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Abstract

We propose a new multi-layer explosion strategy inspired by various explosion patterns of real reworks to
accelerate reworks algorithm (FWA). Each rework individual conducts multiple explosions to explore a local fitness
landscape carefully instead of a single layer explosion used in canonical FWA. In the proposal, each rework
individual generates a small number of sparks in the first layer randomly, then the generated sparks conduct the
second layer explosions to generate new diverse sparks. These new sparks repeat the above operations until the
number of this iteration reaches the pre-de ned maximum layer number. Theoretically, the number of explosion
layers can be set to any positive integer, and the proposed strategy expects to generate various potential sparks
using the multi-layer explosion strategy without changing the total number of generated sparks. The proposed
strategy can combine with not only basic FWA but also other versions of FWA algorithms easily and replace their
corresponding explosion operations to develop a new version, multi-layer explosion-based FWA. To evaluate the
performance of our proposal, we select a more powerful variant of FWA, Enhanced FWA (EFWA) as the baseline
algorithm and combine with our proposed explosion strategy. We run our proposal on 28 benchmark functions from
CEC2013 test suites of 2-dimensions (2-D), 10-D and 30-D with 30 trial runs and compare with several state-of-the-
art EC algorithms. The experimental results confirm that the proposed strategy is effective and promising, which can
obtain a better performance for FWA in terms of convergence speed and convergence accuracy. We finally analyze
composition as well as feasibility of proposal and list some open topics.

Keywords Swarm intelligence; Fireworks algorithm; Optimization;
Multi-layers explosion

Introduction
Swarm Intelligence algorithms are a kind of population-based

optimization technique and mainly simulate the cooperation among
simple individuals to achieve complex group behaviours. They have
attracted many practitioners thanks to their outstanding
characteristics, such as, easy-to-use, robustness, parallelism,
intelligence and others. Meanwhile, many practical problems
encountered become more complicate and traditional optimization
methods, e.g. linear programming and Newton method, are powerless
to solve them perfectly, which also prompts such algorithms used in
industry widely. For example, the nose cone of the N700 series
Shinkansen (bullet train) was redesigned by genetic algorithm, Mazda
used multi-objective optimization algorithm to simulate the design of
next-generation vehicle structure [1].

One of the representative swarm intelligence algorithms is Particle
Swarm Optimization (PSO) [2] that simulates the foraging behaviour
of birds to and the global optimum. So far, many efficient algorithms
have been proposed, e.g. bacterial foraging optimization algorithm [3],
artificial bee colony algorithm [4], cuckoo search [5], bat algorithm [6],
krill herd [7], elephant herding optimization [8], and others. Besides,
some researchers also developed other optimization algorithms
inspired by natural phenomenon and human society, such as brain
storm optimization algorithm [9], imperialist competitive algorithm
[10] and others.

Fireworks Algorithm (FWA) [11] is a new family member of swarm
intelligence and repeatedly simulates the explosion of multiple
fireworks simultaneously to achieve wide search and each rework
explosion can be regarded as a local search. In re-cent years, many
researchers have further improved its performance by proposing
various variants with novel mechanisms. The Enhanced FWA (EFWA)
[12] improves the corresponding five operations of the conventional
FWA and can achieve a better performance. Dynamic FWA (dynFWA)
[13] uses a dynamic explosion amplitude for the current best firework
to tune the search range more intelligently.

An amplitude reduction strategy and local optima-based selection
strategy [14] are also proposed and integrated into FWA to improve its
performance obviously. A novel guiding spark [15] with promising
direction and adaptive length is proposed to enhance the information
use in FWA and guide the evolution of fireworks effectively. Loser-out
tournament based FWA [16] introduces competition mechanism and
analyze the potential of each rework individual. The losers who cannot
catch up with the best one with its current progress rate will be
eliminated and reinitialized. FWA has also been applied to many real
problems and achieved encouraging successes. For ex-ample, regional
seismic waveform inversion [17], constrained portfolio optimization
[18], web information retrieval [19], multilevel image thresholding
[20], RFID network planning [21] and privacy pre-serving [22], etc.

Although many novel and effective mechanisms are integrated into
the FWA to improve its search capabilities, few attentions have been
devoted to the explosive manner of reworks. Honestly, fireworks have
many ways to explode in the real world and do not limited to circular
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explosion. For example, the shape of real fireworks explosion we can
often see has continuous explosion [23], fan-shaped explosion, and
others. Inspired by various explosion modes, this paper proposes a new
explosion strategy to enhance the understanding and utilization of
local fitness landscape.

