3,0.5,30

separately. We test our algorithms on TSPLIB [28] data as

well as on randomly generated data.

A. TSPLIB data

We first demonstrate the results of TSPLIB data. TSPLIB is

a library of sample instances for the TSP from various sources

and of various types. When generating the results, the data for

DFWA-TSP and genetic algorithm are recorded every 50 and

5000 iterations separately for the readability.

B. Randomly Generated Data

We also test DFWA-TSP on randomly generated large-scale

data. Every city is uniformly randomly located in [0, 1000]×
[0, 1000] and the distance is just Euclidean distance. Similarly,

the data for DFWA-TSP and genetic algorithm are recorded

every 50 and 5000 iterations separately.

C. Discussions

Based on the results above, we can conclude that DFWA-

TSP has outstanding performance compared to the other two

algorithms, especially on large-scale cases. The main cause

should be as follows. Firstly, beneficial from the extendibility

of FWA, we can naturally combine the efficient k-opt heuristic

for TSP with the general framework of FWA, which makes the

investigation of DFWA-TSP quite effective. Besides, although

DFWA-TSP starts from greedy solutions, the explosion and

mutation method make it own the ability to escape from them

and make progress quickly. Therefore, greedy solutions can

indeed serve as good initial locations.

We also make a short comparison between DFWA-TSP and

other two algorithms.

1) Compared with Ant Colony System: Ant colony system

has to contain a long process of pheromone accumulation,

which can be time-consuming especially in the large-scale

case. Instead, DFWA-TSP simply stores the information by the

locations of fireworks. This character markedly increases the

time efficiency. Besides, the explosion strategy of DFWA-TSP

(edge exchange) is relatively simple compared to ant colony

system, in which every ant has to pick up the entire tour. This

character also helps DFWA-TSP save massive time.
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TABLE I
COMPARISON ON TSPLIB DATA

greedy time DFWA-TSP Genetic ACS
rat575 7928.031 600 7042.616 7099.299 7923.896
gr666 3835.215 900 3295.002 3293.816 3805.314
rat783 10708.953 900 9201.152 9487.500 10743.991

dsj1000 22449665.176 1200 19792718.524 20469872.595 22449665.176
pcb1173 69692.151 1200 60861.626 63745.073 69811.052
nrw1379 68326.872 1500 59268.243 63603.077 68009.193

fl1400 25709.273 1800 21237.496 22652.471 25083.725
u2319 268892.350 1800 241753.120 266056.895 270747.106

where time means the time limitation for the three swarm intelligence algorithms.
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TABLE II
COMPARISON ON RANDOMLY GENERATED DATA

cityNumber greedy time DFWA-TSP Genetic ACS
1000 27783.929 600 24327.511 25674.926 27823.178
1500 33886.281 600 29578.157 32471.141 33663.991
2000 39050.267 900 34414.895 38334.551 38579.101
2500 43294.022 1000 38416.832 42957.004 43271.810
3000 48432.611 1200 42467.223 48167.555 48538.081
3500 52629.688 1200 46519.148 52608.546 52820.135

where time means the time limitation for the three swarm intelligence algorithms.
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2) Compared with Genetic Algorithm: Genetic algorithm

mainly employs the crossover strategy to generate new solu-

tions. It is somewhat random and not so efficient in improving

the quality of solutions compared to edge exchange. As a

result, DFWA-TSP typically needs fewer agents compared to

the genetic algorithm.

V. CONCLUSIONS AND FUTURE WORK

FWA and its variants have shown good applicants in lots of

continuous optimization tasks. In this paper, we apply it to TSP

and propose DFWA-TSP. 2-opt and 3-opt heuristic are selected

as the basic operation. Adaptive strategy and mutation method

are also used. Numerical experiments show that DFWA-TSP

has outstanding performance, especially for large-scale TSP.

There are two possible ways to improve DFWA-TSP. The

first is to exploit more adaptive strategies since it is hard to

design a scheme suitable for all cases. Adaptive strategies can

efficiently make use of the information stored by previous

iterations. The second is to try to exchange more edges

in the explosion. How to decide the number of edges in

one explosion needs careful consideration, since generally

speaking, exchanging more edges can be powerful nevertheless

it needs much more computing resource.
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