The main objective of this paper is to propose multi-layer explosion
strategy to use local fitness information more efficiently and guide
individual evolution reasonably. At the first attempt, we construct two
layers of explosions successively to understand local fitness landscape
distribution information. The secondary objective is to analyze the
performance as well as applicability of the proposed explosion strategy.
Finally, we introduce some topics for open discussion.

The remaining paper is organized as following. We brie y review the
framework of conventional FWA in the Section 2. The proposed
explosion strategy is clearly presented in the Section 3. To evaluate the
performance of our proposal, we com-pare it with several state-of-the-
art Evolutionary Computation (EC) algorithms using 28 benchmark
functions from CEC 2013 with 3 different dimensions in the Section 4.

Finally, we analyze and discuss the effects of our proposed explosion
strategy and give some open topics in the Section 5; and conclude the
current work in the Section 6.

Fireworks Algorithm
In real world, a firework is launched into the sky then many sparks

are generated around it. A re-work explosion can be abstracted as a
local search model around a specific point. FWA simulates the
explosion process iteratively to find the optimal candidate solution.
Figure 1 demonstrates a general explosive model of the FWA.
Conventional FWA has two types of reworks, better rework and poor
rework. A better rework may close to an optimum so that many sparks
are generated around it within a smaller range, while a poor firework
may far from the optimum so less sparks are generated, and search
range should be larger. Algorithm 1 shows the general ow of FWA
mainly consisting of three operations: explosion, mutation and
selection.

Figure 1: Search process of FWA. (a) Fireworks are random generated, (b) sparks (red solid points) are generated around each firework, and
mutation sparks (blue solid points) are also generated, (c) new fireworks are selected to enter the next generation using the (b). The (b) and (c)
are iterated until a termination condition is satisfied.

Since there are some limitations in the conventional FWA and its
performance is also poorer than that of all subsequent variants, such as
EFWA and dynFWA. Wherefore, we employ much more powerful
EFWA as a baseline algorithm and combine it with our proposed
strategy. The EFWA introduces five major improvements into
conventional FWA:

• A new minimal explosion amplitude is set to each firework,
• A new mechanism for generating sparks,
• A new mapping rules are used when an individual is out of the

search space,
• A new operator for generating Gaussian sparks, and
• A new selection strategy is used to choose next generation.

Many experiments confirm that it can significantly improve the
performance of conventional FWA by modifying the corresponding
operations without changing the overall framework and thought. Due
to space limitations, we do not de-scribe these previous works in detail,
and all works can be referenced in [12].

Algorithm 1
The general framework of FWA.

• Initialize n fireworks randomly.
• Evaluate the fitness of each firework.
• While termination condition is not satisfied do
• Generate sparks for each firework.
• Generate Gaussian mutation sparks.
• If sparks are generated outside search area, then
• Use a mapping rule to bring it back to search space.
• End if
• Evaluate the fitness of generated sparks.
• Select n new fireworks for next generation.
• End while
• Output found feasible solution.

Proposed Multi-layer Explosion Strategy
With the development of production techniques, various exquisite

fireworks explosion shapes can be customized, commonly there, heart-
shaped explosion, multi-layer explosion and specific area explosion,
etc. Inspired by various explosion ways and shapes, we firstly introduce
a different explosion model, multi-layer explosion to enhance the use
of the local fitness landscape, while conventional FWA generates spark
individuals around a firework individual at once. Figure 2 illustrates
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the generation process of sparks using our proposed strategy. As our
first attempt, we set the number of layers to 2 in this paper thought. It
can be set to any positive integer theoretically.

Figure 2: The general framework of our proposed multi layers
explosion strategy, where a two-layer explosion is shown as an
example. (a) and (b) are the first and the second explosions,
respectively, where black pentagrams represent firework
individuals, four-pointed stars and solid dots of various colors
represent generated sparks in the first layer and the second layer,
respectively. A dashed circle represents the search radius of a
firework and spark individuals.

First layer explosion
The explosion of a firework is determined by two factors, number of

sparks and amplitude of explosion. They individually determine how
many spark individuals can be generated by a firework and its search
radius (amplitude). In the first layer, each firework determines its
search radius adaptively al-located according to its fitness, which is the
same as conventional FWA.

However, we treat each firework equally in the first layer, and all
fireworks generate the same number of a few number of spark
individuals to investigate its surrounding fitness landscape within its
own search radius. These generated spark individuals in the first layer
are evaluated with an objective function and used to determine the
explosive shape of the second layer and the allocation of spark
individuals in the second layer. The number of generated spark
individuals for each firework in the first layer is decided adaptively
according to its fitness.

Subsequent layer explosion
Let's define symbols temporally to explain the main idea of this

paper, multi-layer explosions. N is the number of firework individuals;
fi is the i-th firework individual; m is the total number of sparks. l is
the maximum number of explosion layers; mi is the total number of
sparks in all layer explosions under the fi; mi(k) is the number of
sparks in the k-th explosion layer; ��, �(�)is the j-th spark individual
(j=1~mi(k) ) generated in the k-th layer explosion180 under the fi.
Relationships among them are � = ∑� = 1� �� and�� = ∑� = 1� ��(�). The i-th subgroup is formed by the i-th firework

individuals fi, and all its sparks ��, �(�), Figure 2. Since search parameters
in each explosion layer are independently decided in each subgroup,
we explain the multi-explosion process at the i-th subgroup in the

below.The first key problem is how to distribute the remaining number
of sparks, (��− � *��(1)) to the remained explosion layers. The total
number of sparks in subsequent explosion layers is��−��1 = ∑� = 2� ��(�). We simply distribute an equal number of

sparks to each layer, 
(�� −��(1))(� − 1) . After all firework individuals

complete their first explosions, their second explosions are triggered by
not the firework individuals but their generated spark individuals, ��, �(1).
The second key problem is how to decide the search radius around ��, �(�)
and how to divide 

(�� −��)(� − 1)  explosion sparks to each ��, �(�) in each

layer. These two parameters are decided by the fitness of the ��, �(�)
adaptively. This layer explosion is repeated until explosions repeat l
times.

Algorithm 2
The general framework of the proposed multi-layer explosion

strategy. See the definition of symbols in the sub-Section subsequent
layer explosion.

• For i = 0; i < n; i + + do
• Decide the number of generated sparks, ��(1), in the first layer for

each firework.
• Decide a search radius around the i-th firework according to its

fitness.
• Conduct the first layer explosion for each firework.
• While the number of explosions does not reach a pre-defined

maximum layer do
• For j = 0; � < ��(�); j + + do

• Decide the number of sparks generated by the j-th spark in the
previous layer.

• Decide a search radius of around the j-th spark in the previous
layer.

• End for
• Generate the next explosion sparks for
• Each spark in the previous layer.
• End while
• End for
• End of explosion.

Our proposed strategy divides sparks in multi-layer explosion, and
sequential explosions expand searching areas to better directions
gradually layer by layer according to the fitness of sparks in each layer
explosion, while the fitness of a firework individual decides all sparks
at once. It is important to note that our proposed explosion strategy
just change the layer of the explosions without changing any other
operations, i.e. generation of spark individuals and mutation
operation. Algorithm 2 shows the flow of our proposed explosion
strategy. When it is combined with other versions of the FWA, only
their corresponding explosion operation is replaced.
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Experimental Evaluations
We use 28 functions from the CEC2013 test suite [24] to evaluate

the performance of our proposal [24]. The test suite is devoted to the
approaches, algorithms, and techniques for solving real parameter
single objective optimization. Table 1 shows their types, characteristics,
variable ranges, and optimum fitness values, and these landscape
characteristics include shifted, rotated, unimodal and multi-model.

No. Types Characteristics
Optimum

fitness

F1

Uni

Sphere function −1400

F2 Rotated high conditioned elliptic function −1300

F3 rotated Bent Cigar function −1200

F4 Rotated discus function −1100

F5 different powers function −1000

F6

Multi

Rotated Rosenbrock’s function −900

F7 Rotated Schaffers function −800

F8 Rotated Ackley’s function −700

F9 Rotated Weierstrass function −600

F10 Rotated Griewank’s function −500

F11 Rastrigin’s function −400

F12 Rotated Rastrigin’s function −300

F13 Non-continuous rotated Rastrigin’s function −200

F14 Schwefel’s function −100

F15 Rotated Schwefel’s function 100

F16 Rotated Katsuura function 200

F17 Lunacek BiRastrigin function 300

F18 Rotated Lunacek BiRastrigin function 400

F19

Expanded Griewank’s plus Rosenbrock’s
function 500

F20 Expanded Scaffer’s F 6 function 600

F21

Comp.

Composition Function 1 (n=5, Rotated) 700

F22 Composition Function 2 (n=3, Unrotated) 800

F23 Composition Function 3 (n=3, Rotated) 900

F24 Composition Function 4 (n=3, Rotated) 1000

F25 Composition Function 5 (n=3, Rotated) 1100

F26 Composition Function 6 (n=5, Rotated) 1200

F27 Composition Function 7 (n=5, Rotated) 1300

F28 Composition Function 8 (n=5, Rotated) 1400

Table 1: Benchmark Functions. Uni: Unimodal; Multi: Multimodal;
Comp: Composition.

EFWA which performance is better than original FWA as a baseline
algorithm. We integrate our proposed explosion strategy into EFWA
and compare it with original EFWA and several other state-of-the-art
EC algorithms. The Table 2 shows the parameter settings of EFWA
used in our experiments, where the definition of the symbols is the
same in the original literature [11,12]. The Table 3 shows the parameter
settings of PSO used in our experiments.

Parameters Values

# of fireworks for 2-D, 10-D and 30-D search 5

# of sparks m 60

# of Gauss mutation sparks, 5

constant parameters a = 0.04 b = 0.8

Maximum amplitude Amax 40

Stop condition; max. # of fitness evaluations, MAXNFC, for 2-D, 10-D, and 30-D search 1000, 10,000, 40,000

Table 2: Parameter setting of EFWA.

Population size for 2-D, 10-D, and 30-D search 70

inertia factor w 1

constant c1 and c2 1.49445, 1.49445

max. and min. speed Vmax and Vmin 2.0, −2.0

Stop condition; max. # of fitness evaluations, MAXNFC, for 2-D, 10-D, and 30-D search 1000, 10,000, 40,000

Table 3: PSO algorithm parameter settings.
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For fair evaluations, we evaluate convergence along the number of
fitness calls rather than generations. We test each benchmark function
with 30 trial runs in 3 different dimensional spaces, D=2 (2-D), 10 (10-
D), and 30 (30-D), respectively. To evaluate the effectiveness of our
proposed explosion strategy, we design two sets of control
experiments. In the first experiment, we only com pare the
conventional EFWA and (EFWA+our proposed strategy), and the
Wilcoxon signed-rank test at the maximum number of fitness
calculations is used to test significant difference. In the second
experiment, we compare (EFWA+our proposed strategy) with PSO
and guided FWA that is one of the most competitive variation of FWA.
The Kruskal-Wallis test and Holm's multiple comparison test are
applied to check whether there is a difference among these three
algorithms at the stop condition. Finally, the Tables 4 and 5 show the
statistical test results of the first and second controlled experiments,
respectively. Note that we do not use a complete replication guided
FWA published in but instead integrate the concept of guiding spark
into EFWA with the following two modifications: (1) We do not
calculate a guided spark for all firework individuals but only the best
firework individual, and (2) all sparks generated by the best firework is
divided into two groups, better than the firework and worse than the
firework. All sparks in both groups are involved in calculating guided
spark rather than sparks in the front of the two groups. Our proposed
strategy and other efficient strategies for FWA can be compared based
on the same baseline algorithm, which can make the experiment fairer.

Besides, we set the number of generated spark individuals in the
first layer to 3, 4 and 5 to investigate its influence on the performance,
and other parameter settings is the same with the Table 2 completely.
The Friedman test and Holm's multiple comparison test are applied to
check significant difference among them at the stop condition. The
Table 6 presents the statistical tests result of different parameter
settings of generated sparks in the first layer.

Function 2-D 10-D 30-D

f1 proposal ≫EFWA EFWA ≫ proposal EFWA ≫ proposal

f2 proposal ≈ EFWA proposal ≈ EFWA EFWA > proposal

f3 proposal ≈ EFWA proposal ≫ EFWA proposal ≈ EFWA

f4 proposal > EFWA proposal ≫ EFWA proposal ≫ EFWA

f5 proposal ≫ EFWA proposal ≫ EFWA proposal ≈ EFWA

f6 proposal ≫ EFWA proposal ≈ EFWA proposal ≈ EFWA

f7 proposal ≫ EFWA proposal ≫ EFWA proposal > EFWA

f8 proposal ≫ EFWA proposal ≈ EFWA proposal > EFWA

f9 proposal ≫ EFWA proposal ≫ EFWA proposal ≫ EFWA

f10 proposal ≫ EFWA proposal ≫ EFWA EFWA ≫ proposal

f11 proposal ≫ EFWA proposal ≫ EFWA proposal ≫ EFWA

f12 proposal ≫ EFWA proposal ≫ EFWA proposal ≫ EFWA

f13 proposal ≫ EFWA proposal ≫ EFWA proposal ≫ EFWA

f14 proposal ≈ EFWA proposal ≫ EFWA proposal ≫ EFWA

f15 proposal ≈ EFWA proposal > EFWA proposal ≈ EFWA

f16 EFWA ≈ proposal EFWA ≈ proposal EFWA ≈ proposal

f17 proposal ≫ EFWA proposal ≫ EFWA proposal ≫ EFWA

f18 proposal ≫ EFWA proposal ≫ EFWA proposal ≫ EFWA

f19 proposal ≫ EFWA proposal > EFWA proposal ≫ EFWA

f20 proposal ≫ EFWA proposal ≫ EFWA proposal ≈ EFWA

f21 proposal ≈ EFWA EFWA proposal proposal ≈ EFWA

f22 proposal > EFWA proposal ≫ EFWA proposal ≫ EFWA

f23 proposal ≫ EFWA proposal ≫ EFWA proposal > EFWA

f24 proposal ≫ EFWA proposal ≫ EFWA proposal ≫ EFWA

f25 proposal ≫ EFWA proposal ≫ EFWA proposal ≫ EFWA

f26 proposal ≈ EFWA proposal ≫ EFWA proposal ≫ EFWA

f27 proposal > EFWA proposal ≫ EFWA proposal ≫ EFWA

f28 proposal > EFWA proposal ≫ EFWA proposal ≫ EFWA

Table 4: Statistical test results of the Wilcoxon signed-rank test for
average fitness values of 30 trial runs of the proposal (EFWA+our
proposed mechanism) and EFWA at the stop condition, MAXNFC. A
≫B and A > B mean that A is significantly better than B with
significant levels of 1% and 5%, respectively. A ≈ B means that
although A is better than B, there is no significant difference between
them.

Function 2-D 10-D 30-D

f1 proposal ≫ PSO ≫ GEFWA GEFWA ≫ proposal ≫ PSO GEFWA ≫ proposal ≫ PSO

f2 proposal ≈ GEFWA > PSO PSO ≫ proposal ≈ GEFWA PSO ≈ GEFWA ≫ proposal

f3 proposal ≫ PSO ≈ GEFWA PSO ≈ proposal ≈ GEFWA PSO ≫ proposal ≈ GEFWA

f4 proposal ≈ GEFWA ≫ PSO PSO ≫ proposal ≫ GEFWA proposal ≫ PSO > GEFWA

f5 proposal ≫ PSO ≈ GEFWA PSO ≫ proposal ≫ GEFWA proposal ≈ GEFWA ≫ PSO

f6 PSO ≈ proposal ≫ GEFWA PSO ≈ proposal ≈ GEFWA PSO ≈ proposal ≈ GEFWA

f7 proposal > PSO > GEFWA PSO ≫ proposal > GEFWA PSO ≫ proposal ≫ GEFWA

f8 proposal ≈ PSO ≈ GEFWA proposal ≈ PSO ≈ GEFWA proposal ≈ GEFWA ≈ PSO
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f9 proposal ≈ PSO ≈ GEFWA proposal ≈ PSO ≫ GEFWA PSO ≈ proposal ≫ GEFWA

f10 proposal ≫ GEFWA ≈ PSO PSO ≫ proposal ≫ GEFWA GEFWA ≫ proposal ≫ PSO

f11 proposal ≫ PSO ≈ GEFWA proposal ≫ PSO ≫ GEFWA proposal ≫ PSO ≫ GEFWA

f12 proposal ≈ PSO ≈ GEFWA PSO ≫ proposal ≫ GEFWA PSO ≈ proposal ≫ GEFWA

f13 proposal ≫ PSO ≈ GEFWA proposal ≈ PSO ≫ GEFWA proposal ≫ PSO ≫ GEFWA

f14 PSO ≈ proposal ≈ GEFWA proposal ≫ PSO ≈ GEFWA proposal ≫ GEFWA > PSO

f15 PSO ≈ proposal ≈ GEFWA PSO ≈ proposal ≫ GEFWA proposal > GEFWA > PSO

f16 GEFWA > proposal ≈ PSO GEFWA ≈ proposal ≫ PSO GEFWA ≈ proposal ≫ PSO

f17 proposal ≫ PSO ≈ GEFWA proposal ≈ PSO ≫ GEFWA proposal ≫ PSO ≫ GEFWA

f18 proposal ≈ PSO ≈ GEFWA proposal ≫ PSO ≫ GEFWA proposal ≫ GEFWA > PSO

f19 proposal ≈ GEFWA ≈ PSO proposal ≫ PSO ≈ GEFWA PSO ≈ proposal > GEFWA

f20 proposal ≫ PSO ≈ GEFWA PSO ≈ proposal > GEFWA proposal ≈ GEFWA ≫ PSO

f21 PSO ≈ proposal ≈ GEFWA GEFWA ≫ proposal ≫ PSO proposal ≈ GEFWA ≫ PSO

f22 PSO ≈ proposal ≫ GEFWA proposal ≈ PSO ≫ GEFWA proposal ≫ PSO ≈ GEFWA

f23 PSO ≈ proposal ≈ GEFWA proposal ≈ PSO ≈ GEFWA proposal ≈ PSO ≈ GEFWA

f24 proposal ≈ PSO ≈ GEFWA PSO ≈ proposal ≫ GEFWA PSO ≈ proposal ≫ GEFWA

f25 PSO ≈ proposal ≫ GEFWA PSO ≈ proposal ≫ GEFWA proposal ≫ PSO ≈ GEFWA

f26 PSO ≈ proposal > GEFWA PSO ≈ proposal ≈ GEFWA proposal ≈ PSO ≫ GEFWA

f27 PSO > proposal > GEFWA PSO ≈ proposal ≈ GEFWA PSO > proposal ≫ GEFWA

f28 PSO ≈ proposal > GEFWA proposal ≈ PSO ≫ GEFWA proposal ≫ PSO ≫ GEFWA

Table 5: Statistical test results of the Kruskal-Wallis test and Holm’s multiple comparison test for average fitness values of 30 trial runs of the
proposal (EFWA+our proposed mechanism), PSO and guided EFWA (GEFWA) at the stop condition, MAXNFC. A ≫ B, A > B and A ≈ B
represent the same meaning as the symbols in the Table 4.

Discussions

Analysis of compositions of our proposal
We begin our discussion on the superiority of our proposed

explosion strategy. Original FWA and several its powerful variant
versions, have paid little attention to the use of the fitness landscape
information to generate spark individuals efficiently and reasonably.
Besides, they only use a small amount of firework individuals to
explore fitness landscape and generate a large number of spark
individuals.

Although it can achieve a fine local search around a firework
individual, many generated spark individuals are used in only a
selection operation and then destroyed. It results that many spark
individuals are not fully used in fact and generating a large number of
sparks from only a few fireworks is risky.

Thus, our proposal can overcome the above deficiencies without
adding any additional fitness calculations. With the same number of
fitness calculations, our multi-layer explosion strategy can explore and
use the features of the local fitness landscape more effectively. In the
first layer, each firework individual generates several spark individuals
to further explore the local fitness landscape carefully, while

conventional FWA only uses a firework individual to achieve it. The
objective of the first explosion is to enhance the understanding of local
fitness landscape with multiple tentative individual’s firework
individuals and spark individuals in the first layer). Subsequently, the
following layer explosion is adaptively conducted based on the results
of the previous explosion. Meanwhile, the center of the explosion is
transferred from firework individuals to spark individuals generated in
the previous layer, which can increase the diversity of generated spark
individuals and achieve a more refined local search. Thus, the objective
of following explosion is to be more reasonable to generate diverse and
potential spark individuals based on the characteristic of local fitness
landscape. As a summary, the proposed strategy can achieve more
careful local search automatically based on the characteristics of local
fitness landscape without adding any fitness cost consumption.

Function 2-D 10-D 30-D

f1 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5 FN5 ≈ FN4 ≈ FN3

f2 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5

f3 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5

f4 FN3 ≈ FN4 ≈ FN5 FN4 ≈ FN3 ≈ FN5 FN4 ≈ FN3 > FN5
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f5 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≫ FN5 FN3 ≫ FN4 ≈ FN5

f6 FN4 ≈ FN3 ≈ FN5 FN3 ≈ FN5 ≈ FN4 FN3 ≈ FN5 ≈ FN4

f7 FN3 ≈ FN4 > FN5 FN3 ≈ FN4 ≈ FN5 FN5 > FN3 ≈ FN4

f8 FN3 ≈ FN5 ≈ FN4 FN3 ≈ FN5 ≈ FN4 FN3 ≈ FN4 ≈ FN5

f9 FN4 ≈ FN5 ≈ FN3 FN3 ≈ FN5 ≈ FN4 FN3 ≈ FN4 ≈ FN5

f10 FN5 ≈ FN4 ≈ FN3 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≫ FN5

f11 FN3 ≈ FN4 ≈ FN5 FN3 FN4 ≈ FN5 FN3 ≫ FN4 > FN5

f12 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5 FN3 > FN4 ≈ FN5

f13 FN3 > FN4 ≈ FN5 FN3 ≈ FN5 ≈ FN4 FN3 ≈ FN5 ≈ FN4

f14 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN5 ≈ FN4 FN3 ≈ FN4 ≈ FN5

f15 FN5 ≈ FN4 ≈ FN3 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5

f16 FN4 ≈ FN3 ≈ FN5 FN3 ≈ FN4 > FN5 FN5 ≈ FN4 ≈ FN3

f17 FN3 ≈ FN4 ≈ FN5 FN3 > FN4 ≈ FN5 FN3 ≈ FN4 ≫ FN5

f18 FN4 ≈ FN3 ≈ FN5 FN3 ≈ FN5 ≈ FN4 FN4 ≈ FN3 ≈ FN5

f19 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5

f20 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5 FN5 ≈ FN3 ≈ FN4

f21 FN4 ≈ FN3 ≈ FN5 FN4 ≈ FN3 ≈ FN5 FN4 ≈ FN5 ≈ FN3

f22 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5

f23 FN3 ≈ FN5 ≈ FN4 FN3 ≈ FN4 ≈ FN5 FN4 ≈ FN3 ≈ FN5

f24 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN4 ≈ FN5

f25 FN4 ≈ FN3 ≈ FN5 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN5 ≈ FN4

f26 FN3 ≈ FN4 ≈ FN5 FN5 ≈ FN3 ≈ FN4 FN3 ≈ FN4 ≈ FN5

f27 FN3 ≈ FN5 ≈ FN4 FN3 ≈ FN5 ≈ FN4 FN4 ≈ FN3 ≈ FN5

f28 FN4 ≈ FN5 ≈ FN3 FN3 ≈ FN4 ≈ FN5 FN3 ≈ FN5 ≈ FN4

Table 6: Statistical test results of the Friedman test and Holm’s multiple
comparison test for average fitness values of 30 trial runs of different
parameter settings of generated sparks in the first layer at the stop
condition, MAX NFC. FN3, FN4 and FN5 mean the number of
generated spark individuals in the first layer is 3, 4 and 5 for each
firework individual, respectively. A≫B, A > B and A≈ B represent the
same meaning as the symbols in the Table 4.

Secondly, we want to discuss the potential of our proposed
explosion strategy. Although we evaluated the simplest two-layer
explosion model in this paper to improve the understanding of local
fitness landscape, the proposed explosion mechanism can be extended
to any layers to explore local fitness information more accurately. Note
that the conventional FWA is a special case of our proposal as a single-
layer explosion. Thus, our proposed ex plosion mechanism is flexible
and can be adjusted to any number of layers as needed. It becomes a
potential topic to develop an adaptive version determining the number
of explosion layers according to the characteristics of optimization
problems and computational cost.

Not only conventional FWA but also our proposed explosion
strategy can be easily combined with other variations of FWA with few

modifications to their original framework. In this paper, we select
EFWA as a baseline algorithm. The main objective of this paper is to
use the proposed multi-layer explosion strategy to speed up any FWA
rather than improve a particular version, e.g. dynFWA and adaptive
FWA. Surely, the proposed strategy can replace the explosion
operations of these future versions easily, and we can infer that their
performance is further improved based on our experimental results.
Thus, we can say that our proposal is widely applicable and easy to use.

The third discussion is how to improve the cost performance of our
proposal. Although our proposal strengthens the acquisition of the
local fitness landscape information, many generated spark individuals
still are not fully used. As a possible attempt, we may identify more
potential directions based on the shape of the multiple explosions and
assigned number of spark individuals and use these pieces of
information to guide evolution more effectively. Besides, past spark
individuals can also be recorded to extract more accurate fitness
landscape information, for example, using past information to make an
approximate fitness model [25, 26]. Thus, it is also a topic worthy of
continued research to improve the rate of used generated spark
individuals.

To analyze the performance of our proposal two controlled
experiments was designed. For the first controlled experiment, we
apply the Wilcoxon signed-rank test between conventional EFWA and
conventional EFWA with our proposed strategy at the stop condition.
The statistical results shown in the Table 4 confirmed that our
proposed explosion strategy could improve the performance of FWA
significantly, especially for complex cases (multi modal optimization
and combinatorial optimization). For high-dimensional F1 and F2
unimodal functions, our proposal is worse than conventional EFWA.
Perhaps it was because the proposal makes spark individuals explore
local fitness landscape fully and thus lead to them distributed widely. It
may cause the slow convergence for unimodal optimization, while it is
useful to avoid falling into the local minima in multimodal
optimization. For F16, our proposal did not show accelerated
convergence. It is necessary to further investigate to apply our
proposed explosion strategy well.

The second controlled experiment compares our proposal with PSO
and a powerful variant of FWA, guided FWA. The Kruskal-Wallis test
and Holm's multiple comparison test are used to check significant
difference among three algorithms at the stop condition. The statistical
results shown in the Table 5 indicate that our proposal performs well in
most cases and always have better performance than the guided
EFWA. To ensure fairness of comparison, we apply our proposal and
guiding spark strategy to the same baseline algorithm. The results
reveal that our proposed strategy has stronger performance, and we
can infer that our proposed strategy can be combined with not only
the guided FWA but also any other variations of FWA to further
enhance their performance. This is possible because the guiding spark
strategy is only predicting a potential direction in a local area, while
our proposed strategy can explore the local fitness land scape more
comprehensively. Meanwhile, the proposed multi-layer explosion
strategy uses sparks in the previous layer to generate new potential
sparks to improve diversity. Thus, we can say that our proposal is
promising thanks to its comprehensive exploration with local
information. We also compared our proposal with PSO. The statistical
results showed that our proposal was better than PSO in low
dimensions except f27, but it became worse on some functions, e.g. f3
and f7 in the high dimension. It may be because the number of
fireworks is insufficient for the increased dimensions, and PSO uses
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not only the local optimum of individuals in past generations but also
the global best information. It gives us a new inspiration; strengthening
the communication among fireworks may further increase
performance of our proposal. One of our future works is to investigate
the relationship between population size and dimensions and increase
collaboration among individuals.

Analysis of parameter settings of proposal
To investigate the effect of the number of generated spark

individuals in the first layer on the performance of our proposed
strategy, we add an experiment and set different number of generated
spark individuals in the first layer using the same parameter settings
with the Table 2. We apply the Friedman test and Holm's multiple
comparison test to check significant difference at the stop condition.

The statistical results reproduced in the Table 6 shows that the
number of generated sparks does not have a large impact on the
performance of our proposal. Although the difference is small, the
smaller the number of sparks in the first layer, the higher the precision
of the final result. When the computational cost is limited, we
recommend not to spend too much resources in the first layer, and it
depends on the optimization problem and computational cost.

Next, we want to discuss parameter settings. Although it has been
discussed for long years, there is no unified methods to guide it. We
often do not have sufficient its a priori knowledge for practical
applications and a variety of optimization problems, and it is difficult
to decide appropriate parameter values. As the first attempt, we set all
parameters in this paper based on previous relevant literatures and
experiences. We can note that the key point affecting performances is
the distribution number of sparks in different layers. When the
number of sparks in the first layer is small, sufficient information on a
local fitness landscape cannot be obtained and sufficient resources for
searching cannot be used in the following layers. Thus, it is important
to balance the number of sparks in different layers and develop an
adaptive allocation version. Finally, when our proposed strategy is
applied to different variants of FWA, we need to consider their
characteristics and select appropriate parameter values to achieve the
best performance. In summary, there is no established method to guide
parameter settings, but we may be able to give rough recommended
parameter settings through a large number of trial run experiments in
our future work.

Potential and future topics
Inspired by the various explosion modes of real fireworks, we

propose a multi-layer explosion strategy to enhance the understanding
of the local fitness landscape. Many other different explosions can be
developed to enhance different capabilities of FWA. For example, tree-
shaped or fan-shaped explosions can be developed to track potential
directions instead of searching randomly or equally in a space. As
many spark individuals are generated by a firework individual in
conventional FWA, it is also worth to develop different strategies to
generate spark individuals to increase diversity and reduce too
intensive risk. Overall, there is still much room to further improve the
performance of FWA by introducing novel mechanisms. It is an
attractive topic to tune parameters adaptively to maintain the strong
performance of FWA at all times. We can also develop adaptive
versions from the following three aspects: (1) adaptive decision of the
number of explosion layers without limiting to two layers, (2) adaptive

decision of the distribution of spark individuals at different levels, and
(3) adaptive decision of a search radius on each dimension.

Conclusion
We propose multi-layer explosion strategy to use local fitness

information more efficiently and guide individual evolution
reasonably, and it can be extended or zoomed to any number of layers.
The controlled experiment results reveal that our proposal is
competitive and can improve the performance of the FWA
significantly. We will further analyse the applicability of our proposal,
develop a more powerful adaptive version as our future works. We also
focus on the use of generated spark individuals in all layers to search
more efficiently.
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